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�e research on regular and irregular vegetation pattern formation in semiarid regions is an important �eld in ecology. Applying 
the framework of coupled map lattice, a novel nonlinear space- and time-discrete model is developed based on discretizing the 
classical Klausmeier model and the vegetation pattern formation in semiarid regions is restudied in this research. �rough analysis 
of Turing-type instability for the discrete model, the conditions for vegetation pattern formation are determined. �e discrete 
model is veri�ed by Klausmeier’s results with the same parametric data, and shows advantages in quantitatively describing diverse 
vegetation patterns in semiarid regions, such as the patterns of regular mosaicirregular patches, stripes, fractured stripesspots, and 
stripes-spots, in comparing with former theoretical models. Moreover, the discrete model predicts variations of rainfall and vegetation 
types can cause transitions of vegetation patterns. �is research demonstrates that the nonlinear mechanism of the discrete model 
better captures the diversity and complexity of vegetation pattern formation in semiarid regions.

1. Introduction

�e regular and irregular spatial vegetation patterns are very 
important landscapes widely distributed in semiarid regions 
[1–4]. Due to insu�ciency of water resource, the vegetation 
cover may hardly maintain homogeneous and may be self- 
organized into heterogeneous vegetation patches [5]. In recent 
decades, the vegetation pattern formation in semiarid regions 
has aroused widespread interests of theoretical and experi-
mental ecologists [6–11].

Many studies suggest that the formation of vegetation 
patterns in semiarid regions results from feedbacks between 
biomass and water resource [5, 12–14]. Based on the feed-
backs, a great number of mathematical models have been 
established [9]. Among these models, the Klausmeier model 
[13] plays an important role. Many models developed later 
can be considered as modi�ed versions of the Klausmeier 
model [15–18].

�e Klausmeier model is a continuous dynamic model 
with vegetation biomass and water resource as state variables. 
�is model provides a classical combination of ecological and 

nonlinear mechanisms in determining the vegetation pattern 
formation in semiarid regions. It grasps the feature of inter-
actions between plant and water, capturing the formation of 
striped vegetation patterns on hillslopes. Klausmeier’s work 
has a close agreement with �eld observations. With the 
employment of the Klausmeier model, the wavelength and 
migration speed of the striped patterns on hillslopes are pre-
dicted [19]. Systematic investigations on the pattern solutions 
of the Klausmeier model provide more predictions for the 
nonlinear characteristics of striped vegetation in semiarid 
environments [20–22].

As so far, most of the spatially extended models in 
literature researching the vegetation pattern formations are 
time- and space-continuous [9, 23]. However, the continuous 
dynamic models simplify the fact that natural ecological sys-
tems composing of separate individuals are o�en 
patchy and exhibit discontinuous properties [24, 25]. 
Correspondingly, it should be more reasonable and adequate 
applying discrete models to study the discontinuous vegeta-
tion in ecological systems [25]. It is widely recognized that 
discrete dynamic models show e�ectiveness and power in 
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describing nonlinear characteristics and complexity of nat-
ural ecological systems. Domokos and Scheuring [26] found 
that the discrete model can be more accurate than corre-
sponding continuous model in describing population 
dynamics. Han et al. [27] and Li et al. [28] discovered that 
Turing instability and Turing patterns can occur in the dis-
crete rather than the corresponding continuous competitive 
Lotka–Volterra system. �e discrete Logistic system can 
generate chaos which has great signi�cance in describing the 
complexity of population dynamics [29, 30]. A lot of research 
works have demonstrated that the application of discrete 
dynamic models may lead to better results in studying eco-
logical systems [31, 32].

In literature, the discrete models for studying vegetation 
patterns have a few types, including cellular automata, meta-
population models, coupled map lattices, and so on [9, 12, 
33, 34]. In this research, the space- and time-discrete model 
of vegetation pattern formation will be given by a coupled 
map lattice. �e coupled map lattices are characterized by 
discrete time, discrete space, and continuous states, and are 
comparable with two other standard models for spatially 
extended dynamical systems, namely, partial di�erential 
equations and cellular automata [34]. �ey have great advan-
tages in describing the spatiotemporal chaos and are widely 
applied in many �elds [35]. In ecology, the application of 
coupled map lattices results in a better understanding and 
prediction of ecological complexities of pattern formations 
[25, 34, 35]. However, scarce coupled map lattice model is 
documented in literature for quantitatively describing the 
vegetation pattern formation in semiarid regions, and a reli-
able one is still needed. Referring to the research works on 
di�erence equation models [36, 37], the new model can be 
developed from discretizing a continuous model. Due to the 
importance of Klausmeier model in vegetation pattern for-
mation studies, it is ecologically representative to apply the 
discretization of the Klausmeier model.

�is research focuses on the self-organized patterns 
resulting from Turing-type instability mechanism, i.e., 
Turing-type patterns [9, 13]. �e Turing instability was ini-
tially found by Turing [38] and the theory of Turing insta-
bility has been widely employed and further improved in 
ecology to investigate the pattern formation [5] and [19]. 
New types of Turing instability (collectively called Turing-
type instability) are found, such as di�erential §ow instability 
[13], cross-di�usion driven instability [39], and so on. 
Generally, the mechanism for occurrence of Turing-type 
instability is spatial symmetry breaking at the spatially 
homogeneous state [9].

In this research, a nonlinear space- and time-discrete 
model of water and biomass is to be developed for quan-
titatively describing the vegetation pattern formation in 
semiarid regions, on the basis of discretizing the Klausmeier 
model. Via analyzing the Turing-type instability for the 
discrete model, the occurrence conditions of vegetation 
patterns are to be analytically determined. Numerical sim-
ulations are to be performed under the occurrence condi-
tions of Turing-type patterns, to demonstrate the formation 
of diverse and complex vegetation patterns in semiarid 
regions.

2. Development of space- and Time-Discrete 
Model

�e Klausmeier model was established in 1999 for investigat-
ing the formation of vegetation patterns in semiarid regions. 
�e model grasps the feature of interactive mechanism of bio-
mass and water, and predicts vegetation patterns which have 
close agreement with observations [13, 19]. �e model has 
two state variables, water and vegetation biomass. �e dynam-
ics of water is a process of water redistribution. On one hand, 
rainfall water is depleted by evaporation and plant absorption; 
on the other hand, the water §ows downslope. �e dynamics 
of biomass is described by vegetation growth, natural mortal-
ity, and lateral di�usion (see Figure 1(a)). �e governing equa-
tions of the Klausmeier model are expressed by:

in which � (kg H2O m−2) is water amount and � (kg dry mass 
m−2) is vegetation biomass; � (year) is time and � (m) and �
(m) index a two-dimensional domain; negative � direction is 
the downslope water §ow direction on hillslopes, and � direc-
tion is the latitudinal direction; � (kg H2O m−2 year−1) is rainfall 
rate, �(year−1) is evaporation rate of water; � ((kg m−2)−2 year−1) 
describes the rate of per unit vegetation biomass taking up 
water, � ((kg dry mass) (kg H2O)−1) expresses the conversion 
rate of vegetation biomass from per unit water consumed; �
(year−1) is mortality rate of vegetation biomass; � (m year−1) 
is the §ow speed of water downslope, and � (m2 year−1) is the 
di�usion coe�cient of vegetation dispersal, describing the dif-
fusion capability of the vegetation.

�e Klausmeier model can be nondimensionalized and 
transformed into a dimensionless form,

using following nondimensionalized expressions,

in which � controls the water input through precipitation, �
measures the biomass mortality, and v0 controls the rate at 
which water §ows downslope.

(1a)
���� = � − �� − ���2 + ����� ,

(1b)
���� = ����2 −�� + �(�

2�
��2 +
�2�
��2 ),

(2a)
���� = � − � − ��2 + v0 ���� ,

(2b)
���� = ��2 − �� + ( �

2

��2 +
�2
��2)�,

(3)

� = �1/2�−1/2��,
� = �1/2�−1/2�,
� = ��,
� = �1/2�−1/2�,
� = �1/2�−1/2�,
� = ��1/2�−3/2�,
 = ��−1,
v0 = ��−1/2�−1/2,
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On the basis of the Klausmeier model described by Eq. 
(2), a space- and time-discrete model of water and biomass, 
which is given by a coupled map lattice, is developed. Like 
many research works in literature, a common method for 
develing discrete model, discretizing the continuous model, 
is applied [36, 37]. We divide the spatial domain into � × �
cells and the time into a sequence of time intervals. Using ����
and ����  to represent water amount and vegetation biomass in 
the cell (�, �) at �th time interval. According to literature, the 
dynamics of a coupled map lattice consists of two alternating 
stages, the temporal nonlinear “reaction” stage and the spatial 
movement stage [25, 34, 35, 40–42]. Corresponding to the 
ecological framework of Klausmeier’s work (see Figure 1(a)), 
the spatial movement includes biomass di�usion, water §ow 
(see Figure 1(b)), and water redistribution resulting from 
water §ow on hillslopes. �e “reaction” stage is represented by 
plant growth, which occurs in turn a�er the biomass di�usion 
and the water redistribution. One can see the outline in Figure 
1(c) for the details of the coupled map lattice model in this 
research. In the outline, we determine the biomass di�usion 
and water redistribution �rstly and then the transition of 

vegetation biomass from time � to time � + 1. It should be 
noticed that such sequential determination agrees with the 
natural processes in ecological systems and is not described 
by the Klausmeier model [34].

With consideration of biomass di�usion, ����  will change 
to a new vegetation biomass, ���� . Applying discretization on 
the di�usion term of Eq. (2b), ����  can be obtained as

In which

where �ℎ measures the duration of one time interval, �ℎ meas-
ures the length of one cell, ∇2� denotes the discrete version of 
Laplacian operator ∇2 and describes the di�usion in discrete 
space (see Figure 1(b)).

(4a)���� = ���� + �∇2����� ,

(4b)� = �ℎ�ℎ2 ,

(4c)∇2����� = ��+1,�� + ��,�+1� + ��−1,�� + ��,�−1� − 4���� ,
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Figure 1: Outlines for (a) the Klausmeier’s model, (b) biomass di�usion and water §ow in discrete space, and (c) the coupled map lattice model.
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�e discrete model restates the interactions of water and 
vegetation from the view of discrete time and space. In the 
following, the discrete model is investigated to quantitatively 
determine the vegetation pattern formation in semiarid 
regions.

3. Conditions for Turing-Type Pattern 
Formation

�e occurrence of Turing-type patterns requires two condi-
tions [5, 9, 38]. First, a nontrivial spatially homogeneous sta-
tionary state exists and is stable to spatially homogeneous 
perturbations. Second, this stable stationary state is unstable 
to at least one type of spatially heterogeneous perturbations. 
�e second condition de�nes the condition for Turing-type 
instability, which ensures local perturbations on the stable 
homogeneous stationary state gradually expand globally.

3.1. Conditions for Stable Homogeneous Stationary 
State. According to the conditions for Turing-type patterns, 
the spatially homogeneous stationary states of the discrete 
model are studied at �rst. �e homogeneous stationary states 
demand ∇����� ≡ 0 and ∇2����� ≡ 0, for all of � and �. With 
the calculation as described in Appendix A, three spatially 
homogeneous stationary states can be obtained when � > 2�,

(�0, �0) represents the state of bare ground without vegetation 
pattern formation and will not be further considered. �e 
other two states (�1, �1) and (�2, �2), describe homogeneous 
vegetation and will be discussed in below for the vegetation 
pattern formation.

�e local stability of the homogeneous stationary states 
re§ects how the system resists spatially homogeneous pertur-
bations. If the state is locally stable, the system may return to 
this state a�er the occurrence of homogeneous perturbations. 
Such property ensures the convergence of the system and is 
important for the vegetation pattern formation. Based on the 
calculation in Appendix A, the conditions for stable homoge-
neous state (�2, �2) are determined as the following,

Figure 2 shows the stable homogeneous state occurring in the 
temporal evolution of vegetation density, when the parameters 
satisfy the conditions described in Eq. (10a). As shown in 
Figure 2, the trajectory asymptotically approaches (�2, �2). 

(9a)(�0, �0) : (�, 0);
(9b)(�1, �1) : (� + √�2 − 4�22 , 2�

� + √�2 − 4�2),

(9c)(�2, �2) : (� − √�2 − 4�22 , 2�
� − √�2 − 4�2),

(10a)Case (1) : � ≤ 2, � > 2�;

(10b)Case (2) : � > 2, 2� ≤ � < 2�2√�2 − 4 .

�e water redistribution is then considered. Discretizing 
Eq. (2a), we have the following equation,

in which

Likewise, ∇� is the discrete version of operator ∇ and describes 
the §ow in discrete space (see Figure 1(b)). In this research, 
we set �ℎ = 1, and hence the water input in the ecological sys-
tem maintains as � in every time interval. Two aspects should 
be taken into consideration correspondingly. First, the precip-
itation water is completely depleted in one time interval; sec-
ond, the vegetation biomass involving in the water 
redistribution is ����  due to the biomass di�usion. On this basis, 
Eq. (5a) is modi�ed and the discrete equation of the water 
redistribution can be obtained as,

In its turn, applying the space- and time-discretization on 
Eq. (2b), the “reaction” stage of plant growth can be described 
by

Rewrite the above equations, the space- and time-discrete 
model for vegetation pattern formation in semiarid regions 
can be described by the following,

�e spatial dynamics of water and vegetation in the 
boundary cells are provided by boundary conditions. Like in 
Klausmeier [13], periodic boundary conditions are applied in 
this research and described as the following,

In all the equations above, �, � ∈ {1, 2, 3, . . . , �}, � ∈ �+, and �
in the equations is a positive integer.

(5a)����+1 = ���� + �ℎ(� − ���� − ���� (���� )2) + v∇���� ,

(5b)v = �ℎv0�ℎ ,

(5c)∇����� = ��+1,�� − ���� .

(6)0 = � − ���� − ���� (���� )2 + v∇���� .

(7)����+1 = ���� + �ℎ(���� (���� )2 − ����� ).

(8a)0 = � − ���� − ���� (���� + �∇2����� )2 + v∇����� ,
(8b)����+1 = (1 − �)(���� + �∇2����� ) + ���� (���� + �∇2����� )2.

(8c)

��,0� = ��,�� ,��,1� = ��,�+1� ,�0,�� = ��,�� ,
�1,�� = ��+1,�� ,

(8d)

��,0� = ��,�� ,��,1� = ��,�+1� ,�0,�� = ��,�� ,
�1,�� = ��+1,�� .
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�at Eq. (12) diverges needs the satisfaction of following 
condition, i.e., existing at least one group of � and � to make

Eq. (13) gives the condition for Turing-type instability of the 
discrete model. Such condition is obtained when weak spa-
tially heterogeneous perturbations take place around the stable 
homogeneous state.

Given the above calculations, the occurrence of Turing-
type patterns for the discrete model demands the parameter 
values satisfy the conditions described in either Eq. (10a) or 
Eq. (10b), combined with the condition in Eq. (13). �e 
Conditions of Turing-type patterns determine the parameter 
space for vegetation pattern formation. Under the conditions 
obtained, the vegetation pattern formation in semiarid regions 
can be quantitatively studied by numerical simulations.

4. Numerical Simulations and Discussion

Numerical simulations are performed to mimic the formation 
of vegetation patterns in semiarid regions. Since the vegetation 
pattern formation for the discrete model is still based on 
Klausmeier’s ecological framework, the same parameter val-
ues/range in Klausmeier [13] are applied. With application of 
the parametric data in Table 1, validation of vegetation pattern 
formation is performed �rstly to prove the feasibility of the 
discrete model.

Using the nondimensionalized expressions described pre-
viously, the values/range for the scaling parameters in the 
discrete model can be obtained (see Table 2). Simultaneously, 
the values of other parameters used in the discrete model are 
also given in Table 2. To compare with the results shown in 
Klausmeier [13], Figure 3 is plotted with � = 2, � = 0.45, and 
length of cell at 2 m (noticing that the cell length equals �ℎ�−1/2�1/2 according to Eq. (3)).

(13)�(�, �) = ����������(
�12�21

v�(1)�� − �11 + �22)(1 − ��
(2)
�� )
���������� > 1.

However, it should be noticed that (�2, �2) is locally asymp-
totically stable rather than globally stable. If the initial value 
of u is too low (for example, lower than �1), the discrete system 
will evolve into bare ground.

3.2. Condition for Turing-Type Instability. According to the 
results obtained above, the analysis of Turing-type instability is 
further performed on the stable homogeneous stationary state 
represented by (�2, �2). Spatially heterogeneous perturbations 
are introduced to the discrete model and observe the behaviors 
of the model system. When vegetation biomass and/or water 
resource are enhanced or reduced spatially heterogeneously 
by the perturbations, the discrete system may converge to two 
states as the time progresses. �e �rst is the homogeneous 
state, this case suggests that the system can resist the 
heterogeneous perturbations as well and homogenous 
vegetation dominates. If the homogeneous state becomes 
unstable under the heterogeneous perturbations, the system 
will converge to another state with spatially heterogeneous 
vegetation, demonstrating the vegetation pattern formation. 
With the calculations in Appendix B, we can summarize the 
e�ect of heterogeneous perturbations around the global space. 
�is leads to the following dynamic equations:

Eq. (11) describes the dynamics of spatially heterogeneous 
perturbations in entire space. If Eq. (11) converges, the system 
will go back to the spatially homogeneous stationary state. 
Only the divergence of Eq. (11) can lead to the breaking of the 
homogeneous state and the formation of Turing-type patterns. 
Eq. (11) can be transformed into the following form,

(11a)0 = (�11 − v�(1)�� )�� + �12(1 − ��(2)�� )��,
(11b)��+1 = �21�� + �22(1 − ��(2)�� )��.

(12)��+1 = ( �12�21
v�(1)�� − �11 + �22)(1 − ��

(2)
�� )��.
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Figure 2: Stable stationary state of the discrete model when conditions in Eq. (10a) are satis�ed � = 2, � = 0.45.
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observation. �ese results prove the feasibility of applying the 
discrete model in studying the vegetation pattern formation 
in semiarid regions. In the following, further numerical sim-
ulations are performed to demonstrate the vegetation pattern 
formation of the discrete model as parametric conditions shi�. 
�e parameter ranges/values given in Table 2 are still used, 
except that values of parameters � and � may change. Two 
initial vegetation conditions are applied corresponding to 
weak perturbations and strong perturbations described in 
Section 3.

(a)  Initial condition 1 (IC1): weak perturbations at the 
stable homogeneous vegetation. �e initial veg-
etation value for the ��th lattice is described by ���0 = (1 + 0.1(� − 0.5))�2, in which � follows standard 
uniform distribution. �is condition is only applied 
when Eq. (27) establishes.

(b)  Initial condition 2 (IC2): strong perturbations. 
Randomly selecting 30% (other percentages are also 
suitable) cells, the initial vegetation value in each of 
these cells is set as ��2, whereas the other cells are 
de�ned as bare ground.

�e above parametric and initial conditions are given under 
the Turing-type pattern formation conditions described in 
Section 3. Based on these conditions, following numerical 
simulations are performed. Corresponding to Klausmeier’s 
work, two cases of vegetation pattern formation are studied, 
v = 0 (on §at ground) and v ≫ 0 (on hillslopes).

4.1. v = 0: Vegetation Pattern Formation on Flat Ground. �e 
numerical solutions of Eq. (8) with v = 0 describes the 
vegetation pattern formation on §at ground. Figure 4 shows 
the regular mosaic vegetation pattern self-organized when 
the value of � is given at 5.6 (m2 year−1). In the pattern, 
the vegetation interweaves with the bare ground. Each 
vegetated patch is surrounded by four areas of bare ground. 
In appearance, the mosaic pattern is close to the natural gap 
patterns, which are described by [43, 45, 46].

In the research work of Klausmeier [13], the irregular 
mosaic vegetation pattern is also obtained. However in 
Klausmeier’s work, the occurrence of vegetation patterns on 

Figure 3(a) shows the vegetation pattern evolving during 
the transient dynamics (� = 100). In Figure 3(a), vegetation 
strips emerge in the form of forks and dead-ends. A�er the 
transient dynamics (� = 1000), regular vegetation stripes take 
place, perpendicular to the downslope direction, as shown in 
Figure 3(b). Figure 3 shows the same formation process of 
vegetation pattern with that described in Klausmeier [13]. 
Moreover, the wavelength for the vegetation pattern shown in 
Figure 3(b) is about 14.29 m, which is close to the wavelength 
simulated by Klausmeier, 12.5 m. �ese agreements suggest 
that the discrete model can repeat the vegetation pattern for-
mation of the Klausmeier model.

Figure 3(c) shows the in§uence of cell length and cell num-
bers on the pattern formation. �e cell length and the cell 
numbers de�ne the domain scale for vegetation pattern for-
mation. When the cell length is given in range of 1~3 m, the 
wavelength §uctuates around 13.5~15.5 m. Both � = 50 and � = 100 can lead to the same result, which suggests the stead-
iness of pattern formation with the change of domain scale. 
�e cell length is important for measuring the vegetation pat-
tern formation. As described in literature, many dynamic 
models show suitable cell sizes for simulating vegetation pat-
tern formation [43, 44]. Under the parametric conditions 
given in Table 2, the suitable cell length for the discrete model 
ranges in 1~3 m. �erefore, applying cell-length = 2 m and 
n = 50 (the domain scale is 100 m×100 m) is reasonable for 
simulating the vegetation pattern formation of the discrete 
model.

�e vegetation pattern self-organized on hillslopes has two 
important properties, wavelength and upslope migrating. 
With the values/ranges for the parameters provided in Table 
2, the ranges of wavelength and migrating speed for the veg-
etation patterns in semiarid regions (250~750 kg H2O 
m−2 year−1) are got (see Table 3). As shown in Table 3, the 
wavelength range for the vegetation stripes agrees with 
Klausmeier’s results. Moreover, with the comparison shown 
in Table 3, our result of migrating speed of grass stripes 
(0.6~1.1) is closer to �eld observation (0.3~1.5) than 
Klausmeier’s results (1.4~1.9).

�e validation of the discrete model shows the formation 
of banded vegetation pattern on hillslopes, characteristics of 
which have agreement with Klausmeier’s results and �eld 

Table 1: Parameter values/range used in Klausmeier [13].

Parameter � � � � � � ��grass �tree �grass �tree �grass �tree

Unit kg H2O 
m−2 year−1 year−1 (kg m−2)−2 year−1 (kg dry mass) (kg H2O)−1 year−1 m year−1 m2 year−1

Value/range 250~750 4 100 1.5 0.003 0.002 1.8 0.18 365 1

Table 2: Values/ranges and scaling for the parameters of the discrete model.

Parameter
� � �ℎ �ℎ � v ��grass �tree �grass �tree

Scaling ��1/2�−3/2� ��−1 — — �ℎ�ℎ−2 ��−1/2�−1/2 �ℎ�ℎ−1 —
Value/range 0.94~2.81 0.091~0.23 0.45 0.045 1 4 0.0625 45.625 50
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parameter values applied in Figure 4 and the corresponding 
self-organized pattern has realistic ecological signi�cance, 
based on the comparison with the literature [13, 43, 45].

§at ground is under unrealistic parameter values. Compared 
with Klausmeier’s result, such disadvantage is removed in the 
vegetation pattern formation of the discrete model. �e 
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Figure 3: Validation for simulating vegetation pattern formation of the discrete model, with application of same parameter values in Klausmeier 
[13]. � = 2, � = 0.45, and the other parameter values is given in Table 2. (a) and (b) are the vegetation patterns at � = 100 and � = 1000, 
the downslope direction is set from le� to right, (c) change of pattern wavelength with the cell length.

Table 3: Comparison of ranges of wavelength and migrating speed for striped vegetation patterns.

∗�e data of �eld observation are obtained from Klausmeier [13].

Property of vegetation stripes
Tree stripes Grass stripes

Wavelength (m) Migrating speed  
(m year−1) Wavelength (m) Migrating speed  

(m year−1)
Present result 25~68 0.6~1.9 10.5~28.6 0.6~1.1
Klausmeier’s result 23~67 0.4~0.6 8.1~28 1.4~1.9
Field Observation∗ 70~190 0.15~0.3 1~40 0.3~1.5
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Klausmeier [13] introduced slight topographic variation 
to explain the vegetation pattern formation on §at ground. 
Compared with Klausmeier’s work, the discrete model devel-
oped in this research makes an improvement. �e pattern 
formation on §at ground and the pattern characteristics are 
essentially captured by the nonlinear mechanisms of the dis-
crete model, without introduction of external excitations. �is 
manifests the discrete model exhibits possibilities for repro-
ducing new vegetation pattern formation and new pattern 
transition on the §at ground.

4.2. v ≫ 0: Vegetation Pattern Formation on Hillslopes. For 
the discrete model, v ≫ 0 means hillslope terrains and the 
value of v determines the hillslope gradient. In this subsection, 
the vegetation patterns self-organized on hillslopes are 
investigated. For comparing with Klausmeier’s results, the 
same hillslope gradient in Klausmeier [13] is also applied 
(� = 365myear−1).

As shown in Figure 6, the discrete model can demonstrate 
the formation of many irregular vegetation patterns on 
hillslopes. With variation of parametric conditions, we �nd 
irregular vegetation patterns of curved stripes, fractured 
stripes, spots and stripes-spots. Most of dynamic models 
(including the Klausmeier model) are incapable of describing 
these patterns on hillslopes simultaneously. �is re§ects the 
advantage of the discrete model in quantitatively describing 
abundant patterns.

Figures 6(a)–(d) show the irregularly striped vegetation 
patterns, which appear as curved or fractured stripes. �e 
striped vegetation patterns are a characteristic feature of land-
scapes in many semiarid regions [4]. A great number of 
dynamic models have been raised to predict the striped veg-
etation pattern formation [13, 43, 44]. Many continuous mod-
els such as the Klausmeier model predict that the vegetation 
stripes will �nally stabilize at a state in which the vegetation 
stripes are strictly perpendicular to the water§ow direction, 
whereas the irregular stripes are explained as transient dynam-
ics [44]. In such situation, environmental noises are o�en used 
to explain the maintenance of stable irregular patterns. 
However, the formation of irregular patterns is essentially 
from the nonlinear mechanisms of the discrete model. As sug-
gested by literature, the irregularities in the vegetation patterns 
may result from the spatiotemporal chaos, which is an impor-
tant natural phenomenon widely observed [25, 34, 35].

Figure 6 also shows the change of striped vegetation pat-
terns with parameters � and �. With reduction of � or �, the 
striped patterns experience a transition from regular stripes, 
to curved stripes, and to fractured stripes. More precipitation 
(� rising) leads to the increase in stripe numbers, which sug-
gests a great enhancement of biomass in the patterns. To quan-
titatively determine the in§uence of parameter variations, two 
important characteristics of the striped vegetation patterns on 
hillslopes, wavelength and migrating speed, are studied. When 
the values/ranges of parameters �, �, and v are taken from 
Table 2, the ranges of wavelength and migrating speed for the 
irregular striped vegetation patterns are the same with that in 
Table 3. �erefore, our results are comparable with the natural 
striped patterns in semiarid regions.

Figure 5 is plotted to show the vegetation patterns of irreg-
ular patches on the §at ground. �e formation of three patterns 
in Figure 5 is under the same initial condition (IC2). In these 
patterns, the vegetation patches appear in the forms of spots, 
stripes, and clusters. Each pattern composes of many vegeta-
tion patches and shows irregularity. �e irregularity exhibits 
in two aspects, irregular distribution and irregular shapes of 
the vegetation patches. �e patched vegetation patterns are 
widely discovered in �eld observation, such as the description 
by Cerdà [47]. However, such patterns cannot be predicted by 
the Klausmeier model.

�e three patterns shown in Figure 5 demonstrate a tran-
sition of vegetation patterns along rainfall gradient (� = 400,  
480, and 546 kg H2O m−2 year−1). As shown in Figure 5, the 
transition is from pattern of spots to pattern of clusters. 
Increase in the rainfall rate promotes the enlargement of veg-
etation patches in the patterns. As the rainfall rate continues 
growing (for example � > 2.1), spatially homogeneous vege-
tation dominates. As widely recognized, the competition for 
limited water resource in ecosystems plays an important role 
in the formation and transition of spatially heterogeneous 
vegetation patterns [8, 9]. Nevertheless, the increase of rainfall 
alleviates the pressure of competition between plant individ-
uals and stimulates vegetation growth, giving rise to the tran-
sition of vegetation patterns.

Many models predict the transitions of vegetation patterns 
on §at ground along the rainfall gradient [15, 17, 43]. As 
described in literature, the vegetation experiences transitions 
from spotted pattern, to labyrinths and to gap pattern with the 
increase instriped vegetation patterns rainfall rate [43, 48, 49]. 
In this research, the discrete model predicts a di�erent tran-
sition of vegetation patterns, as described in Figure 5. �e 
di�erence may result from the e�ects of facilitative interactions 
between plant individuals, which limit soil moisture losses and 
result to the enlargement of vegetation patches [45, 50].
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Figure 4:  Regular mosaic vegetation pattern self-
organized on §at ground, with application of IC1 or IC2 � = 2, � = 0.45, � = 0.35, � = 800.
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�e spotted vegetation patterns keep stationary as time 
progresses. �is is opposite to the migrating property of 
striped patterns. Such contrast is induced by di�erent di�usion 
capabilities of vegetation. Stronger di�usion can lead to suc-
cessful colonization of plants in bare areas. As observed in 
�led investigation [12], the migration of striped patterns takes 
place when colonization of bare areas occurs at the moister 
upslope side of vegetation stripes, whereas the plants on the 
downslope side of stripes die due to inadequate water [13]. 
However, while di�usion capability is weak, the lateral vege-
tation dispersal is restrained. When the colonization-dying 
process cannot happen, stationary patterns will emerge, as 
demonstrated by the stationary spotted patterns. As indicated 
by literature, the nonlinear mechanism for self-organization 
of the stationary patterns is spatiotemporal chaos [34]. 
Moreover, a frozen random chaos can be identi�ed in Figures 
6(g) and (h) according to the classi�cation of the spatiotem-
poral chaos [52].

Figures 6(g) and (h) show the irregular spotted vegetation 
patterns self-organized on hillslopes. In the patterns, the 
distribution of vegetation spots shows irregular characteris-
tic. Compared with the striped patterns, the values of � for 
formation of spotted patterns are much smaller. In such 
cases, low di�usion capability restrains the lateral vegetation 
dispersal and the development of vegetation stripes. In lit-
erature, spotted shrubby patterns on hillslopes are observed 
in Central Morocco by D’Odorico et al. [45] and in Israel by 
Shnerb et al. [51]. Compared with �eld observations and 
considering the parametric conditions applied in this 
research, Figures 6(g) and (h) tend to describe the spotted 
patterns of perennial shrubs. Moreover, Figures 6(g) and (h) 
show denser vegetation spots as rainfall increases. �is also 
agrees with the �eld observation recorded by Shnerb et al. 
[51]. However, few theoretical models are capable of repro-
ducing the formation of spotted vegetation patterns on 
hillslopes [45, 51].
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Figure 5: Patterns of irregular patches on §at ground, with application of same initial condition (IC2). � = 0.45, � = 0.003, � = 1000.
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such phenomenon is seldom described in literature, but exhib-
ited by the present discrete model. Via the in§uence of param-
eter variations on vegetation patterns, the discrete model 
captures the formation of diverse vegetation patterns in sem-
iarid regions, under di�erent rainfall conditions and for var-
ious vegetation types.

Notice that the above results are related to the grass pattern 
formation in semiarid regions. When we perform numerical 
simulations with the parameter values representing trees 
(�tree = 0.091 − 0.23 and�tree = 0.045), similar results can be 
obtained both on the §at ground and on the hillslopes.

5. Conclusion

A space- and time-discrete model is developed in this research 
for studying the vegetation pattern formation in semiarid 
regions. Turing-type instability analysis produces the pattern 
formation conditions. Numerical simulations performed 
based on the model reveal self-organization of many vegeta-
tion patterns, such as regular mosaic, irregular patched, 
striped, spotted, fractured striped and striped-spotted on §at 
ground or on hillslopes. Based on the �ndings in this research, 
the following should be addressed.

(1)  �e discrete model shows great advantage in describ-
ing vegetation pattern formation. Relying on non-
linear mechanism of the discrete model, vegetation 
patterns of mosaic, irregular patches, curved and 
fractured stripes, and spots are found.

(2)  Parameter variations result to transition of vegetation 
patterns. Variations of rainfall rate and vegetation 
di�usion capability a�ect two di�erent character-
istics of vegetation patterns, causing occurrence of 
diverse vegetation patterns.

�e migrating and stationary patterns on hillslopes 
described by the discrete model agree with the prediction by 
many models [13, 43]. However, the evidence of upslope 
migration in vegetation patterns remains scare in direct �eld 
observations [3, 4, 44]. A few researchers also investigate the 
formation of stationary vegetation patterns on hillslopes 
[16, 44]. �e stationary patterns predicted in literature may 
need introduction of complex mechanisms, such as secondary 
seed dispersal [16]. With application of simple feedback mech-
anisms of water and biomass, the discrete model has power to 
predict both migrating and stationary vegetation patterns on 
hillslopes, merely via parameter variations.

Inferred from the transition from striped patterns to spot-
ted patterns, an intermediate pattern, striped-spotted vegeta-
tion pattern, is suggested. Such type of patterns shows 
coexistence of vegetation spots and stripes, as shown in 
Figures 6(e) and (f). �e occurrence of such patterns con�rms 
the transition between spotted and striped patterns, as rainfall 
rate or vegetation di�usion capability changes. �is mecha-
nism suggests that rainfall and vegetation types play an impor-
tant role in the formation of vegetation patterns.

�e parameter variations exert a key in§uence on the tran-
sition of vegetation patterns on hillslopes. Two aspects of pat-
tern transition with parameter variations can be found in 
Figure 6. First, increase in rainfall enhances vegetation bio-
mass in patterns, as widely observed in nature [49, 51]. �e 
enhancement of biomass a�ects the characteristics of vegeta-
tion patterns. For striped vegetation patterns, the wavelength 
reduces and number of vegetation stripes increases [49]; 
whereas for spotted vegetation patterns, denser spotted vege-
tation patches can be observed and aggregation of vegetation 
takes place [51]. Second, decrease in vegetation di�usion capa-
bility promotes fragmentation of vegetation patterns, causing 
the transition from striped pattern to spotted pattern. However, 
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Figure 6: Irregular vegetation patterns self-organized on hillslopes as values of � and � shi�, under the same initial condition (IC1). Application 
of IC2 can obtain similar results as well. � = 0.45, v = 45.625, � = 1000.
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�e self-organized vegetation patterns and the transitions 
of patterns result from essential nonlinear mechanisms of the 
discrete model. With the improvements upon former theoretical 
models, the discrete model developed and its nonlinear mech-
anisms contribute advantages in analyzing and describing the 
complexity of vegetation pattern formation in semiarid regions.

Appendix

A. Local Stability of Fixed Points

With consideration of ∇����� ≡ 0 and ∇D2���� ≡ 0, Eq. (8a) and (8b) 
transforms into the following,

Mathematically, the homogeneous stationary states of the 
discrete model are represented by the �xed points of Eq. (A.1). 
According to the de�nition of �xed point [57], the �xed points 
of Eq. (A.1) are solved by

Calculation on Eq. (A.2) obtains three �xed points when � > 2� (see Eq. (9)). �en the stability of the spatially homo-
geneous stationary states with respect to spatially homogene-
ous perturbations is analyzed. For spatially homogeneous 
perturbations, ∇����� ≡ 0 and ∇D2���� ≡ 0 still establish. From 
Eq. (A.1), the following dynamic equation is obtained,

�e Jacobian determinant of Eq. (A.3) is described by

Stable �xed point of Eq. (A.1) should satisfy the following 
conditions,

in which �∗ takes the biomass value of either �1 or �2. Straight 
calculation on Eq. (A.5) suggests that the �xed point (�1, �1) 
cannot be stable whereas the �xed point (�2, �2) can be stable. 
�e conditions for stable �xed point (�2, �2) are described in 
Eq. (10a and 22b).

B. Linearization of Eq. (8)
Firstly based on previous research works [58–60], the eigenvalues of 
operators ∇� and ∇D2 can be provided as

(A.1)
0 = � − ���� − ���� (���� )2,
����+1 = (1 − �)���� + ���� (���� )2.

(A.2)0 = � − � − ��2,� = (1 − �)� + ��2,

(A.3)����+1 = (1 − �)���� + �(�
��
� )2

1 + (���� )2 .

(A.4)� = (1 − �) + 2��(1 + �2)2 .

(A.5)
�����(�∗)���� =

������������(1 − �) +
2��∗
(1 + �∗2)2

������������ < 1,

(B.1)
�(1)�� = 2 sin�� exp ((�� − �2 )��),�(2)�� = 4(sin2 �� + sin2 ��),

(i)  Increase in rainfall enhances biomass in vegetation 
patterns. Simultaneously, the characteristics of pat-
terns are in§uenced. For irregular patched patterns, 
the vegetation patches enlarge; for striped patterns, 
wavelengths reduce; and for spotted patterns, vege-
tation spots become denser.

(ii)  Decrease in vegetation di�usion capability a�ects 
vegetation patterns in two aspects. First, it promotes 
the fragmentation of patterns, causing the transition 
from striped patterns to striped-spotted patterns, and 
to spotted patterns. Second, it can lead to the transi-
tion from migrating patterns to stationary patterns. 
Such result is seldom described in literature and new 
predicted by the discrete Klausmeier model.

Via comparison, the simulated results obtained in this 
research agree with many records of �eld observations as 
described in literature. �e agreement mainly re§ects in the 
following two aspects.

(1) Pattern con�gurations: on §at ground, the simulated 
mosaic pattern is similar to the natural gap vegetation 
pattern as described in Rietkerk et al. [43] and Ké� 
et al. [46], whereas the simulated patched vegetation 
patterns likely mimic that observed by Cerdà [47]. 
On hillslopes, we obtain regular, curved and frac-
tured striped vegetation patterns, which are widely 
recorded in direct �eld observations of semiarid 
grass and trees [4, 13]. As well, the spotted patterns 
are simulated on hillslopes, and such type of pattern 
is close to the spotted shrubby patterns as observed 
by D’Odorico et al. [45] and Shnerb et al. [51].

(2) Pattern characteristics: with feasible parameter val-
ues/ranges (see Tables 1 and 2), the ranges of wave-
length and migrating speed for the striped patterns 
are close to the observations of the natural striped 
vegetation patterns in semiarid regions (see Table 3). 
Moreover, spotted patterns on hillslopes are simu-
lated to be stationary. Since the evidence of upslope 
migration in vegetation patterns remains scare in 
direct �eld observations [3, 4, 44], the stationary 
vegetation patterns on hillslopes may be common 
and the discrete model provides a new nonlinear 
mechanism for explaining the self-organization of 
hillslope stationary patterns.

As well known, the competing interactions at di�erent spatial 
scales can be the main mechanism which promotes the self-or-
ganization of stable patterns [53–56]. In this research, the discrete 
model also includes such competing interactions. On the one 
hand, the short-range dispersal of vegetation drives the expan-
sion of vegetation patches; on the other hand, the long-range §ow 
of water leads to spatial redistribution of water resource, which 
constrains the expansion of vegetation patches due to the com-
petition for water among di�erent patches. Under the in§uence 
of both short-range dispersal of vegetation and long-range §ow 
of water, a patch of vegetation can erupt as well as be restrained 
in expansion. When the spatial equilibrium reaches, vegetation 
patterns are self-organized and can maintain stable.
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Data Availability

�e data of system parameter values and striped vegeta-
tion pattern characteristics have been previously reported 
and are available at DOI: https://doi.org/10.1126/sci-
ence.284.5421.1826. �ese data are used to support the numer-
ical simulations of this study, and the prior study is cited at 
relevant places within the text as reference. In addition, with 
the system parameter values determined by the data, numer-
ical simulations are performed and the results of vegetation 
pattern formation are generated during the simulation study.
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