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Humor refers to the quality of being amusing. With the development of artificial intelligence, humor recognition is attracting a lot
of research attention. Although phonetics and ambiguity have been introduced by previous studies, existing recognition methods
still lack suitable feature design for neural networks. In this paper, we illustrate that phonetics structure and ambiguity associated
with confusing words need to be learned for their own representations via the neural network.,en, we propose the Phonetics and
Ambiguity Comprehension Gated Attention network (PACGA) to learn phonetic structures and semantic representation for
humor recognition. ,e PACGA model can well represent phonetic information and semantic information with ambiguous
words, which is of great benefit to humor recognition. Experimental results on two public datasets demonstrate the effectiveness of
our model.

1. Introduction

Humor is frequently used in daily communication [1].When
interacting with people, if artificial intelligence (AI) systems,
such as chatbots, can detect humor within the conversation,
it will help them better understand the emotions of the
human and help the AI make more appropriate decisions.
,erefore, humor computation deserves particular atten-
tion, as it has the potential to turn computers into creative
and motivational tools for human activity [2].

Humor recognition refers to determining whether a
sentence in a given context expresses a certain degree of
humor. Yang et al. [3] identified three semantic structures
and a phonetic structure behind humor. Experimental re-
sults show that ambiguity and phonetic structures are im-
portant for humor recognition.

Phonetic structures, used as devices in humorous texts,
usually take the form of alliteration or rhyme. Alliteration,
rhyme, or word repetition are often used to evoke or enhance
the effect of humor even if the content is not humorous.

Exp 1. “You can tune a piano, but you can’t tuna fish.”
In Exp 1, the humor does not come from the content of

the sentence, but the words “tune” and “tuna” have the same
pronunciation, which produces a comic effect. Hence, it
shows that phonetic structures, such as alliteration, rhyme,
and word repetition, play an important role in humorous
texts.

Ambiguity [4] refers to some words with multiple
meanings in a sentence causing different sentence com-
prehensions. Ambiguity and humor often go together [5],
and it is a crucial component of many humorous texts [6].

Exp 2. “Did you hear about the guy whose whole left side
was cut off? He’s all right now.”

Exp 2 shows humor caused by ambiguity. ,e word
“right” is the ambiguous word, meaning “right side” or
“okay”.

For the detection of phonetic structures and ambiguity
in a humorous text, the most popular methods are based on
complex feature engineering, such as semantic similarity and
the number of rhyme chains. ,e idea of feature engineering
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is simple, but it is time consuming and cannot easily capture
the latent semantic information behind humor. Recently,
due to strong feature extraction capabilities, neural network-
based approaches have become mainstream for this task.
However, most researchers simply use the deeper neural
network without modeling phonetic structure and ambi-
guity. Moreover, it is difficult to analyze the results of humor
recognition.

To solve this problem, we propose an end-to-end neural
network named Phonetics and Ambiguity Comprehension
Gated Attention network to detect humor in text. ,e
proposed model captures the phonetic information by
Convolutional Neural Networks (CNN), combines with
Bidirectional Gated Recurrent Units (Bi-GRU) and attention
mechanism to build the information of context and am-
biguous words, and applies gated mechanism to adjust the
effects of the two kinds of information in the task of humor
recognition. Our work makes three contributions:

(1) For solving phonetic structure and ambiguity fea-
tures in humor recognition, we propose a novel
framework named Phonetics and Ambiguity Com-
prehension Gated Attention network (PACGA),
which can understand the phonetic representation
by the CNN model, and learn latent semantic rep-
resentation associated with ambiguous words by Bi-
GRU and attention mechanism.

(2) We propose the gated attention strategy to exploit
the combination of the phonetic structure and
ambiguity in the humor recognition. Experimental
results show that it is useful for humor recognition.

(3) Experimental results on the pun-of-the-day [3] and
One liners 16000 [7] datasets demonstrate that our
method achieves state-of-the-art performance
compared with strong baselines. Furthermore, the
detailed analysis reveals the interpreting ability of
our proposed model in humor recognition.

1.1. Related Work. In this section, we will review related
works on machine learning-based methods and deep
learning-based methods for humor recognition.

Machine learning-based methods have been widely used
to detect humor in text, which usually depends on feature
extraction from text to train classifiers. Mihalcea and
Strapparava [8] brought empirical evidence that computa-
tional methods can be successfully applied to the task of
humor recognition in text. Zhang and Liu [9] designed about
fifty features of five categories derived from influential
humor theories, linguistic norms, and affective dimensions.
Barbieri and Saggion [10] proposed a rich set of features,
including ambiguity and phonetic structure. In recent work,
Liu and Zhang [11] modeled sentiment association between
discourse units to detect humor. ,ey found that some
syntactic structure features consistently correlated with
humor in a separate paper [12]. Most of the abovementioned
experimental results show that phonetic structure and
ambiguity are primary features in humor recognition.
However, the cost of constructing a large number of features

is high and it also limits the generalization capability of the
model.

Recently, deep learning-based methods have garnered
considerable success in humor recognition. Bertero and
Fung [13] combined word-level and audio frame-level
features and used RNN and CNN to predict humorous
utterances. In their other paper [14], CNN was used to
encode utterances, and then Bi-LSTM was used to predict
humor in dialogues [15]. Systematically, the performance
of humor recognition based on CNN was compared with
some well-established conventional methods using manual
features. Chen and Soo [16] used CNN and Highway
Networks to increase the depth of networks for humor
detection. Zhao et al. [17] proposed a tensor embedding
method to capture lexical similarity to detect humor.
Blinov et al. [18] collected a dataset of jokes and funny
dialogues in Russian and used language model fine-tuning
for text classification. ,ere is no doubt that deep learning-
based methods can extract high-dimensional features au-
tomatically and achieve high performance in humor rec-
ognition. However, previous studies did not take into
account the linguistic features of humor when using deep
learning. ,ey ignored the guidance of humor theory, and
most of the experimental results are difficult to illustrate
and explain.

2. Methods

In this section, we introduce our model, PACGA. Our model
is able to improve humor recognition by considering both
phonetic representation and latent semantic information
associated with ambiguous words.

,e overall architecture of PACGA is shown in Figure 1.
,e framework consists mainly of three parts: (1) a con-
volutional neural network for phonetic structure compre-
hension, (2) a Bi-GRU combined with attention mechanism
for semantic comprehension associated with ambiguous
words, and (3) a gated attention strategy is used to leverage
phonetic representations and semantic representations to
recognize humor.We describe the details of our model in the
following sections.

2.1. Phonetics Comprehension Network (PCN). Many hu-
morous texts play with sounds, creating incongruous sounds
or words [3]. Mihalcea and Strapparava [7] claim that the
phonetic features of humorous texts are at least as important
as their content. For example, “More sun and air for son and
heir;” “sun” and “son” and “air” and “heir” are homophones.
Both of them make the sentence not only harmonious and
pleasant but also interesting and humorous.

,e pronunciation of words is not exactly the same as
their spelling. In order to get the phonetic representation of
words, we use the Carnegie Mellon University (CMU)
pronouncing dictionary. ,e current phoneme set of CMU
has 39 phonemes, which is more accurate than the version
without lexical stress. We convert each word into its cor-
responding phoneme. For example, the pronunciation of
“word” is [“W,” “ER,” “D”]. It should be noted that a word
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may have more than one phonetic symbol in CMU. We use
all the pronunciations of a dictionary entry for the speech
extension and match any pronunciation as the speech ex-
tension of a word. Following Jaech’s [19] work, we apply a
substitution matrix between vowels and vowels and con-
sonants and consonants. It can be used as a phonetic ex-
tension of the original word when the pronunciation is
found in CMU after phoneme replacement.

2.1.1. Phonetics Embedding Layer. In the phonetics em-
bedding layer, the pronunciation of each word can be
mapped to a high-dimensional feature space for capturing
the meaningful semantic information. For each word wi, in a
sentence S S � w1, w2, . . . , wN , wi ∈ Rd and we convert the
wi into P � p1, p2, . . . , pl , pi ∈ Rd′ is the pronunciation of
a word, where d and d′ are the dimensional vector, N is the
length of sentence, and l is the length of wi. For the phonetics
embedding, we randomly initiate.

2.1.2. Permute Layer. ,e permute layer can permute the
dimensions of the input according to a given pattern. In our
work, we aim to find out the pattern of alliteration or rhyme
by the permute layer. ,e transformed matrix represents the
pronunciation of different words among corresponding
phonetics to feed the convolutional layer.

2.1.3. Convolutional Layer. We adopt the convolution op-
eration in order to learn the local features of phonetic
representation. In general, the convolutional layer uses a
filter to extract local n-gram features. A filter can use a
window of h words to generate the new feature map. ct is a
feature map which is produced by a window of words
xi: i+L−1. ,e formula is as follows:

ct � f wxi: i+L−1 + b( , (1)

where f is the nonlinear function ReLU, w is the filter to
produce the feature map ct, L is the length of the window,
and b is the bias.

2.1.4. MaxPooling Layer. GlobalMaxPool2D is used to
generate the phonetic representation after capturing the
local speech features using two-dimensional CNN.

At this point, we get the phonetic representation rp of a
target sentence by the Phonetics Comprehension Network.

2.2. Ambiguity ComprehensionNetwork (ACN). Ambiguity is
the disambiguation of words with multiple meanings [20].
Humor and ambiguity often go together when a listener
expects one meaning but is forced to use another meaning
[3]. For a humorous example, “it is so hot that all the fans left
after the baseball game.” ,e surface meaning of “fans” is a
ball game fan, but the implication may be that the electric
fans are off. An ambiguous word with multiple possible
meanings may lead the readers to misunderstand the sen-
tence. It is the keyword that triggers humor. Furthermore,
we also note that the multiple meanings of the ambiguous
word are often quite different. To sum up, we pay attention
to capturing ambiguous words in a sentence that can help us
to improve humor recognition.

2.2.1. Word Embedding. Every word feature of a humorous
text can be mapped to a high-dimensional feature space in
this layer for capturing the meaningful semantic regularities.
Here, GloVe [21] is applied as the pretrained word vector in
order to produce the word embedding for detecting humor.

2.2.2. Ambiguous Word Embedding. ,e definition of an
ambiguous word here is a word in a humorous sentence with
multiple meanings that has the highest semantic similarity.
Our work is strongly based on the intuition that humor
arises from ambiguous words. In other words, the more
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Figure 1: ,e Framework of Phonetics and Ambiguity Comprehension Gated Attention network.
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meanings a word has and the higher the semantic distance
between them, the more contribution it makes to humorous
sentences. Here, we use WordNet to identify ambiguous
words for detecting humor. Firstly, we ignore the stop words
of a sentence. ,en, we compute the number of synsets for
each word though WordNet and select top T words as
candidate ambiguous words. ,e semantic similarity can be
computed among the meanings of each candidate word.
,en, we choose the cosine similarity function to measure
the semantic distance. Let X � x1, x2, . . . , xN , xi ∈ Rd be
word embedding, Xi

′ � xi1, xi2, . . . , xiK  be the synset of xi,
and K be the number of synonyms for the word xi. ,e
similarity is calculated as follows:

Sim Xi
′(  � max

〈xim, xin〉
xim

����
���� · xin

����
����

 . (2)

As a result, the word with the highest similarity is the
selected ambiguous word to express humor in a sentence.
,e ambiguous word is represented as xa ∈ Rd.

To combine the information of ambiguity and context,
we learn ambiguous word embedding for humor recogni-
tion. Since the common word embedding representations
exhibit a linear structure, it makes it possible tomeaningfully
combine words by an elementwise addition of their vector
representations [22]. In order to better take advantage of
information within ambiguous, we append the ambiguous
word representation to each word embedding in text. ,e
ambiguous word embedding of a word xi

′ for a specific target
xa is xi

′ � xi ⊕ xa, where ⊕ is the vector concatenation
operation.

2.2.3. Bidirectional Gated Recurrent Units (Bi-GRU). We
leverage a Bi-GRU on top of the ambiguous word embed-
ding to capture the features for humor recognition. ,e Bi-
GRU is used over X to generate a hidden vector sequence
(h1, h2, . . . , hN). At each step s, the hidden vector hs is
computed based on the current vector xs and the previous
vector hs−1. ,e formula is as follows:

zs � σ Wzxs + Uzhs−1 + bs( ,

rs � σ Wrxs + Urhs−1 + br( ,

hs � tanh Whxs + rs◇Uhhs−1 + bh( ,

hs � zshs−1 + 1 − zs( ◇hs,

(3)

where σ is the sigmoid function, zs is the reset gate and rs is
the update gate, xs represents the input, hs is the candidate
hidden state and hs is the hidden state at time s, and ◇
represents r elementwise multiplication operation.

Bi-GRU consists of two hidden states at each time step s:
one is forward GRU h

→
s and the other is backward GRU h

←

s.
Finally, the two parts above are concatenated: hs � [ h

→
s; h
←

s].

2.2.4. Ambiguity Attention Bi-GRU. ,e standard Bi-GRU
cannot pay attention to the ambiguity for humor recogni-
tion, even if we add ambiguous information in the em-
bedding layer. To address this issue, we utilize the attention

mechanism to capture the key part of the sentence in re-
sponse to a given ambiguous word.

For each time step, Bi-GRU produces a hidden vector hi.
Furthermore, the ambiguous word representation xa and
hidden vector hi are concatenated, H′ � h1′, h2′, . . . , hN

′ ,

H′∈ R
2d×N. H′ is a matrix of hidden vectors, where d is the

numbers of neurons and N is the length of the sentence.
,en, we use the attention mechanism to produce an at-
tention weight vector α and the weighted hidden vector ra.
,e formulas are as follows:

M � tanh WaH′ + b( ,

α �
exp WαM( 


n
i exp WαM( 

,

ra � H′α
T
,

(4)

where M ∈ R2 d×N, α ∈ RN, and r ∈ RN. Wa and Wα ∈ R2 d

are parameters. α is a vector of ambiguity attention weights
and ra is a weighted representation of a given sentence with
the special ambiguous word.

At this point, we get the ambiguity representation ra by
the Ambiguity Comprehension Network.

2.3. Gated Attention Mechanism. After learning by the
phonetics and ambiguity comprehension network, we
combine the two parts to get the integrated representation.
Intuitively, phonetic structure and ambiguity contribute
differently to humor. ,erefore, gated attention is leveraged
to model the confidence of clues provided by the two parts.
We calculate the value of the attention gate as follows:

g � σ w rp; ra  + b , (5)

where σ is the sigmoid function, w is the weight matrix, and
b is the bias.

In order to control the information between phonetic
and ambiguous information, we use the value of attention
gate g and 1 − g as the combination weights. ,e final
representation of a sentence is as follows:

rpa � g⊙ rp +(1 − g)⊙ ra, (6)

where rpa is the integrated representation, rp is the phonetic
representation, ra is the ambiguous semantic representation,
g is the combination weight, and ⊙ is elementwise
multiplication.

Humor recognition can be formalized into text classi-
fication. rpa is the vector representation of the text and it can
be used as the input to obtain the final classification result:

p � Wprpa + bp , (7)

where p is the predicted probability of humorous text and
Wp and bp are the biases.

2.4.Model Training. ,emodel can be trained in an end-to-
end way by backpropagation, and we use crossentropy loss
as the loss function. Let y be the true distribution and y be
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the predicted distribution for the text dataset. ,e goal of
training is to minimize the loss function between y and y for
all samples. We can formalize this process as follows:

loss � − 
i


j

y
j

i log y
j

i + λθ2, (8)

where i is the index of sentences, j is the index of class, λ is
the L2-regularization term, and θ is the parameter set.

3. Experiments

In this section, we first introduce the dataset and evaluation
metrics. ,en, we compare the performance of our model
with several strong baselines in humor recognition. Finally,
we give a detailed analysis of our method, including ablation
experiments, visualization results, and error analysis.

3.1. Datasets and Evaluation Metrics. We conduct experi-
ments on the widely used Pun-of-the-day dataset and
oneliners 16000 dataset. Table 1 shows their detailed sta-
tistical distribution.

3.1.1. Pun-of-the-Day (Puns). ,is dataset was constructed
by Yang et al. [3]. ,e humorous texts of this dataset are
from the Pun of the Day website, and the negative samples
are from AP News, New York Times, Yahoo! Answer, and
Proverb. ,e dataset contains an equal number of positive
and negative samples.,e average length of sentences is 13.5
words.

3.1.2. Oneliners-16000 (Oliners). ,is dataset was con-
structed by [7]. Oneliners in this dataset are from some
famous humorous websites, and the negative samples are
from the titles of Reuter news. It is also a balanced dataset.
,e average length of sentences is 12.6 words.

3.1.3. Evaluation Metrics. We use Accuracy (Acc), Precision
(P), Recall (R), and F-measure (F1) in our experiments to
measure performance in humor recognition.

3.1.4. Training Details. We apply the proposed model to
humor recognition tasks. In our experiments, for the am-
biguity comprehension network, all word vectors are ini-
tialized by GloVe which trains on 6B tokens and 400k
vocabulary words of Wikipedia 2014, and the dimension is
300. ,e size of units in Bi-GRU is 150 and dropout dp is in
the range {0.25, 0.35, 0.5}. ,e learning optimizer op is in the
range {RMSprop, Adadelta, Adam}. ,e learning rate is
0.0001. We use learning rate decay and early stop in the
training process. For the Phonetics Comprehension Net-
work, we firstly convert tokenized input sentences with
phonetic vectors by random initialization. ,e range of filter
sizes is {[2, 3, 4], [3, 4, 5]}. For each filter size, 128 filters are
applied to the model. ,e top T in the range {1, 3, 5} are
candidate ambiguous words.

We use 5-fold crossvalidation with a grid search method
to select the optimal parameters. In detail, for each pa-
rameter, the following crossvalidation operations are per-
formed. (1),e original dataset is randomly divided into five
equally sized subsets. (2) For the five subsets, four subsets are
used to train the model and the remaining subset is used as
validation data for testing the model. (3) We repeat step (2)
five times such that each of the five subsets is used as the
validation data once. (4) ,e five results from the folds are
averaged to produce results. Finally, the parameter pair with
the highest results obtained by the crossvalidation process is
set as the optimal parameters. In our experiments, dp is 0.35,
op is Adam, filter sizes is [2, 3, 4], and T is 3.

3.2. Comparison with Existing Methods. We compare our
proposed model with several baselines:

3.2.1. Support Vector Machine (SVM). ,is method uses all
the features mentioned in the paper [3].

3.2.2.HCFWord2ve. ,emethod is proposed byYang et al. [3].

3.2.3. CNN. ,is method is proposed by Chen and Lee [15].

3.2.4. CNN+HN+F. ,is method was proposed by Chen
and Soo [16].

3.2.5. TM. ,is method was proposed by Zhao et al. [17].

3.2.6. Syntactic. Liu [12] proposed to exploit syntactic
structure features to enhance humor rrecognition.

3.2.7. Bi-LSTM+CNN. ,e method is a complete reim-
plementation of the proposed method in Bertero and Fung
[14].

3.2.8. Bi-GRU. We employ word embedding and learn the
latent semantic representations through Bi-GRU.

3.2.9. Bi-GRU+F. In addition to employing semantic
representations learned automatically by Bi-GRU, the ar-
tificial features mentioned above are also incorporated into
the network.

3.2.10. Bi-GRU+Att. We implement a deep learning Bi-
GRU architecture with a focus on recognizing humorous
text.

Table 1: Statistics: Puns and Oliners.

Dataset Positive Negative
Puns 2423 2403
Oliners 16000 16000
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3.2.11. PACGA. We combine the phonetic structure and
ambiguity information and use gated mechanism to adjust
the effects of the two parts.

,e results of the comparisons are listed in Tables 2 and
3. From the results, we observe that

(1) ,e traditional machine learning methods perform
unsatisfactorily. ,e results on the two datasets show
that their performance is lower than the neural
network in many evaluation metrics. Furthermore,
for the same artificial feature sets, the traditional
machine learning methods exhibit different perfor-
mances on the two datasets. For Puns,
HCFWord2vec is better, but for Oliners, SVM is
better. ,is shows machine learning-based methods
depend on the construction of features, and their
generalization ability is insufficient.

(2) TM employs a semisupervised label propagation
procedure. It used a tensor embedding method for
small sample humor recognition, but achieved only
about 70% of F1.

(3) CNN performed worse than the Bi-GRU on both
datasets (85.7% compared with 88.15% and 86.09%
compared with 86.94%). CNN with extensive filter
size, number and Highway Networks achieved high
performance. ,e reason may be that the depth
networks are of benefit for humor detection.

(4) Bi-LSTM+CNN, the combination of Bi-LSTM and
CNN, performed worse than Bi-GRU on both
datasets. By stacking a layer of a neural network onto
another, a deep learning model can learn high-level
features automatically. However, the hybrid LSTM
and CNN cannot better extract latent semantic in-
formation for recognizing humor.

(5) Bi-GRU+F adds artificial features of humor to the
model of Bi-GRU. We expected a higher perfor-
mance than the Bi-GRU, but the results obtained are
instead much lower on most of the evaluation
metrics. ,e input of manually constructed features
may conflict with semantic features that are auto-
matically learned by the Bi-GRU. ,erefore, adding
too many artificial features into the deep learning
methods cannot effectively improve humor recog-
nition to some extent.

(6) Bi-GRU+Att uses the attention mechanism without
the information of ambiguous word. Obviously, its
experimental performance has not been greatly
improved, which is largely due to its inability to pay
close attention to features strongly related to humor.

(7) PACGA, our proposed method, achieved the com-
parable performance on both datasets for F1. For
Puns, PACGA improved upon ordinary Bi-GRU by
2.12% for F1, and for Oliners by 2.27%. Even
compared with the strong baseline CNN+HN+F,
the performance of our model was superior. Our
proposed model performed better than CNN with
Highway Networks on Puns and achieved

comparable results on Oliners (90.81 compared with
90.1% and 90.28% compared with 90.3%). ,is
shows that our proposed phonetics information,
ambiguity information, and gated attention mech-
anism have superior performance in humor
recognition.

(8) Compared with the baseline methods, our model
achieves a higher accuracy score and F1 score for
Puns, but lower precision and recall. We argue it is
the different types of additional information which
cause this phenomenon. Our model can learn latent
semantic and phonetic information behind humor,
such as phonetic structure and ambiguous infor-
mation, and gated attention mechanism is applied to
adjust the weight between them for proving more
relevant features driven by humor theory, while the
other methods usually only employ semantic in-
formation for obtaining high precision and recall
compared with PACGA. Our model achieves the
comparable performance on two datasets, which
shows that our model has a better generalization
capability.

3.3. Detailed Analysis. We conduct extra experiments to
analyze our model in detail.

Table 2: Experimental results on Puns dataset. Best results are in
bold.,e results with superscript ∗ are imported from the literature
[3, 15–17].

Models Acc (%) P (%) R (%) F1 (%)
SVM∗ 83.85 85.91 82.52 84.18
HCFW2V∗ 85.4 83.4 88.8 85.9
Syntactic∗ — — — —
TM∗ 74.5 75.2 72.3 73.7
CNN∗ 86.1 86.4 86.4 85.7
CNN+HN+F∗ 89.4 86.6 94.0 90.1
Bi-lstm+CNN 85.38 81.42 91.97 86.37
Bi-GRU 87.72 84.23 92.46 88.15
Bi-GRU+F 87.14 89.87 83.34 86.48
PACGA 88.69 88.94 92.76 90.81

Table 3: Experimental results on Oliners dataset. Best results are in
bold.,e results with superscript ∗ are imported from the literature
[3, 12, 16, 17].

Models Acc (%) P (%) R (%) F1 (%)
SVM∗ 83.12 88.04 80.26 82.24
HCFW2V∗ 79.7 77.6 83.6 80.5
Syntactic∗ 85.0 82.7 89.1 85.8
TM∗ 70.5 72.1 66.7 69.3
CNN∗ 84.24 85.73 86.46 86.09
CNN+HN+F∗ 89.7 87.2 93.6 90.3
Bi-lstm+CNN 85.97 86.30 85.21 85.75
Bi-GRU 85.92 87.81 86.08 86.94
Bi-GRU+F 84.78 84.11 84.69 84.40
PACGA 89.47 88.78 91.84 90.28
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3.4. Analysis of Different Parts of PACGA. In order to show
the effectiveness of different parts of our model, we split our
model into two parts for verification. Firstly, we only use Bi-
GRU without phonetics comprehension and ambiguity
comprehension. ,en, we implement PCN that considers
phonetic embedding as input, and the CNN model is
employed to recognize humor. In addition to phonetic in-
formation, we also try to distinguish humor only by using
semantic information. Next, we design an ACN model that
employs word embedding and ambiguous word information
to learn potential humorous features based on Bi-GRU and
attention mechanism. Finally, we introduce our proposed
model PACGA. Tables 4 and 5 show the performance of all
the models on both datasets:

(1) Tables 4 and 5 show that Bi-GRU achieves the worse
performance which is consistent with our intuition.
Without the phonetic structure and ambiguous word
information, the performance of Bi-GRU in humor
recognition is unsatisfactory.

(2) PCN only uses phonetic information, and its per-
formance is significantly lower than the other models
on both datasets. Obviously, only using a single
model to capture phonetic features for detecting
humor could not give a competitive performance.
Semantic information plays an important role in the
identification of humor.

(3) Compared with Bi-GRU, the performance of ACN is
slightly improved. ,is shows that ambiguous word
information and attention mechanism is helpful for
Bi-GRU to focus on the latent sematic features of
humor.

(4) Among all the methods, PACGA achieves the best
performance for this task. ,e reason is our model
considers the phonetic information, word infor-
mation with ambiguous words, and gated attention
mechanism.

3.5. Impact of Different Combination Strategies. ,e com-
bination strategy may affect the performance in humor
recognition and measure the importance of our two main
parts.,erefore, we design a series of experiments to explore
the impact of different combination strategies. We adopt
three strategies. (1) PAC-ST1: it directly combines the
phonetic representation and ambiguity representation. (2)
PAC-ST2: it assumes that two parts of information are of the
same importance, and the parameter g is a constant, the
value is 0.5. (3) PAC-ST3: the two parts of information have
different importance. ,e gated attention is used to model
the confidence of clues provided by the two parts.

We compare the single model and combination model
with different strategies, and the results are given in Table 6.
From the results, we find that all the combined models
outperform the single model, which shows that both the
phonetic structure and semantic information contribute to
humor recognition. Among the combination models, the
performance of PAC-ST1 and PAC-ST2 were roughly the
same, and PAC-ST2 had a slight improvement.

Furthermore, PAC-ST3 beat both of them by a large margin
(1.48% or 1.56% on F1) for both datasets.,is shows that our
presented gated attention strategy to assemble information
can better capture the inherent features behind humor.

3.6. Visualization of Attention. In order to validate the ef-
fectiveness of our model, PACGA, we visualize the attention
layers for the sentences whose labels are correctly predicted.

From Figure 2, we can see that the common words, such
as “is” and “does,” are afforded little attention by our model,
which justifies the intuition that common words make little
contribution to identifying humor. Meanwhile, some spe-
cific words are crucial for humor. In Figure 2(a), the words
“war,” “right,” “determines,” and “left” have higher attention
weights, which implies our model pays attention to those
words, as we expect. It shows that ambiguous words can
provide useful information for its context to adjust its at-
tention, and it plays a great role in a humor recognition task.
In Figure 2(b), obviously, the ambiguity is not the main
reason for humor, and we pay much attention to the
phonetic structure, which implies our model can learn the
importance of phonetic structure and ambiguity for humor
recognition. ,us, through the PACGA, we can well model
phonetic structure and ambiguity, respectively, and then
concatenate their representations by gated attention
mechanism, which is helpful for humor recognition.

3.7. Error Analysis. We also conduct a preliminary error
analysis in this section. Our aim is to find some problematic
issues by studying some misclassified test cases and to
improve the humor recognition of our model in the future.

Table 4: Analysis of the PACGA model on Puns.

Models Acc (%) P (%) R (%) F1 (%)
Bi-GRU 87.72 84.23 92.46 88.15
PCN 84.43 83.92 88.14 85.98
ACN 87.38 86.69 91.02 88.80
PACGA 88.69 88.94 92.76 90.81

Table 5: Analysis of the PACGA model on Oliners.

Models Acc (%) P (%) R (%) F1 (%)
Bi-GRU 85.92 87.81 86.08 86.94
PCN 83.97 85.12 83.87 84.49
ACN 86.64 87.39 87.47 87.42
PACGA 89.47 88.78 91.84 90.28

Table 6: Performance of combinational strategies.

Strategy Models Puns F1 (%) Oliners F1 (%)

Single PCN 85.98 84.49
ACN 88.80 87.42

Combination
PAC-ST1 89.21 88.63
PAC-ST2 89.33 88.72
PAC-ST3 90.81 90.28
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Exp 3. ,e one who invented the door knocker got a no
bell prize.

Exp 4. A tidy desk is a sign of a cluttered desk drawer.
For Exp 3, the true label is “humor,” but our model

predicted its label as “nonhumor.” In this example, the
punch line is “no bell prize,” it sounds like “Nobel Prize.”
Obviously, this type of humor is caused by similarity in
pronunciation, but “Nobel Prize” does not appear in the
sentence, and our model cannot capture any phonetic in-
formation. Hence, some background knowledge would be
required in order to predict the label correctly. For Exp 4,
“tidy” and “cluttered” are opposites, and this kind of conflict
makes a sentence humorous. Humor sometimes relies on
two or more inconsistent, unsuitable, or incongruous parts
or circumstances. ,erefore, our model needs to be able to
identify inconsistencies simultaneously.

4. Conclusions and Future Work

In this paper, we design an automatic computational neural
network named Phonetics and Ambiguity Comprehension
Gated Attention network (PACGA) to detect humor. ,e
main idea of PACGA is to use phonetic structure and
ambiguity for humor recognition. In our model, a phonetics
comprehension network is used to understand the phonetic
representation of CMU pronunciation dictionary by CNN.
Ambiguity comprehension network leverages latent se-
mantic representation associated with ambiguous words by
Bi-GRU. Based on phonetics comprehension network and
ambiguity comprehension network, gated attention mech-
anism is used for modeling the confidence of clues. Ex-
periments on Puns and Oliners datasets verify that our
proposed PACGA can learn effective information for
phonetic structure and semantics which provide significant
information for detecting humor. In addition, the detailed
analysis and visualization of attention also show the validity
and interpretation ability from different perspectives.

In the future, we would like to step further into how to
integrate humor characteristics into a deep learning model.
Certainly, how to use common sense for humor recognition
is also an issue deserving of study.
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