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In this paper, a simplified dynamic model of a dual-rotor system coupled with blade disk is built, and the effects of blade
parameters of an aircraft engine on the dynamic characteristics of a dual-rotor system are studied. In the methodology, the blade is
simplified as a cantilever structure, and the dynamical equations are obtained by the means of a finite element method. ,e
amplitude-frequency response curves and orbits of shaft centre-vibration shape diagram are used to analyze the effects of blade
parameters on dynamic characteristics of a dual-rotor system. ,e results indicate that the properties of the blades have huge
impacts on the critical speed and other dynamic characteristics of the system. With an increase of the length of the blade, the
second-order critical speed decreases obviously, but the first-order critical speed is almost invariant; this means that the blades
attached on the low-pressure compressor do not affect the first-order critical speed of the dual-rotor system. Meanwhile, note that
the high-pressure rotor and low-pressure turbine rotor can excite the first-order resonance of the dual-rotor system, while the low-
pressure compressor rotor can only excite the second-order resonance, and then the dynamic model of this six-point support
dual-rotor system can further be simplified as a relatively independent single-rotor system with one disk and a four-support dual-
rotor system with dual disks.

1. Introduction

As one of the most important components of the aeroengine,
the blades, mainly including rotor blades and stator blades,
have huge effects on the performance and safety of the whole
engine system [1]. Only considering the rotor blades, there
are so many different types, like fan rotor blades (low-
pressure compressor rotor blades), low-pressure turbine
rotor blades, high-pressure compressor rotor blades, and
high-pressure turbine rotor blades. ,us, the number of the
blades is large. And in normal conditions, the blades work
under complex environments, for example, the turbine
blades are subjected to high temperatures, the centrifugal
load of the fan blades is relatively large, etc. All of these make
the research urgent.

Euler–Bernoulli beam and Timoshenko beam assump-
tions are widely used in the dynamic modeling process of the
blades. Using an energetic approach, Lesaffre et al. modeled
a flexible fully bladed rotor in the rotating frame, and a full
set of flexible blades was modeled by Euler–Bernoulli beams
clamped in the disk [2]. ,e influence of shaft bending on
the coupling vibration of a single rotor-blade system was
analyzed by Li et al. [3, 4]. In Li’s work, the single rotor
system was composed of a continuous flexible shaft and a
rigid disk, and the disk was regarded as a mass point and the
blade was derived by using the Euler–Bernoulli beammodel.
As the blade was simplified to a Timoshenko beam, a new
mathematical model for calculating the normal rubbing
force between blades and a flexible casing with suspended
springs was deduced by Li et al. [5]. Ma et al. [6, 7] also
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studied the vibration responses of a rotational shaft-disk-
blade system with blade-tip rubbing. With the blades being
modeled as Euler–Bernoulli beams and the centrifugal
stiffening effect being considered, some main resonances of
a single rotor-blade system with nonlinear supports were
investigated [8]. For the single blade, considering the in-
fluence of aerodynamic forces, Zhang et al. [9] simplified
the blade into a cantilever beam with thin-wall structure
and studied the nonlinear vibration problem of the com-
pressor blades. Zheng et al. [10] simplified the blade into a
flexible thin plate and studied the blade vibration
frequency.

And for the blade-disk-rotor-support coupling system,
many scholars had studied the dynamic modeling of the
blade-disk-rotor system earlier. A spring-mass model was
developed for a mistuned multistage bladed rotor by Sinha
[11], and the algorithm for the reduced-order model was
presented. Lu et al. gave a review in modeling and modal
reduction of the coupling rotor system in [12]. Ma et al.
[13] established a new dynamical model and validated it by
the finite element method and experimental practice as
well. A finite element modeling of the dual-rotor system
was established by Sun et al. [14]; the geometry of the
compressor blades and turbine blades was replaced by
equivalent ring geometrical structure and was identical to
the density and Young’s modulus of the relevant disk
material. Considering the nonlinear factors introduced by
the bearing, Li et al. [15] studied the effect of blade vi-
bration. Chiu et al. [16, 17] studied the coupling vibration
of the multidisk rotor system with or without groups of
blades, respectively. Crawley and Mokadam [18] pointed
out that the transverse bending vibration of the rotor
system was only coupled with the one nodal diameter
mode of the blades, and the pitch motion of the blade was
independent to each other [19]. Chun and Lee [20] studied
the effects of blade parameters on the coupled vibration of
the blade-rotor system. Cao et al. [21] simplified the blade
into a cantilever beam structure and deeply studied the
dynamic model of the blade-rotor system with the con-
sideration of the factors such as sliding bearing, squeeze
film damper, and gyro effect, respectively. ,e influence of
blade parameters on the dynamic characteristics of the
system showed that the blade parameters have a significant
influence on the bifurcation characteristics of the coupled
system, and the blade would change the instability speed of
the system.

Scholars had also carried out a lot of research on the
blade crack problem [22], like the detuned blade-rotor
system coupling vibration problem [23, 24] and blade-casing
rub problem [25, 26]. In addition, a large number of studies
had been carried out on the blade vibration problem based
on finite element software [24].

It can be seen that most of the previous studies have
focused on the analysis of the dynamic characteristics of an
individual blade or the nonlinear characteristics of a single
rotor coupled with a group of blades. ,e studies on dy-
namic behaviours of the dual-rotor coupled with groups of
blades and the effects of the blades on the dual-rotor system
are relatively few. Some simplified dynamic models of the

dual-rotor system were built [27–29], which can be well used
to investigate the nonlinear response characteristics for
aeroengine dual-rotor system. But in these models, the in-
fluence of blade parameters was not fully considered.
However, the mode shapes and critical speeds of the shaft
with a bladed disk are different from those without bladed
disk [8]. And in the actual structure, the number of aero-
engine blades, especially for the fan blades, is large and the
shape of blades is thin and long, which would have a sig-
nificant influence on the dynamic characteristics of the dual-
rotor system.

,us, it is of great engineering significance to study
the influence of the parameters of multigroup blades on
the dual-rotor system. In this paper, the blade-disk-shaft-
support rotor methodology will be introduced in Section
2. Based on a type of aeroengine, the coupling of the
blade-dual-rotor system will be established by a finite
element method in Section 3. Considering 3 different
working conditions, the amplitude-frequency response
curves, the axial trajectory-vibration patterns, and other
comparative analysis will be given in Section 4. ,en, a
dimensionality reduction method will be proposed in
Section 5.

2. Modeling Method of a Blade-Disk-Shaft-
Support System

By the means of the finite element method, the global
coupling system can be meshed into the element model.
Here, the rotor system is divided into rigid disks, elastic
shaft segments, linear bearing supports, and groups of
blades. For an elastic shaft section, depending on its
property, it would be considered as a Timoshenko or Euler
beam element, whose mass will be concentrated to both
ends; for a rigid disk, it will be considered as a lumped mass
point, which would be superposed to the corresponding
node; for a bearing, it will be represented by a spring-
damper element; and for a group of blades, it will be
simplified into a concentrated mass-spring-damper ele-
ment further.

2.1.Modelingof theBlade. Based on the basic structure of the
engine blades, Figure 1 shows a schematic diagram of a
dynamical model of a bladed system. ,e blades are con-
sidered to be elastomeric and evenly distributed over the
disk, with a lacing attached at 2/3 point to the blade tip.

For groups of engine blades on the disks, the modeling
assumptions are as follows:

(a) Consider that the blades on each disk have same
parameters and the blades are rigidly fixed to the disk

(b) Each individual engine blade is simplified to a
cantilever beam structure, whose mass is concen-
trated on the top, and can be further simplified to a
single pendulum model

(c) ,e tension between the engine blades is described
by spring-damping model
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(d) ,e blade angle motion is assumed to be small, and
the radial displacement and torsion are ignored

(e) Consider that the motion of the i-th engine blade is
composed of in-plane motion along the circumfer-
ential direction of the disk and out-of-plane motion
along the axial direction of the rotor [19]

Based on the assumptions above, one of the blades’ (Pi)
motion can be described as in-plane motion θi and out-of-
plane motion ϕi, which are shown in Figure 1. Besides, the
stiffness and the damper of each one blade consist of two
parts: (1) the equivalent stiffness and damper of the blade
along the rotor axis and the circumferential direction of the
disk, which can be represented as kba, l2cba, kbp, and l2cbp;
and (2) the equivalent stiffness and damper of the lacing
along the rotor axis and the circumferential direction of the
disk, which can be represented as kla, cla, klp, and clp.

Let the length of the blade be lb, section width be b,
section thickness be h, and density be ρb; the mass of one
blade equals

mb � ρbAlb � ρbbhlb. (1)

,e blade model is a cantilever beam structure whose
stiffness can be obtained from the first-order natural fre-
quency. ,e first two natural frequencies of the cantilever
beam are

ωp1 �
0.56

l2b

����
EbIb

ρbA

􏽳

,

ωp2 �
3.51

l2b

����
EbIb

ρbA

􏽳

,

(2)

where Eb is the elastic modulus and Ib is the section moment
of inertia. ,us, the natural frequency of the pendulum is

ωb �

���
kb

mb

􏽳

�

�����
kb

ρbAlb

􏽳

. (3)

Let ωb � ωp1; the equivalent stiffness of the blade is

kb �
0.31EbIb

l3b
. (4)

Based on the proportional damper model, the damper of
the engine blades could be expressed as

cb � αbmb + βbkb. (5)

,e proportional coefficients can be obtained by the first
two natural frequencies of the engine blades, and then the
damper of the engine blades can be obtained.

,e lacing could be further simplified to an elongated
rod structure which is primarily subjected to tensile forces
between the blades. ,erefore, the longitudinal stiffness of
the lacing can be expressed as

kl �
ElAl

l
, (6)

where l, El, and Al are the length, elastic modulus, and cross-
sectional area of the lacing, respectively.

Adopting a proportional damper model and letting ml be
the mass of the lacing gives the damper of the lacing.

cl � αlml + βlkl. (7)

Taking the Jeffcott rotor as an example, assuming that
the disk is described by four degrees of freedom and that n
blades are evenly arranged on the disk, the system has 4 + 2n

degrees of freedom, and 8 + 2n degrees of freedom are
considered when two ends are considered. For a rotor
system such as an aeroengine, the number of blades per disk
is huge, and the DOFs (degrees of freedom) of the coupling
system are very high. Considering nonlinear factors, it is
difficult to solve. However, according to a large number of
literature studies [18–20], the lateral vibration of the rotor
system is only coupled with the one pitch diameter motion
of the blade and does not couple with others [19]. Du et al.
[30] calculated and analyzed the vibration mode of the
system.

Let the motion of the blade be expressed as the super-
position of each pitch motion

x

y

Lacing

mb

lb
Pi

Pi+1

θi

O

θi+1Disk

Blade

(a)

O
z

Blade

Shaft

Pi

ϕi

(b)

Figure 1: Model of the position of i-th blade. (a) In-plane deflection of blade. (b) Out-of-plane deflection.
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lbθi � μ0 + μ1c cos ϑi + μ1s sin ϑi + μ2c cos 2ϑi + μ2s sin 2ϑi + · · · ,

lbϕi � v0 + v1c cos ϑi + v1s sin ϑi + v2c cos 2ϑi + v2s sin 2ϑi + · · · ,

(8)

where μ0 and v0 represent the zero-menstruation motion in
the plane of the rotor blade and the out-of-plane direction,
respectively; μkc and μks represent the k-joint motion of the
blade in the plane (k � 1, 2, . . .); vks and vkc indicate the out
of plane k-joint movement; and ϑi � 2π(i − 1)/n indicates
the position of the i-th blade. Based on these, the pitch
motion of the rotor blade can be decoupled, and then the
equations of the blade-rotor system can be obtained.

2.2. Modeling of the Disk-Shaft-Support System. In this
section, the modelingmethod of the disk-shaft systemwill be
further discussed. Adopting the finite element method of the
rotor dynamics [31, 32], the whole linear rotor system can be
divided into three parts as rigid disks, an elastic shaft, and
bearing supports.

Choosing the i-th elastic beam section, its motion can be
described by two elements with 8 DOFs as

q � xi, yi, θyi, θxi, xi+1, yi+1, θy(i+1), θx(i+1)􏽨 􏽩
T

� qi, qi+1􏼂 􏼃
T
,

(9)

where qi represents the i-th node’s displacement and ro-
tation angle and qi+1 represents the (i + 1)-th node’s dis-
placement and rotation angle. ,e detailed description is
shown in Figure 2.

For a rigid disk, it will be considered as a lumped mass
point superposed to the corresponding node. ,en, the
governing equation of the node with disk can be written in
the form

Md €qd − Gdqd � Qd, (10)

whereMd,Gd, andQd are the equivalent mass, stiffness, and
general force of the chosen node.

For a bearing, it will be represented by a spring-damper
element.,en, the boundary condition of the corresponding
node would be affected.

2.3.;e Coupling of the Blades and Disk-Shaft-Bearing Rotor.
In the case that j-th node has no blades on it, the governing
equations of the seciton can be written in the form

Mj
r €qes

− Gj
es _qes

+ Kes
Tq

es
� Qes

, (11)

where Mj
r � Mes

T + Mes
R , G

j
es � GesΩ, and Kes

T are equivalent
mass, damper, and stiffness, respectively, and the explicit
expressions of which can be found in Appendix A.

Further, if there are blades attached on the (i + 1)-th
node, let

qb(i+1) � xb(i+1), yb(i+1), θby(i+1), θbx(i+1)􏽨 􏽩
T
, (12)

represent the general motion of the blades, in which xb(i+1)

and yb(i+1) represent in-plane motion of the blade and

θby(i+1) and θbx(i+1) represent out-plane motion of the blades,
respectively, and

xb(i+1) � − μ1s cosΩt − μ1c sinΩt,

yb(i+1) � − μ1c cosΩt − μ1s sinΩt,

θby(i+1) �
1
lb

1 − v1c cosΩt + v1s sinΩt( 􏼁,

θbx(i+1) �
1
lb

v1s cosΩt + v1c sinΩt( 􏼁,

(13)

gives

MT €qT − GT _qT + KTqT � QT, (14)

where the parameters can be found in Appendix B.

3. Modeling of a Dual-Rotor System

Here, based on the analysis and assumptions above, a type
of dual-rotor-support coupling system model will be
established in this section. A schematic diagram of a dual-
rotor system of an aircraft engine is shown in Figure 3. ,e
whole system consists of a low-pressure rotor, a high-
pressure rotor, and six-point supports. ,e low-pressure
compressor blades are very thin and long, the length of
which is even longer than the corresponding disk radius,
while other blades, such as high-pressure compressor
blades, are relatively small compared to the disk (see
Figure 1 in reference [29]). So, the effect of the low-pressure
compressor blades would be considered most in this sec-
tion. By the means of the finite element method, the whole
coupling system can be discretized into a 14 + 4 node
dynamic model with 4 groups of blades attached on low-
pressure compressor disks and 14 nodes of the shaft-disk-
bearing model, including two high-pressure disks without
blades, one low-pressure turbine disk, and six supports,
which are shown in Figure 3 as well.

3.1. ;e Governing Equations of the Dual-Rotor System.
Referring to the aeroengine manual [31, 32], the rotor system
model can be divided into rigid disks, elastic shaft segments,

z
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o

i
i + 1

yi

θyi

xi

θxi

y(i+1)

θy(i+1)

x(i+1)

θx(i+1)

Figure 2: Schematic diagram of an elastic beam section.
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and linear bearing supports (for 1#–4# and 6#, the stiffnesses
for x-direction and y-direction are 2×107N/m, and for 5#,
the stiffnesses for x-direction and y-direction are
4×108N/m), and then the governing equations of the
adapted dual-rotor system can be written in the form

M1

M2
􏼢 􏼣

€qH

€qL

􏼢 􏼣 −
G1

G2
􏼢 􏼣

_qH

_qL

􏼢 􏼣 +
C1 C12

C12 C2
􏼢 􏼣

_qH

_qL

􏼢 􏼣

+
K1 K12

K12 K2
􏼢 􏼣

qH

qL

􏼢 􏼣 �
QH

QL

􏼢 􏼣,

(15)

in which

qH � q1, q2, q3, q4􏼂 􏼃
T
;

qL � q5, q6, qb6, q7, qb7, q8, qb8, q9, qb9, q10, q11, q12, q13, q14􏼂 􏼃
T
,

QH � F1 cosΩ1t + F2 sinΩ1t,

QL � F3 cosΩ2t + F4 sinΩ2t,
(16)

whereΩ1 andΩ2 represent the operating speeds of the high-
pressure rotor and the low-pressure rotor, respectively; M1
andM2 are mass matrices, G1 and G2 are gyration matrices,
C1 and C2 are the damper matrices, and K1 and K2 are
stiffness matrices of the high-pressure rotor system and the
low-pressure rotor system, respectively (including the in-
fluence of the blades); and F1 cosΩ1t and F2 sinΩ1t are
unbalanced excitation vectors of the high-pressure rotor and
F3 cosΩ2t and F4 sinΩ2t are the unbalanced excitation
vectors of low-pressure rotor, respectively.

3.2.;eValidationof theModel. In this section, a validation of
the model established in the previous section will be given. A
finite element model is established in finite element software as
shown in Figure 4. ,e detailed descriptions are shown below:

(1) ,e geometry model of dual-rotor is established by
solid modeling method, and the finite element model
is established by the finite element method

(2) ,e geometry model of compressor blades and
turbine disk blades is established by the method of
the equivalent rigid ring

(3) Some small features, such as chamfer/fillet, small
hole, etc., are ignored

(4) 8-node 6-plane elements are used to mesh the solid
model

(5) ,e bearing centres and disk centres are connected
with the corresponding area by rigid massless beams

(6) Combine14 element is used to represent the bearing
support

Finally, an element model with total 67,583 elements and
98,083 nodes is built. Among them, there are 30,420 elements
and 52,080 nodes for the low-pressure rotor and 36,360 units
and 45,990 nodes for the high-pressure rotor. ,en, the first
two critical speeds are calculated. Compared with the results
calculated by the model given in the previous section in case
of considering the blades as a concentrated mass, the results
are given in Table 1. ,e errors between the two methods
show the model proposed in this paper is reasonable.

4. DynamicCharacteristicsAnalysisof theDual-
Rotor System

As the blades of low-pressure compressor are much longer
and thinner than those on high-pressure compressor,
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Figure 3: Sketch of a blade-dual-rotor-supporting system.

Figure 4: A three-dimensional solid finite element model of the
dual-rotor system.
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which will play a much more important role in the vi-
bration of the system. Let l � [lb1, lb2, lb3, lb4] represent the
length of blades on four-stage disk and Δlb represent the
length variation of the blades; we consider three working
conditions to investigate the influences on the blades of the
system:

Case A: all blades are neglected.
Case B: consider the blades as a concentrated mass at
the point of the node.
Case C: consider the parameters of the blades attached
to the low-pressure compressor.

Table 2 gives the shaft segment spacing, Table 3 gives
the blade parameters, and Table 4 shows the two-stage
synchronous forward critical speed of the dual-rotor
system with the high-pressure rotor as the main exci-
tation under different working conditions. In Table 4, the
critical speeds of working conditions A and B are cal-
culated by the frequency equations, and the critical speed
of working condition C is obtained by the resonant
frequency of the amplitude-frequency curve. Comparing
the working conditions A and B, the mass of the blades
has an obvious influence on the dynamic characteristics
of the dual-rotor system. ,e critical speed of the system
decreases when the mass of blades is added to the system.
Comparing the results of working condition A, working
condition B, and working condition C, both the blades’
mass and the critical speed of the rotor system have
effects on the system, but the influence of the mass is
dominant. ,is also shows that the blades can be sim-
plified in the form of concentrated mass to the corre-
sponding node when calculating the critical speed of the
system.

Figure 5 shows the amplitude-frequency response curves
of the dual-rotor system under operating conditions A and
C. It can be seen that under condition C, the critical speed
values are significantly reduced. It is worth mentioning that
the high-pressure rotor and the low-pressure turbine rotor
resonate only at the first critical speed, while the low-
pressure compressor rotor resonates primarily at the second
critical speed. ,is shows that the high-pressure rotor and
the low-pressure turbine rotor stimulate the first-order
resonance of the dual-rotor system, and the low-pressure
compressor rotor provokes the second-order resonance of
the dual-rotor system.

Figures 6–8 show the effect of blade length variation on
the system’s amplitude-frequency curve. It can be seen from
the amplitude-frequency curve of the low-pressure com-
pressor rotor in Figure 6 that the second-order critical speed
ω2 of the system will decrease when the length of the low-
pressure compressor blades increases (1312 rad/s, 1280 rad/s,

and 1248 rad/s). From the amplitude-frequency curve of the
high-pressure rotor and the low-pressure turbine rotor in
Figures 7 and 8, it can be seen that the first-order critical
speed of the system ω1 will decrease when the mass of the
high-pressure rotor blade and the low-pressure turbine
blade and the parameters of the low-pressure compressor
blades are considered. Meanwhile, when the length of the
low-pressure compressor blades increases, the value of ω1
does not change. ,is shows that the length of the low-
pressure compressor blades does not affect the first-order
critical speed of the system.

5. Simplification of the Dynamic Model of the
Dual-Rotor System

To further analyze the results from the previous section,
Figures 9 and 10 show the three-dimensional axis trajectory
map of different node positions of the dual rotor system, that
is, the axis trajectory-vibration pattern, when the rotation
speed meets the first-order critical speed ω1 (Ω1 � 700 rad/s,
Ω2 � 560 rad/s) and the second-order critical speed ω2
(Ω1 � 1640 rad/s, Ω2 � 1312 rad/s), respectively. It can be
seen from Figure 9 that under the first-order critical speed
ω1, the axial trajectory of the high-pressure rotor node and
the low-pressure turbine node is a large circular shape,
which means bending resonance occurs, while the axial
trajectory of each node of the low-pressure compressor rotor
is relatively small (nonsynchronous), which means reso-
nance does not occur. It can be seen from Figure 10 that,
under the second-order critical speed ω2, the axial trajectory

Table 1: ,e comparison of the critical speeds.

Model proposed in
this paper

Classical finite
element method

Error
(%)

ω1 (rad/s) 701 719 2.57
ω2(rad/s) 1325 1411 6.49

Table 2: ,e parameters of the shaft.

Nodes
1–4

Nodes
5–10

Nodes 10
and 11

Nodes 11
and 12

Nodes 12
and 13

Length
(m) 1.2 0.6 0.2 1.3 0.2

Table 3: ,e parameters of the blade.

Parameters Value
Width [0.0660.0580.0510.048] (m)
Length [0.2660.1900.1780.168] (m)
,ickness [0.00350.00300.00250.022] (m)
Distance [0.05940.04950.03890.0528] (m)
Eb 1.1∗ 1011 (N/m2)
ρb 4400 (kg/m3)
nb [42, 50, 60, 48]

Table 4: Synchronous forward critical speeds induced by high-
pressure rotor (speed ratio equals to 0.8).

Case ω1 (rad/s) ω2 (rad/s)

Case A 788 1573
Case B 701 1325
Case C 700 1312
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of each node of the low-pressure compressor rotor is a
large circular shape, which means bending resonance
occurs, while the trajectory of the nodes of the high-
pressure rotor and the low-pressure turbine nodes is
relatively small, which means (nonsynchronous) reso-
nance does not occur. It also can be seen from Figures 9
and 10 that the high-pressure rotor and the low-pressure
turbine rotor provoke the first-order resonance of the
dual-rotor system, while the low-pressure compressor
rotor provokes the second-order resonance of the dual-
rotor system.,is is because the low-pressure turbine shaft
is relatively slender, and the low-pressure compressor
rotor system has a low level of vibration coupling with the
high-pressure rotor and the low-pressure turbine rotor,
which means the low-pressure compressor rotor is rela-
tively “independent.” It is worth to note that in the double
rotor system of Figure 3, the 2# and 3# bearings are
normally connected by a flexible coupling, which greatly
reduces their coupling level.

From the above results, the low-pressure compressor
rotor system can be regarded as a relatively independent

single rotor system A1, and the high-pressure rotor and the
low-pressure turbine rotor can be simplified as a new dual-
rotor system B1, as shown in Figure 11. Under different
working conditions, the A1 system and the B1 system can be
analyzed, respectively, as needed.

Furthermore, considering the computational efficiency,
when the influence of various complex nonlinear factors on
the system are considered, the four-stage roulette in the A
system can be simplified to one stage, while the high-
pressure compressor disk and the turbine disk in the B
system could be simplified to one level, so a relatively in-
dependent single-rotor system with one disk and four-
support dual-rotor system with dual disks can be obtained
(see Figure 12), which has lower degrees of freedom and
more practical engineering practice.

To validate our conclusion, we plot the modal dia-
gram of the divided system A and B, respectively, and
compare with the original system qualitatively as shown
in Figures 13 and 14. Figure 13 shows that, with the
increase of the rotating speed, when the dual-rotor
system(system B) resonates, the single rotor has no
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Figure 10: Orbits and modal shapes: ω2(Ω1 � 1640 rad/s, Ω2 � 1312 rad/s).
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A2: single-rotor system B2: dual-rotor system

Figure 12: A further simplified dynamic model of the dual-rotor system for an aeroengine.
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Figure 13:Modal shapes (a) for original dynamicalmodel in Figure 3 at the first critical speedω1, (b) for separated single-rotor system in Figure 11
at ωB1, and (c) for separated dual-rotor system in Figure 11 at ωB1 (ωB1 is the first critical speed for separated dual-rotor system in Figure 11).

A1: single-rotor system B1: dual-rotor system

Figure 11: Dynamic model of the dual-rotor system for an aeroengine.
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resonance. Also, when the single rotor system matches its
critical speed, the dual-rotor does not resonate at that
rotating speed (shown in Figure 14). It should be noted
that it is a qualitative result, and the quantitative result
can be matched by equivalently adding the mass to the
node 2 (mass of the dual-rotor system) and node 3 (mass
of the single-rotor system) and changing the corre-
sponding boundary conditions.

6. Conclusion

In this paper, the methodology of the modeling of the
dual-rotor coupling with blades and support is proposed
based on a type of six point supports aeroengine. ,e
modeling method is verified, and some reasonable results
are obtained. With the comparisons of the influences of
various conditions and system parameters, a further
simplification method is proposed. ,e main conclusions
are as follows:

(1) Blades’ stiffness and blades’ mass have effects on the
critical speed of the dual-rotor system, but the mass
influence is dominant, which indicates that the
critical speed of the calculation system can be

estimated by considering the blade mass as a
concentrated mass attached to the corresponding
node.

(2) With the increase of the length of the low-pressure
compressor blade, the second-order resonance
speed ω2 of the system will significantly decrease
(1312 rad/s, 1280 rad/s, and 1248 rad/s, respec-
tively); however, the value of ω1 is basically un-
changed, which indicates the length of the blades of
low-pressure rotor does not affect the first-order
critical speed of the six-point support dual-rotor
system, and the rotor system can be further
simplified.

(3) According to the amplitude-frequency curve diagram
and the axial-trajectory-vibration pattern, the high-
pressure rotor and the low-pressure turbine rotor excite
the first-order resonance of the dual-rotor system, and
the low-pressure compressor rotor excites the second-
order resonance of the dual-rotor system. Based on this,
the six-point-supported dual-rotor system can be fur-
ther simplified to a relatively independent single-span
single-rotor and four-support-dual-rotor dynamic
model with low degrees of freedom.
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Figure 14: Modal shapes (a) for original dynamical model in Figure 3 at the second critical speed ω2, (b) for separated single-rotor system in
Figure 11 atωA1, and (c) for separated dual-rotor system in Figure 11 atωA1 (ωA1 is the first critical speed for separated single-rotor system in
Figure 11).
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Appendix

A. TheDetailed Expression of theMassMatrices
and Stiffness Matrices
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(A.1)

where KB1 � 12/(1 + φs); KB2 � L2(4 + φs)/(1 + φs); KB3 �

L2(2 − φs)/(1 + φs); KB4 � 6L/(1 + φs); φs � 12EI/ (GAL2);
MT1 � (13/35) + (7/10φs) + (1/3φ2

s ); MT2 � ((1/105) + (1/
60φs) + (1/120φ2

s ))L2; MT3 � (9/70) + (3/10φs) + (1/6φ2
s );

MT4 � ((11/210) + (11/120φs) + (1/24φ2
s ))L; MT5 � ((13/

420) + (3/40φs) + (1/24φ2
s ))L;

MT6 � − ((1/140) + (1/60φs) + (1/120φ2
s ))L2; rρ �

����
Ie/A

√
;

MR1 � (6/5); MR2 � ((2/15) + (1/6φs) + (1/3φ2
s ))L2; MR3 �

(− (1/30) − (1/6φs) + (1/6φ2
s ))L2; MR4 � ((1/10) − (1/2φs))

L; G1 � 36; G2 � 3L − 15Lφs and G3 � L2 + 5L2φs − 15L2φ2
s ;

and G4 � 4L2 + 5L2φs + 10L2φ2
s .
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B. TheDetailed Expression of theMassMatrices
and StiffnessMatrices with the consideration of
the Rotor Blades
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