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*is study focused on the identification problems of two-input single-output system with moving average noises based on
unsupervised learning methods applied to the input signals. *e input signal to the autoregressive moving average model is
proposed to be arriving from a source with continuous technical and environmental changes as two separate featured input
signals. *ese two input signals were grouped in a number of clusters using the K-means clustering algorithm.*e clustered input
signals were supplied to the model in an orderly fashion from cluster-1 up to cluster-K. To ensure that the output signal can be best
predicted from the input signal which in turn leads to selecting good enough model for its intended use, the magnitude-squared
coherence (MSC) measure is applied to the input/output signals in the cases of clustered and nonclustered inputs, which indicates
best correlation coefficient when measured with clustered inputs. From collected input-output signals, we deduce a K-means
clustering based recursive least squares method for estimating the parameter of autoregressive moving average system. *e
simulation results indicate that the suggested method is effective.

1. Introduction

Most systems that have been inferred to prove many of the
assumptions proposed in the area of system identification
focused on single-input single-output systems [1–4]. Re-
cently, the focus has been on studying system identification
of multivariable systems in order to deal with an appropriate
modelling and estimation of dynamic systems operating in
industrial applications and process control [5–7].

Several methods and techniques addressed system
identification problems in multivariable models as in [8–12];
the researchers in these studies depend on hierarchical
identification principle that decomposes a multi-input
system into two subsystems, one containing a parameter
vector and the other containing a parameter matrix [10].*e
proposed method in [13] was dependent on the concept of
coupling identification to avoid matrix inversion in multi-
variable least squares in order to reduce computational time

in the algorithms. Many algorithms are used to implement
these methods such as least squares recursive algorithms or
iterative least squares algorithms without mentioning the
impacts of the excitation signals on the proposed models.

*ere are identification methods focusing on the
modified effects of the excitation signals on the design of
system identification experiments and they yielded accept-
able results in modelling and estimation process of multi-
variable system. *ese proposed methods are based mainly
on applying filtering techniques to the collected input-
output data in order to generate more accurate results as in
[14–17].We aim at the same objectives of these researches by
considering effective preprocessing on the excitation signals
of multivariable systems.

In this paper, we tried to focus on the collected input data
to identify multiple-input single-output systems by intro-
ducing unsupervised learning approach such as the clus-
tering techniques applied only to input signals by means of

Hindawi
Complexity
Volume 2020, Article ID 2498487, 12 pages
https://doi.org/10.1155/2020/2498487

mailto:elaminkhalid32@yahoo.com
https://orcid.org/0000-0002-7791-3591
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2498487


K-means clustering algorithm. To ensure that the system
output is best predicted from the proposed excitation sig-
nals, the similarities in the frequency contents between
modified input signals and generated output signal are in-
vestigated using the magnitude-squared coherence measure
[18].

Most of the works that relied on the use of clustering in
the system identification process were based on collected
and recorded data from input and output without even
assuming any slightly modified effect on the input signals.
In [19], the submodels of the PieceWise AutoRegressive
systems with eXogenous input (PWARX) are obtained
through an algorithm inspired by competitive learning. In
particular, the proposed method exploits a process of fuzzy
clustering to obtain a subset of representatives from the
original data set. Reference [20] assumed the number of
modes of the PWARX system to be unknown and proposed
a split-and-merge clustering algorithm to estimate the
correct number of modes. Reference [21] discusses the use
of correlation clustering algorithms for robust identifica-
tion of PWARX models with reduced complexity. A
PWARX model of the electronic throttle regulating the air
inflow of a car engine has been identified based on clus-
tering in [22]. *e refinement algorithm proposed in [23] is
repeatedly applied to the estimated clusters to improve
both the data classification and the parameter estimation.
Since, in complex engineering system, reliability is con-
sidered as the main issue,K-means clustering is used in [24]
to estimate the reliability of the complex engineering
system to obtain three or more subsystems called cluster
systems and analyze the key performance parameters of
constructs, which are known as family system that contains
only subsystems with similar performance; then the con-
tribution of these subsystems in the cluster system leads to
estimating reliability of the whole system. Many of the
above-mentioned research works were based on clustering
the regressor vector to divide the system model into
multiple candidate models for investigation and analysis.
We pointed out here that the regressor vector contains both
input and output signals.

*e fundamental idea of the proposed method in this
paper is to cluster only the input signals using K-means
clustering algorithm without clustering the whole regressor
vector. Based on this idea, we present a clustered input
signals based recursive least squared algorithm. Given this
recursive algorithm, we can produce more accurate pa-
rameter estimation compared to existing multivariable
recursive estimation methods, for example, [14, 15]. Com-
pared with the clustering techniques used in a PieceWise
affine ARX model [19–21], the modified recursive algorithm
in this paper can produce highly accurate estimation.

Furthermore, since the clustered input signals are as-
sumed to be similar due to the similarity measure of the K-
means algorithm, the same system properties will be excited

and hence better identification performance will be obtained
[25].

*e rest of this paper is organized as follows. Section 2
gives the general model description and the formulation of
the autoregressive moving average (ARMA) identification
model with some important definitions. Section 3 derives a
clustering input signals based algorithm for two-input
single-output model. Section 4 gives the recursive extended
least squares algorithm used for comparison. Section 5 gives
the magnitude-squared coherence measure used to obtain
the degree of similarities between input signals and the
output signal of the proposed model. Section 6 provides the
steps used to perform the K-means clustering algorithm. An
illustrative example to demonstrate the effectiveness of the
proposed algorithms is provided in Section 7. Finally,
concluding remarks are given in Section 8.

2. The Model Description

Firstly, let us introduce some important notations. *e
superscript T denotes the matrix transpose, the symbol In

stands for an identity matrix of order n, 1n represents an
n-dimensional column vector whose elements are 1, ‖X2‖

stands for the norm matrix X, X :� A denotes that X is
defined by A, the estimate of parameter η at time t is denoted
by η(t) , z− 1 represents a unit backward shift operator
defined as z− 1x(t) :� x(t − 1), and p0 is a large positive
number [26].

Consider the two-input single-output system, described
by the autoregressive moving average model, as shown in
Figure 1, with a mathematical model as

P(z)y(t) � Q1(z)u1(t) + Q2(z)u2(t) + R(z)v(t), (1)

where u1(t), u2(t)  are the two features of the input data
points of the system; y(t)  represents the output data points
of the system; v(t){ } is a white noise sequence with zero
mean and variance σ2; and P(z), Q1(z), Q2(z), and R(z)

are the polynomials with known degrees in the unit back-
ward shift operator z− 1 as in the following equation:

P(z) :� 1 + p1z
− 1

+ p2z
− 2

+ · · · + pnp
z

− np ,

Q1(z) :� q11z
− 1

+ q12z
− 2

+ · · · + q1n1
z

− n1 ,

Q2(z) :� q21z
− 1

+ q22z
− 2

+ · · · + q2n2
z

− n2 ,

R(z) :� 1 + r1z
− 1

+ r2z
− 2

+ · · · + rnr
z

− nr .

(2)

Assume that y(t), u1(t), u2(t), and v(t) are strictly
proper; that is, their values are 0 for t≤ 0, and the orders np,
n1, n2, and nr are known.

From two inputs u1(t), u2(t)  and the output y(t) ,
the model parameters are to be identified.

Define the parameter vector η and the information
vector ϕ(t) as
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η :�
ηs

ηn

  ∈ Rn
, n :� np + n1 + n2 + nr,

ηs :� p1, p2, . . . , pnp
, q11, q12, . . . , q1n1

, q21, q22, . . . , q2n2
 

T

∈ Rnp+n1+n2 ,

ηn :� r1, r2, . . . , rnr
 

T ∈ Rnr ,

ϕ(t) :�
ϕs(t)

ϕn(t)
  ∈ Rn

,

ϕs(t) :� −y(t − 1), −y(t − 2), . . . , −y t − np , u1(t − 1), u1(t − 2), . . . , u1 t − n1( , u2(t − 1), u2(t − 2), . . . , u2 t − n2(  
T
∈ Rnp+n1+n2 ,

ϕn(t) :� v(t − 1), v(t − 2), . . . , v t − nr(  
T ∈ Rnr .

(3)

Based on recursive least squares in [27], the identifica-
tion model of ARMA model can be expressed as

y(t) � ϕ(t)
Tη + v(t). (4)

*e parameter vector η contains all parameters to be
estimated.

3. The K-Means Clustering Algorithm

K-means clustering is an unsupervised learning approach.
*e unsupervised learning approach is given by grouping
data with similar characteristics; this grouping process is
known as clustering, which consists in separating each group
with different characteristics in sets called clusters [28]. As in
[29, 30], K-means clustering algorithm works with three
main steps: initialization step, assignment step, and update
step. Firstly, in the initialization step, the process starts with
selecting data Uij(i � 1, . . . , n; j � 1, . . . , m) where n is the
amount of data to be carried out in clustering and m is the
number of variables (data dimension), and, initially, the
centre of each cluster ckj(k � 1, . . . , k; j � 1, . . . , m) is de-
termined arbitrarily [30]. Secondly, in the assignment step,
the distance such as Euclidian distance (other types of
distance measures can be applied depending on the appli-
cation) of data-i to centroid k is calculated according to the
following equation [30]:

dik �

���



m

j�1




uij − ckj 
2

, (5)

where dik is distance of object i and centroid k,
m represents data dimension, uij denotes coordinates of
object i in dimension j, and ckj denotes coordinates of object
k in dimension j.

If the distance of data to specific cluster centroid k has
the smallest value when compared to another cluster cen-
troid, then the data will be a member of the cluster k. *is
can be examined according to the following criterion index
[31]:

Min 
K

k�1
dik �

���



m

j�1




uij − ckj 
2

. (6)

Finally, in the update step, after classification of data for
each cluster, centroid value can be calculated by finding the
average value of the data which are members of the cluster
using the following equation [31]:

Ckj �


p
i�1 uij

p
, (7)

where uij ∈ cluster k and p denotes number of cluster k
members.

Q2(z)/P(z)

Q1(z)/P(z)

u2 (t)

u1 (t)

v (t)

y (t)

R(z)/P(z)

Figure 1: Two-input single-output autoregressive moving average model.
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As in [30], the steps of the K-means clustering algorithm
to cluster input signals used in the proposed model are listed
as follows:

(1) Suppose given input data matrix U � uij with
i � 1, 2, . . . , n ; j � 1, 2, . . . , m.

(2) Determine the number of clusters (k), with centroid
chosen randomly.

(3) Calculate the distance of each input data point to the
centroid using equation (5).

(4) Classify input data into clusters with the shortest
distance using equation (6).

(5) Calculate the new centroid using equation (7).
(6) Repeat steps 3 through 5 until there is no more input

data movement to another cluster.

In our proposed method, we apply the above algorithm
to the model input signals which are assumed to be rep-
resented as two input features collected from different
sources.

*e optimal number of clusters was chosen according to
the elbow method in [32]. In elbow method, a decreasing
cost function is analyzed for different values of k and it can
be defined as the sum or average distance from all points in
the data set to its centroid. Figure 2 shows the candidate
elbow point as an optimal point to select the best number of
clusters according to the best total sum of distances. As seen
from Figure 2, the optimal value chosen for the illustrative
example used to verify the proposed method is k� 2.

4. The Clustered Input Signals Based Recursive
Least Squares (CIB-RLS) Algorithm

Our goal in this paper is the identification of the ARMA
model based on clustered input signals. We start with the
assumption that the two-input signals represent two dif-
ferent attributes supplied from a source with continuous
technical and environmental changes. *e first step is to
apply these signals to the K-means algorithm to group them
in several k-clusters to share a common statistical property.

Let the two-input data set signals u1(t) and u2(t) be
applied to the K-means algorithm; the algorithm grouped
these data sets into k-clusters, known as cluster-1 to cluster-
k; see Figure 3 below. Every cluster contains part of data set
belonging to u1(t) and u2(t). Assume this data set to be
known as u1,k(t), which represents a part of u1(t) in the
cluster k, and u2,k(t), which is a part of u2(t) in the same
cluster k; Figure 3 illustrates the assumptions. At this point,
we select the parts of input signals u1k(t) and u2k(t) from
each generated cluster to form new modified inputs as

u1modified(t) :� u1,1(t), u1,2(t), . . . , u1,k(t) 
T
, (8)

u2modified(t) :� u2,1(t), u2,2(t), . . . , u2,k(t) 
T
. (9)

*e modified input signals, represented by equation (8)
and equation (9), are then applied to the general system
under investigation as shown in Figure 4.

*e proposed CIB-RLS algorithm will be as follows:

η(t) � η(t − 1) + L(t) y(t) − ϕT
(t)η(t − 1) , (10)

L(t) �
P(t − 1)ϕ(t)

1 + ϕ
T
(t)P(t − 1)ϕ(t)

, (11)

P(t) � I − L(t)ϕT
(t) P(t − 1), (12)

ϕ(t) :�
ϕs(t)

ϕn(t)
 , (13)

ϕs(t) :�

−y(t − 1), −y(t − 2), . . . , −y t − np , u1modified(t − 1),

u1modified(t − 2), . . . , u1modified t − n1( ,

u2modified(t − 1), u2modified(t − 2), . . . , u2modified t − n2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

(14)

ϕn(t) :� v(t − 1), v(t − 2), . . . , v t − nr(  
T , (15)

v(t) � y(t) − ϕT
(t)η(t), (16)

η �
ηs(t)

ηn(t)
 , (17)

ηs(t) � p1(t), p2(t), . . . , pnp
(t), q11(t), q12(t), . . . ,

q1n1
(t), q21(t), q22(t), . . . , q2n2

(t)
T
,

(18)

ηn(t) � r1(t), r2(t), . . . , rnr
(t) 

T
. (19)

To initialize the algorithm, we choose

ηs(t) �
1np+n1+n2

p0
,

ηn(t) �
1nr

p0
,

P(0) � p0Inp+n1+n2+nr
,

p0 � 106, i≤ 0 .

(20)

*e steps involved in the CIB-RLS algorithm are listed as
follows:

(1) Set y(t) � 0, u1(t) � 0, u2(t) � 0, for t≤ 0.
(2) Let t � 1; set the initial values of the parameter

estimate vectors and the covariance matrix
according to (20), and give the parameter estima-
tion precision ε � 0.01.

(3) Collect input data u1(t) and u2(t).
(4) Select the optimal number of clusters K according

to u1(t)and u2(t) collected by using elbow method.
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(5) Classify input data u1(t) and u2(t) into clusters
with the shortest distance by (6).

(6) Collect u1modified and u2modified as in (8) and (9),
respectively, and collect the output data y(t).

(7) Construct the information vectors ϕs(t) by (14),
ϕn(t) by (15), and ϕ(t) by (13).

(8) Compute v(t) by (16), and update the estimate ηn(t)

by (19).
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Figure 2: Elbow method for optimal value of k-clusters.
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Figure 3: K-means clustering for inputs u1(t) and u2(t) to generate u1modified(t) and u2modified(t).

Q2(z)/P(z)

Q1(z)/P(z)

v (t)

y (t)
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u1modified (t)

u2modified (t)

Figure 4: Proposed system model with modified inputs signals u1modified(t) and u2modified(t).
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(9) Construct η by (17).
(10) Compute the gain vector L(t) by (11) and the co-

variance matrix P(t) by (12).
(11) Update the parameter estimate η(t) by (10).
(12) If η(t) − η(t − 1)≤ ε, obtain the parameter estimate

η(t); otherwise, increase t by 1 and go to step 6.

5. The Recursive Extended Least Squares
(RELS) Algorithm

*e main algorithm used to estimate the model parameters
in our proposed method is the recursive extended least

squares (RELS) algorithm. With the aid of the algorithm in
[14], the recursive least squares algorithm of the ARMA
model described by equation (1) with its identificationmodel
expressed in equation (4) can be applied. Before we proceed,
based on this identification model, the unknown variables
v(t − i) in the information vector ϕ(t) in (3) are replaced
with their estimates v(t − i) [14]. So, the recursive extended
least squares (RELS) algorithm [33] is as follows:

η(t) � η(t − 1) + L(t) y(t) − ϕ
T
(t)η(t − 1) ,

L(t) �
P(t − 1)ϕ(t)

1 + ϕT
(t)P(t − 1)ϕ(t)

,

P(t) � I − L(t)ϕT
(t) P(t − 1),

ϕ(t) :�

ϕs(t)

ϕn(t)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

ϕs(t) :� −y(t − 1), −y(t − 2), . . . , −y t − np , u1(t − 1), u1(t − 2), . . . , u1 t − n1( , u2(t − 1), u2(t − 2), . . . , u2 t − n2(  
T
,

ϕn(t) :� v(t − 1), v(t − 2), . . . , v t − nr(  
T
,

v(t) � y(t) − ϕT
(t)η(t),

η �

ηs(t)

ηn(t)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

ηs(t) � p1(t), p2(t), . . . , pnp
(t), q11(t), q12(t), . . . , q1n1

(t), q21(t), q22(t), . . . , q2n2
(t) 

T

,

ηn(t) � r1(t), r2(t), . . . , rnr
(t) 

T
.

(21)

6. The Magnitude-Squared Coherence (MSC)

*e magnitude-squared coherence (MSC) is a measure
that estimates the extent to which one real- or complex-
valued signal can be predicted from another real- or
complex-valued signal [18]. In our work, we used these
measures to investigate the similarities in the frequency
content between input signals and the output signal used
to identify the proposed ARMAmodel. Comparisons were
done between the cases where the two inputs are clustered
before being applied to the model and the two inputs are
applied directly without passing to the clustering algo-
rithm. If we define the power spectrum at frequency ω of

the input signal u(t) and the output y(t) as Su(ω) and
Su(ω), respectively, and the cross power spectrum as
Suy(ω), then the magnitude-squared coherence can be
given as

Muy(ω) �
Suy(ω)




2

Su(ω)Sy(ω)
, (22)

where Su(ω) , Sy(ω)≠ 0.
*e value of MSC lies in the range 0≤Muy(ω)≤ 1 which

is analogue of the correlation coefficient in statistics.
In our proposed model, the MSC gives the better cor-

relation between the clustered applied input signals and the

6 Complexity



measured output signal compared to unclustered input
signals with measured output.

Figures 5 and 6 represent the MSC for the illustrative
example in Section 7 with noise variances of σ2 � 0.102 and
σ2 � 0.402, respectively. *e dotted line represents the case
in which the input signals are unclustered, whereas the solid
line represents the case of clustered input signals.

As seen from these figures, it is clear that best measure is
obtained in the case of clustered input signals. According to the
type of signals, we can choose the best values of sampling rate,
number of overlaps, and number of fast Fourier transform
points (FFT) to achieve suitable results of MSC calculation.

7. Illustrative Example

In this illustrative example, we useMATLAB version R2020a
andWolfram SystemModeler software for simulation [34] to
run recursive lest squares with K-means algorithms and to
collect input and output data, respectively.

Consider the electric circuit model with two-input voltage
and a single-output voltage measured from a capacitor C as
shown in Figure 7. From the circuit of the Figure 7 and the
concepts in [35–36], we can obtain the state-space model as

_x1

_x2
  �

−R2/L −1/L

1/C − 1/R1C + 1/R3C( 
 

x1

x2
  +

0 1/L

1/R1C 0
 

u1

u2
  , (23)

*e circuit parameter is assumed to be according to
Table 1, where x1 represents the inductor current iL as the
first state and x2 represents the capacitor voltage vc as the

second state. From the above state-space model, we can find
the continuous and discrete transfer functions [35], re-
spectively, as

y(t) �
0.2273s + 0.2503

s
2

+ 1.7238s + 0.8552
u1(t) +

0.1697
s
2

+ 1.7238s + 0.8552
u2(t), (24)

y(t) �
0.01118z

− 1
− 0.01059z

− 2

1 − 1.915z
−1

+ 0.9174z
−2 u1(t) +

0.000206z
− 1

+ 0.0002002z
− 2

1 − 1.915z
−1

+ 0.9174z
−2 u2(t), (25)

Magnitude-squared coherence, the output with unclustered inputs
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Figure 5: MSC of clustered and unclustered inputs with the system output y for noise variance of σ2 � 0.102.
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Figure 6: MSC of clustered and unclustered inputs with the system output y for noise variance of σ2 � 0.402.
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across the capacitor 2.2 F, and the circuit is simulated with Wolfram SystemModeler software for simulation [34].
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Table 1: Circuit parameter.

Element Value Unit
Resistor (R1) 2 Ohm
Resistor (R2) 2.95 Ohm
Resistor (R3) 1.15 Ohm
Inductor (L) 2.6788 Henry
Capacitor (C) 2.2 Farad
From the circuit of Figure 7 and the concepts in [35, 36], we can obtain the state-space model as

Table 2: *e parameter estimates and their errors with recursive extended least squares algorithm (σ2 � 0.102).

t p1(t) p2(t) q11(t) q12(t) q21(t) q22(t) r1(t) δ%

100 −1.97138 0.97325 0.02176 −0.00685 −0.01218 −0.01610 0.92353 7.04138
150 −1.96158 0.96345 0.02130 −0.00742 −0.00651 −0.01719 0.91906 6.56978
200 −1.95615 0.95808 0.01742 −0.00688 −0.01251 −0.01483 0.92016 6.46977
500 −1.94216 0.94463 0.00934 −0.01135 −0.00631 −0.00587 0.78074 1.76871
1000 −1.93121 0.93351 0.00943 −0.01070 −0.00418 −0.00594 0.80766 1.39703
2000 −1.92860 0.93052 0.00833 −0.01224 0.00078 0.00175 0.79432 0.90644
3000 −1.92823 0.93035 0.00852 −0.01277 −0.00006 0.00204 0.79204 0.86239
True values −1.91500 0.91740 0.01118 −0.01059 0.00021 0.00020 0.78720

Table 3: *e parameter estimates and their errors with clustering inputs based recursive least squares algorithm (σ2 � 0.102).

t p1(t) p2(t) q11(t) q12(t) q21(t) q22(t) r1(t) δ%

100 −1.95143 0.95564 0.02088 0.00902 −0.00756 −0.01860 0.85720 4.09050
150 −1.93967 0.94270 0.00767 0.00885 0.00027 −0.01209 0.85790 3.63789
200 −1.93795 0.94031 0.00674 0.00148 −0.00322 0.00090 0.88401 4.54653
500 −1.93131 0.93401 0.01091 −0.00665 0.00016 0.00787 0.77077 1.31455
1000 −1.92317 0.92560 0.00940 −0.00678 0.00352 0.00169 0.79810 0.74356
2000 −1.92398 0.92599 0.01380 −0.01034 0.00362 −0.00244 0.79445 0.67360
3000 −1.92460 0.92681 0.01361 −0.01012 0.00163 −0.00070 0.79356 0.66986
True values −1.91500 0.91740 0.01118 −0.01059 0.00021 0.00020 0.78720

Table 4: *e parameter estimates and their errors with recursive extended least squares algorithm (σ2 � 0.402).

t p1(t) p2(t) q11(t) q12(t) q21(t) q22(t) r1(t) δ%

100 −1.97147 0.97335 0.05353 0.00627 −0.04936 −0.06507 0.92321 8.09537
150 −1.96166 0.96353 0.05168 0.00369 −0.02666 −0.06936 0.91879 7.52280
200 −1.95621 0.95814 0.03615 0.00566 −0.05065 −0.05989 0.92000 7.39901
500 −1.94218 0.94465 0.00382 −0.01273 −0.02587 −0.02403 0.78074 2.35679
1000 −1.93122 0.93353 0.00419 −0.01047 −0.01735 −0.02436 0.80766 1.92573
2000 −1.92860 0.93052 -0.00021 −0.01672 0.00250 0.00642 0.79432 1.09858
3000 −1.92823 0.93035 0.00055 −0.01889 −0.00086 0.00758 0.79205 1.08487
True values −1.91500 0.91740 0.01118 −0.01059 0.00021 0.00020 0.78720

Table 5: *e parameter estimates and their errors with clustering inputs based recursive least squares algorithm (σ2 � 0.402).

t p1(t) p2(t) q11(t) q12(t) q21(t) q22(t) r1(t) δ%

100 −1.95228 0.95651 0.04939 0.06757 −0.03077 −0.07524 0.85825 6.57724
150 −1.94032 0.94335 −0.00357 0.06691 0.00048 −0.04913 0.85867 5.42231
200 −1.93854 0.94091 −0.00706 0.03772 −0.01351 0.00282 0.88457 5.12093
500 −1.93184 0.93455 0.00972 0.00515 0.00004 0.03079 0.77074 1.99164
1000 −1.92349 0.92592 0.00389 0.00459 0.01344 0.00614 0.79809 1.21529
2000 −1.92412 0.92613 0.02165 −0.00941 0.01386 −0.01036 0.79444 1.10021
3000 −1.92474 0.92695 0.02079 −0.00858 0.00593 −0.00340 0.79351 0.84690
True values −1.91500 0.91740 0.01118 −0.01059 0.00021 0.00020 0.78720

Complexity 9



0

 0.02

 0.04

 0.06

 0.08δ

 0.1

 0.12

 0.14

Recursive extended least squares 

Clustered inputs based recursive least squares 

0 500 1000 1500 2000 2500 3000
t

Figure 8: *e parameter estimation error δ versus time t for σ2 � 0.102.
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Figure 9: *e parameter estimation error δ versus time t for σ2 � 0.402.
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with sampling time Ts � 0.05 sec.
Consider the discrete polynomials model in (25) above,

the proposed ARMAmodel to be identified can be written in
the form

y(t) �
1

P(z)
Q1(z)u1(t) + Q2(z)u2(t) + R(z)v(t) ,

P(z) � 1 + p1z
− 1

+ p2z
− 2

� 1 − 1.915z
− 1

+ 0.9174z
− 2

,

Q1(z) � q11z
− 1

+ q12z
− 2

� 0.01118z
− 1

− 0.01059z
− 2

,

Q2(z) � q21z
− 1

+ q22z
− 2

� 0.000206z
− 1

+ 0.0002002z
− 2

,

R(z) � 1 + r1z
− 1

� 1 + 0.7872z
− 1

.

(26)

*e parameter to be estimated is

η � p1, p2, q11, q12, q21, q22, r1 
T

� [−1.915, 0.9174, 0.01118, −0.01059, 0.000206, 0.0002002, 0.7872]
T
.

(27)

*e inputs u1(t) , u2(t)  are taken as a chirp signal
with different ranges of frequency and different amplitudes
and carry the characteristics of persistent excitement using
simulation program in [34], and v(t) is taken as a white noise
sequence with zero mean and variances of σ2 � 0.102 and
σ2 � 0.402, respectively.

Applying the recursive extended least squares algorithm
for a comparison and clustering inputs based recursive least
squares algorithm to estimate the parameter of the electric
system, the parameter estimates and their errors are shown
in Tables 2–5, and the estimation errors δ � ‖η(t)t − nη‖/‖η‖

versus t for σ2 � 0.102 and σ2 � 0.402 are shown in Figures 8
and 9, respectively.

*rough Tables 2–5 and Figures 8 and 9, we can infer the
following observations:

(i) With a suitable selection of the input signals and
choosing the optimal value of k in K-means clus-
tering algorithm, the parameter estimation error
decreases gradually with the data length t increas-
ing. *is, in turn, shows that the proposed algo-
rithm gives effective results.

(ii) Since, at a certain time, the model is excited with
clustered input signals that share the same char-
acteristics with a high degree of similarity due to the
K-means clustering algorithm, the same system
properties could be excited and the accuracy of the
model identification is improved.

(iii) Compared with the recursive extended least squares
algorithm, the proposed clustering inputs based
recursive least squares algorithm has better iden-
tification performance.

(iv) Using clustering inputs based recursive least squares
algorithm, the parameter estimates converge to
their true values faster than using recursive ex-
tended least squares algorithm.

8. Conclusions

*is paper investigates one aspect of unsupervised learning
effects on the system identification field. *e clustering
inputs based recursive least squares algorithm for the two-
input single-output system with moving average noise is
proposed by introducing clustering techniques to the ex-
citation input signals. *e simulation results indicate that
the proposed algorithm can yield more accurate parameter
estimates under certain conditions (i.e., selection of the
optimal value of K-means) compared with the recursive
extended least squares algorithm. *e proposed method can
be extended to multiple-input multiple-output systems and
stretched forth to investigate the identification of nonlinear
systems and time-delay systems.
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