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Network similarity measures have proven essential in the field of network analysis. Also, topological indices have been used to
quantify the topology of networks and have been well studied. In this paper, we employ a new topological index which we call the
Ediz eccentric connectivity index. We use this quantity to define network similarity measures as well. First, we determine the
extremal value of the Ediz eccentric connectivity index on some network classes. Second, we compare the network similarity
measure based on the Ediz eccentric connectivity index with other well-known topological indices such as Wiener index, graph
energy, Randić index, the largest eigenvalue, the largest Laplacian eigenvalue, and connectivity eccentric index. Numerical results
underpin the usefulness of the chosen measures.+ey show that our newmeasure outperforms all others, except the one based on
Wiener index. +is means that the measure based on Wiener index is still the best, but the new one has certain advantage to
some extent.

1. Introduction

Similarity measures for networks have been studied ex-
tensively. Up to now, exploring methods to measure the
similarity/distance between networks has been a current
research item [1]. However, not every measure is generally
applicable as these methods rely on different concepts, e.g.,
graph ismomorphism. Also, different measure methods may
be used for different kind of networks.

In this paper, we employ a distance measure [1, 2]:

d(x, y) � 1 − e
− (x− y/σ)2

, (1)

for x, y ∈ R, which leads to a graph distance measure based
on topological indices [1, 3]:

dI(G, H) ≔ d(I(G), I(H)) � 1 − e
− (I(G)− I(H)/σ)2

, (2)

where G andH are two networks and I(G) and I(H) are
topological indices applied to both G and H. In this paper,
we set σ � 1. Dehmer et al. [1, 3–6] explored the

interrelations between the graph similarity measures based
on some well-known topological indices such as Wiener
index, Randić index, graph entropy, and eigenvalue-based
quantities. Triggered by this, we continue to investigate the
network similarity measure dI by employing a new topo-
logical graph measures, namely, the Ediz eccentric con-
nectivity index [7]. Furthermore, we compare the similarity
measures based on different topological indices.

2. Topological Indices

A topological index [8] is a network/graph invariant, which
maps networks to the reals. Topological indices for graphs
have been well studied. +ey have been used for examining
quantitative structure-activity relationships (QSARs) [9].
Also, they have been applied in ecology [10], biology [11],
and network physics [12, 13]. In the following, we list several
topological indices which will be used.

Wiener index W(G) of a graph G � V, E{ } is defined as
W(G) � 􏽐x,y∈VD(x, y), where D(x, y) is the distance
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between two vertices x and y of G, which is introduced by
Wiener [14]. Some properties of Wiener index were dis-
cussed, see [15, 16] and the references cited therein.

Randić index R(G) of a graph G is defined as
R(G) � 􏽐x,y∈E1/

��������
d(x)d(y)

􏽰
, where d(x) is the degree of the

vertex v ∈ V, which was proposed by Randić [17]. Some
properties of Randić index were discussed, see [18, 19] and
the references cited therein.

Graph energy E(G) of a graph G on n vertices is defined
as E(G) � 􏽐

n
i�1 |λi|, where λi (1≤ i≤ n) is the eigenvalues of

the adjacency matrix of G, which is introduced by Gutman
[20]. Some properties of graph energy were discussed, see
[21] and the references cited therein.

Connective eccentricity index ξce
(G) of a graph G [22] is

defined as ξce
(G) � 􏽐v∈V(G)d(v)/ε(v), where d(x) and ε(v)

are the degree and the eccentricity of the vertex v ∈ V, re-
spectively. Some properties of the connective eccentricity
index were discussed, see [23] and the references cited
therein.

+e Ediz eccentric connectivity index ξec
E (G) of a graph

[7] G is defined by ξec
E (G) � 􏽐v∈V(G)S(v)/ε(v), where S(v) is

the sum of the degrees of the vertices adjacent to the vertex v

and ε(v) is the eccentricity of the vertex v. Some mathe-
matical properties of Ediz eccentric connectivity index are
discussed in [7]. +e physico-chemical properties of certain
molecular structures were investigated by computing the
Ediz eccentric connectivity index [24]. In [25], the Ediz
eccentric connectivity index for Circumcoronene Series of
Benzenoid by Ring-Cut method.

3. Main Results

3.1. Extremal Values of Ediz Eccentric Connectivity Index.
Let G be an unweighted, undirected graph with vertex set
V(G). For vertices u, v ∈ V(G), the distance d(u, v) is de-
fined as the length of the shortest path between u and v in G.
+e eccentricity ε(v) of a vertex v is the maximum distance
from v to any other vertex. Obviously, ε(v)≥ 1, for any vertex
v ∈ V(G).

Theorem 1. Let G be a graph on n vertices with the de-
creasing degree sequence d1, d2, . . . , dn􏼈 􏼉. 8en,

ξce
E (G)≤ 􏽘

n

i�1
d
2
i , (3)

with equality if and only if G is a complete graph.

Proof. Since ε(v)≥ 1 for any v ∈ V(G), then

ξce
E (G)≤ 􏽘

v∈V(G)

S(v)

1
� 􏽘

v∈V(G)

S(v) � 􏽘
v∈V(G)

􏽘
u ∼ v

d(u) � 􏽘

n

i�1
d
2
i ,

(4)

where u ∼ v means that u is adjacent to v. +e above
equalities hold if and only if ε(v) � 1 for any v ∈ V(G), i.e.,G
is a complete graph. □

Remark 1. Since the first Zagreb index [26] of a graph G is
defined as M1(G) � 􏽐u∈V(G)[d(u)]2, the result
ξce

E (G)≤M1(G) holds.+e equality holds if and only if G is a
complete graph.

Average eccentricity of a graph G on n vertices is defined
as ζ(G) � 1/n􏽐v∈V(G)ε(v). A relation between Ediz eccentric
connectivity index and average eccentricity is present as
follows.

Theorem 2. Let G be a graph on n vertices. 8en,

ξce
E (G)≤ n(n − 1)

2ζ(G), (5)

with equality if and only if G is a complete graph.

Proof. Since ε(v)≥ 1 for any vertex v ∈ V(G), then
1/ε(v)≤ ε(v) with equality if and only if ε(v) � 1. Moreover,
dv ≤ n − 1. +erefore,

ξce
E (G) � 􏽘

v∈V(G)

S(v)

ε(v)
≤ 􏽘

v∈V(G)

ε(v)S(v)≤ 􏽘
v∈V(G)

(n − 1)
2ε(v)

� n(n − 1)
2ζ(G).

(6)

+e first equality holds if and only if 1/ε(v) � ε(v), i.e., G

is a complete graph. +e second equality holds if and only if
d(v) � n − 1 for any v ∈ V(G), i.e., G is a complete
graph. □

Theorem 3. Let G be a graph on n vertices with independence
number α. 8en,

ξce
E (G)≤ (n − α)[(n − 1)(n + α − 1) +(n − α)α], (7)

with equality if and only if G � Kn− α ∨Kα.

Proof. Let G be the set of graphs on n vertices with in-
dependence number α. Assume that G0 ∈ G has the maximal
Ediz eccentric connectivity index. Let V(G0) be the vertex
set of G0 and S � v1, v2, . . . , vα􏼈 􏼉 be the maximal indepen-
dence set. Let G∗ be the subgraph, induced by V(G0)/S, of
G0. Since adding an edge shall increase the Ediz eccentric
connectivity index, G∗ is complete. Moreover, there must
exit an edge joining any two vertices between S and V(G0)/S
in G0. So, G0 � Kn− α ∨Kα. By directed computation, we have
ξce

E (Kn− α ∨Kα) � (n − α)[(n − 1)(n + α − 1) + (n − α)α].
Let c(G) be the covering number of a graph G. It is well

known that α(G) + c(G) � n. From +eorem 3, the fol-
lowing holds. □
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Corollary 1. Let G be a connected graph on n vertices with
covering number c. 8en,

ξce
E (G)≤ c[(n − 1)(2n − c − 1) + c(n − c)], (8)

with equality if and only if G � Kc ∨Kn− c.

In [23, 27], authors investigated the eccentric distance
sum and connective eccentricity index of graphs with vertex
connectivity, respectively. By modifying their methods, we
have the following.

Theorem 4. Let G be a connected graph on n vertices with the
vertex connectivity κ. 8en, ξce

E (G)≤ κ(κ − 1)(2n − κ − 1) +

(3/2κ − n1)[(n − κ)2 − 2(n − κ − 1)] + 1/2κ(n − 1)(n − κ) +

1/2[(n − κ)3 − 3(n − κ)(n − κ − 1)] with equality if and only
if G � Kκ∨(K1 ∪Kn− κ− 1).

Proof. Let G0 be a graph having the maximal Ediz eccentric
connectivity index among all connected graphs on n vertices
with vertex connectivity κ. +en, there exists a vertex cut
C ⊂ V(G0) with |C| � κ such that G0 − C � G1 ∪G2 ∪ · · ·

∪Gt, where G1, G2, . . . , Gt are t(≥ 2) connected components
of G0 − C. Since adding an edge shall increase Ediz eccentric
connectivity index, t � 2 and G1, G2 and G[C] are complete
graphs, any vertex of G1 and G2 is adjacent to any vertex in
C. So, G0 � Kκ∨(Kn1

∪Kn2
) and n1 + n2 � n − κ for ni � |Gi|

(i � 1, 2). By directly computing, we have

ξce
E Kκ∨ Kn1

∪Kn2
􏼐 􏼑􏼐 􏼑 �

3
2
κ − 1􏼒 􏼓 (n − κ)

2
− 2n1n2􏽨 􏽩

+
1
2

(n − κ)
3

− 3(n − κ)n1n2􏽨 􏽩.

(9)

Note that n1n2 � n1(n − κ − n1)≥ (n − k − 1) with
equality if and only if n1 � 1, n2 � n − κ − 1, or n2 � 1,
n1 � n − κ − 1. +en, ξce

E (G)≤ κ(κ − 1)(2n − κ − 1) + (3/
2κt − n1)[(n − κ)2 − 2(n − κ − 1)] + 1/2κ(n − 1)(n − κ) + 1 /
2[(n − κ)3 − 3(n − κ)(n − κ − 1)], with equality if and only if
G � Kκ∨(K1 ∪Kn− κ− 1).

Tk,n, which is called Turán graph, is the complete
k-partite graph on n vertices in which all parts are as equal in
size as possible. □

Lemma 1. (see [28]). Let G be a graph which contains no Kk

(k≥ 2). 8en, |E(G)|≤ |E(Tk− 1,n)| with equality if and only if
G � Tk− 1,n.

8e following is immediate from Lemma 1.

Lemma 2. A graph G is connected with |E(G)|> 1/4|V(G)|2,
and then G contains at least one triangle.

Theorem 5 Let G be a triangle-free connected graph on n

vertices. 8en, ξce
E (G)≤ n2(n − 2)/4 if ε(u)> 1 for any vertex

v ∈ V(G), with equality if and only if G � K2,2. Otherwise,
ξce

E (G)≤ n2 − 1/2, with equality if and only if G � K1,n− 1.

Proof. Let G be a triangle-free graph with the maximal Ediz
eccentric connectivity index. If there exists a vertex
u ∈ V(G) such that ε(u) � 1, then d(u) � n − 1. Hence, G �

K1,n− 1 since G is triangle-free. Assume that ε(v)> 1 for
v ∈ V(G). +en, d(v)≤ n − 2 and

ξce
E (G) � 􏽘

v∈V(G)

S(v)

ε(v)
≤
1
2

􏽘
v∈V(G)

S(v) ≤
1
2

􏽘
v∈V(G)

(n − 2)d(v)

� (n − 2)|E(G)| ≤
n
2
(n − 2)

4
, by Lemma 2.

(10)

+e above equalities holds if and only if ε(v) � 2, d(v) �

n − 2 for all v ∈ V(G) and |E(G)| � n2/4, i.e., G � K2,2. By
computing, ξce

E (K1,n− 1) � n2 − 1/2. □

Theorem 6. Let G be a connected graph on n vertices with k

pendent vertices. 8en,

ξce
E (G)≤

(n − 1)
2

2
+

(n − k)(n − k − 1)
2

2
+ k, (11)

with equality if and only if G � Kk
n, where Kk

n is a graph
obtained from Kn− k by attaching k pendent edges to one vertex
of Kn− k.

Proof. Let G0 be the graph on n vertices with k pendent
vertices and the maximal Ediz eccentric connectivity index.
Assume that v1, v2, . . . , vk􏼈 􏼉 be the set of pendent vertices in
G0. +e subgraph G0′ induced by V(G0)/ v1, v2, . . . , vk􏼈 􏼉 is a
complete graph. In what follows, we would prove that
G0 � Kk

n.
Suppose that there exist at least two vertices of G0′ such

that their degrees are more than n − k − 1. Set vi, vj ∈ V(G0′)
and d(vi)≥d(vj)> n − k − 1. Let G1 be the new graph ob-
tained from G0 by removing all pendent vertices attached to
vj and attaching them to vi. Let V1 (V2) be the set of pendent
vertices attached to vi (vj) in G0′. Let V3 be the set of pendent
vertices not in V1 or V2.

Note that εG0
(vi) � εG1

(vi) � 2, εG0
(vj) � εG1

(vj) � 2,
and εG0

(v) � εG1
(v) � 2 for v ∈ V(G0′)/ vi􏼈 􏼉 and

εG0
(v) � εG1

(v) � 3 for v ∈ V1 ∪V2 ∪V3. +e degree of
vertex in V(G0)/ vi, vj􏽮 􏽯 does not change, but the degree of vi

increases by |V2| and the one of vj decreases by |V2|. Let C be
the sum of the degrees of vertices in V(G0′)/ vi, vj􏽮 􏽯. Note that
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C is a constant under G0 and G1. By the definition of Ediz
eccentric connectivity index, we have

ξce
E G0( 􏼁 � 􏽘

v∈V G0′( )/ vi,vj􏼈 􏼉

C + dG0
vi( 􏼁 + dG0

vj􏼐 􏼑

2
+ 􏽘

v∈V1

dG0
vi( 􏼁

3
+ 􏽘

v∈V2

dG0
vj􏼐 􏼑

3
+ 􏽘

v∈V3

SG0
(v)

3
+

SG0
vi( 􏼁

2
+

SG0
vj􏼐 􏼑

2
,

ξce
E G1( 􏼁 � 􏽘

v∈V G1′( )/ vi,vj􏼈 􏼉

C + dG1
vi( 􏼁 + dG1

vj􏼐 􏼑

2
+ 􏽘

v∈V1

dG1
vi( 􏼁

3
+ 􏽘

v∈V2

dG1
vj􏼐 􏼑

3
+ 􏽘

v∈V3

SG1
(v)

3
+

SG1
vi( 􏼁

2
+

SG1
vj􏼐 􏼑

2

� 􏽘

v∈V G0′( )/ vi,vj􏼈 􏼉

C + dG0
vi( 􏼁 + dG0

vj􏼐 􏼑

2
+ 􏽘

v∈V1

dG0
+ V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

3
+ 􏽘

v∈V2

dG0
+ V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

3
+ 􏽘

v∈V3

SG0
(v)

3
+

SG0
vi( 􏼁

2
+

SG0
vj􏼐 􏼑

2
.

(12)

+en,

ξce
E G0( 􏼁 − ξce

E G1( 􏼁 � − 􏽘
v∈V1

V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

3
+ 􏽘

v∈V2

dG0
vj􏼐 􏼑 − dG0

vi( 􏼁 − V2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

3
< 0,

(13)

and this is a contradiction. So, G0 � Kk
n.

By computing, it follows that ξce
E (Kk

n) � (n −

1)2/2 + (n − k)(n − k − 1)2/2 + k. □

Lemma 3. Let H1 and H2 be two disjoint connected graphs
on at least 2 vertices with u ∈ V(H1) and v ∈ V(H2). G1 is

the graph obtained from H1 ∪H2 by adding an edge uv. G2 is
the graph obtained from H1 ∪H2 by identifying u and v (to be
a new vertex, say, u) and adding a pendent edge, say uv

without confusion. 8en, ξce
E (G1)< ξ

ce
E (G2).

Proof. Let V1 be the set of neighbors of u in H1 and C1 be
the sum of degrees of vertices in V1. Let V2 be the set of
neighbors of v in H2 and C2 be the sum of degrees of vertices
in V2. Note that εG1

(x)≥ εG2
(x) for all x ∈ (V(H1)∪

V(H2))/ u, v{ } and SG1
(x) � SG2

(s) for x ∈ (V(H1)∪
V(H2))/(V1 ∪V2 ∪ u, v{ }). So, we have

ξce
E G1( 􏼁 � 􏽘

x∈V H1( )/ V1∪ u{ }( )

SG1
(x)

εG1
(x)

+ 􏽘

x∈V H2( )/ V2∪ v{ }( )

SG1
(x)

εG1
(x)

+ 􏽘
x∈V1

SG1
(x)

εG1
(x)

+ 􏽘
x∈V2

SG1
(x)

εG1
(x)

+
SG1

(u)

εG1
(u)

+
SG1

(v)

εG1
(v)

� 􏽘

x∈V H1( )/ V1∪ u{ }( )

SG1
(x)

εG1
(x)

+ 􏽘

x∈V H2( )/ V2∪ v{ }( )

SG1
(x)

εG1
(x)

+ 􏽘
x∈V1

SG1
(x)

εG1
(x)

+ 􏽘
x∈V2

SG1
(x)

εG1
(x)

+
C1 + dG1

(v)

εG1
(u)

+
C2 + dG1

(u)

εG1
(v)

.

(14)

Case 1. εH1
(u)≥ 1 + εH2

(v)

In this case, εG1
(u) � εH1

(u) � εG2
(u) and εG1

(v) � 1+

εH1
(u) � εG2

(v). It follows that

ξce
E G2( 􏼁 � 􏽘

x∈V H1( )/ V1∪ u{ }( )

SG2
(x)

εG2
(x)

+ 􏽘

x∈V H2( )/ V2∪ v{ }( )

SG2
(x)

εG2
(x)

+ 􏽘
x∈V1

SG1
(x) + dG1

(v) − 1
εG2

(x)
+ 􏽘

x∈V2

SG1
(x) + dG1

(u) − 1
εG2

(x)
+

C1 + C2 + 1
εG2

(u)

+
dG1

(u) + dG1
(v) − 1

εG2
(v)

.

(15)
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+en,

ξce
E G2( 􏼁 − ξce

E G1( 􏼁≥ 􏽘

x∈V H1( )/ V1 ∪ u{ }( )

SG2
(x) − SG1

(x)

εG1
(x)

+ 􏽘

x∈V H2( )/ V2 ∪ v{ }( )

SG2
(x) − SG1

(x)

εG1
(x)

+ 􏽘
x∈V1

dG1
(v) − 1

εG1
(x)

+ 􏽘
x∈V2

dG1
(u) − 1
εG1

(x)
+

C1 + C2 + 1
εG1

(u)
−

C1 + dG1
(v)

εG1
(u)

+
dG1

(u) + dG1
(v) − 1

εG1
(v)

−
C2 + dG1

(u)

εG1
(v)

>
1 + C2 − dG1

(v)

εG1
(u)

+
dG1

(v) − 1 − C2

εG1
(v)

>
1 + C2 − dG1

(v)

εG1
(u)

+
dG1

(v) − 1 − C2

εG1
(u)

� 0,

(16)

Case 2. εH1
(u) � εH2

(v)

In this case, εG1
(u) � 1 + εH1

(u), εG2
(u) � εH1

(u),
εG1

(v) � 1 + εH2
(v), and εG2

(v) � 1 + εH1
(v). It follows

that

ξce
E G2( 􏼁 − ξce

E G1( 􏼁>
C1 + C2 + 1

εG2
(u)

−
C1 + dG1

(v)

εG1
(u)

+
dG1

(u) + dG1
(v) − 1

εG2
(v)

−
C2 + dG1

(u)

εG1
(v)

�
C1 + C2 + 1
εH1

(u)
−

C1 + dG1
(v)

1 + εH1
(u)

+
dG1

(u) + dG1
(v) − 1

1 + εH1
(u)

−
C2 + dG1

(u)

1 + εH1
(u)

� 1 + C1 + C2( 􏼁
1

εH1
(u)

−
1

1 + εH1
(u)

􏼠 􏼡> 0.

(17)

Case 3. εH1
(u)< εH2

(v).
In this case, εG1

(u) � 1 + εH2
(v), εG2

(u) � εH2
(v),

εG1
(v) � εH2

(v), and εG2
(v) � 1 + εH2

(v). It follows that

ξce
E G2( 􏼁 − ξce

E G1( 􏼁>
C1 + C2 + 1

εG2
(u)

−
C1 + dG1

(v)

εG1
(u)

+
dG1

(u) + dG1
(v) − 1

εG2
(v)

−
C2 + dG1

(u)

εG1
(v)

�
C1 + C2 + 1

εH2
(v)

−
C1 + dG1

(v)

1 + εH1
(v)

+
dG1

(u) + dG1
(v) − 1

1 + εH2
(v)

−
C2 + dG1

(u)

εH2
(v)

� 1 + C1 + C2( 􏼁
1

εH2
(v)

−
1

1 + εH2
(v)

􏼠 􏼡> 0.

(18)

+is completes the proof. □

Theorem 7. Let G be a connected graph on n vertices with
k≥ 1 cut edges. 8en,

ξce
E G2( 􏼁≤

(n − 1)
2

2
+

(n − k)(n − k − 1)
2

2
+ k, (19)

with equality if and only if G � Kk
n.

Proof. Suppose that G0 is a connected graph on n vertices
with k≥ 1 cut edges and the maximal Ediz eccentric con-
nectivity index. By Lemma 3, all cut edges in G0 must be
pendent edges. From the proof of +eorem 6, the proof is
completed. □

3.2. Numerical Result and Analysis. As we know, infinitely
many topological indices exist. +e number of similarity
measures like the ones employed in this paper is infinite too.
So, finding a suitable topological index to obtain a better
measure is an interesting question. +is section contributes
to the results obtained by comparing the similarity measures
based on topological indices by means of two different
perspectives. We shall discuss numerical results to underpin
our analytical findings.+e first method is to comparing the
similarity measures based on topological indices and graph
edit distance. Graph edit distance serves as a benchmark
similarity measure, but it is generally NP-hard. Here, we
shall compare how close the similarity measures based on
topological indices (Wiener index, graph energy, Randić, the
largest adjacent eigenvalue, the largest Laplacian eigenvalue,
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connective eccentricity index, and Ediz eccentric connec-
tivity index) and graph edit distance are. We choose all
nonisomorphic trees whose number of vertices is from 6 to
9, respectively. To ensure the comparability of the two
measures, we revise the graph edit distance for trees as

ged T1, T2( 􏼁 � 1 −
1

2n − 6
GED T1, T2( 􏼁, (20)

where GED(T1, T2) is the graph edit distance of trees T1, T2.
+e number 1/(2n − 6) is the standardization coefficient
which is used to standardize the value of graph edit distance
into the interval [0, 1]. +is revised graph edit distance is still
a benchmark similarity measure. To compare the similarity
measure with the graph edit distance, we employ the least
square method as follows to compute the error between each
similarity measure and revised graph edit distance:

􏽘
Ti,Tj

����������������������

dI Ti, Tj􏼐 􏼑 − ged Ti, Tj􏼐 􏼑􏼐 􏼑
2

􏽲

, (21)

where the summation is over all pairs of the different
nonisomorphic trees with the same number of vertices.

Numerical results are shown in Figure 1. It shows that
the similarity measure based on Wiener index has more
advantage than the one based on Ediz eccentric connectivity
index, but the measure based on Ediz eccentric connectivity
index has more advantage than the ones based on other
topological indices (graph energy, Randić index, the largest
adjacent eigenvalue, the largest Laplacian eigenvalue, and
connective eccentricity index).

Distribution of the ranked values of the similarity
measure based on Wiener index (W), graph energy (E),
Randić index (R), the largest adjacent eigenvalue (λ), the
largest Laplacian eigenvalue (μ), connective eccentricity

index (CEI), and Ediz eccentric connectivity index (EECI).
+e X-axis represents the values of the distance measure.
+e Y-axis represents the percentage rate of all graph pairs
studied.

+e second method is to compare the values of different
similarity measures on the set of 14-vertex trees.+e number
of trees with 14 vertices is 3159 and the number of pairs is
4988061, see [29]. Here, we compare the measures based on
the seven topological indices. From the plots shown by
Figure 2, some inequalities are demonstrated as follows:

dW T1, T2( 􏼁≥ dξec
E

T1, T2( 􏼁, dξec
E

T1, T2( 􏼁≥dR T1, T2( 􏼁, dξec
E

T1, T2( 􏼁≥dE T1, T2( 􏼁,

dξec
E

T1, T2( 􏼁≥dλ T1, T2( 􏼁, dξec
E

T1, T2( 􏼁≥dμ T1, T2( 􏼁, dξec
E

T1, T2( 􏼁≥ dξce T1, T2( 􏼁,
(22)

where the subscripts W, R, E, λ, μ, ξce, and ξec
E are the

abbreviations of Wiener index, graph energy, Randić index,
the largest adjacent eigenvalue , the largest Laplacian ei-
genvalue, connective eccentricity index, and Ediz eccentric
connectivity index, respectively.+ese inequalities reveal the
same result as the one obtained from the first method. So, the
similarity measure based on Ediz eccentric connectivity
index has certain advantage to some extent.

In fact, we derive the same result by employing two other
datasets. One dataset is random regular graphs on 100 vertices
with degree 3, another isWatts–Strogatz small-world graphs on

100 vertices with k � 4 and p � 0.2. +e results are shown in
Figures 3 and 4.

Next, we shall present an upper bound for the similarity
measure based on Ediz eccentric connectivity index among
all connected graphs on n vertices.

Theorem 8. Let G1 andG2 be two connected graphs on n

vertices. 8en, we have

dξec
E

G1, G2( 􏼁≤ dξec
E

Kn, Pn( 􏼁, (23)

Wiener Energy Randic Lambda mu CEI EECI
1.9123 2.0104 2.0535 2.1262 2.0117 2.0213 2.0056
3.3382 3.9409 4.3055 4.4498 3.8349 3.8645 3.4187
6.1808 8.2293 9.7964 10.1535 8.2016 7.3276 6.8201

12.5563

Six vertices
Seven vertices
Eight vertices
Nine vertices 16.7632 20.6999 21.6302 16.7256 15.1056 13.269

0

5

10

15

20

25

Er
ro

r

Figure 1: Errors between graph edit distance and similarity
measures based onWiener index (Wiener), graph energy (Energy),
Randić index (Randic), the largest adjacent eigenvalue (lambda),
the largest Laplacian eigenvalue (mu), connective eccentricity index
(CEI), and Ediz eccentric connectivity index (EECI). +e X-axis
represents different topological indices. +e Y-axis represents the
distributions of error values between graph edit distance and
similarity measures.
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with equality if and only if G1 andG2 are Kn andPn, re-
spectively. Moreover, ξec

E (Kn) � n(n − 1)2 and

ξec
E Pn( 􏼁 �

2
2

n − 1
+

3
n − 2

+
4

n − 3
+

4
n − 4

+ · · · +
4

(n + 1)/2
􏼠 􏼡 +

4
(n − 1)/2

for n is odd,

2
2

n − 1
+

3
n − 2

+
4

n − 3
+

4
n − 4

+ · · · +
4

n/2
􏼒 􏼓 for n is even.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)
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Figure 2: Nonisomorphic tree with 14 vertices.
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Figure 3: Random regular graph with N � 100 and d � 3.
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Proof. From the definition of Ediz eccentric connectivity
index, one has ξec

E (G)< ξec
E (G + e) for a noncomplete graph

G and e ∈ E(G) since adding an edge should increase the
degree of some vertex. +is means that adding an edge will
increase the Ediz eccentric connectivity index. So, the
complete graph Kn has the maximal Ediz eccentric con-
nectivity index among all connected graphs with n vertices.
On the contrary, the graph with minimal Ediz eccentric
connectivity index among all connected graphs on n vertices
must be a tree. We recall that the path Pn has the minimal
Ediz eccentric connectivity index among all trees with n

vertices [7]. +erefore, the path Pn has the minimal Ediz
eccentric connectivity index among all connected graphs
with n vertices. So, the following holds.

Note that the function f(x) � 1 − e− x2 is an increasing
function when x≥ 0. So, among all connected graphs on n

vertices dξec
E

(G, H) attains the maximal value which are
Kn andPn, respectively. From the definition of Ediz eccentric
connectivity index, we can directly compute the values
ξec

E (Kn) and ξec
E (Pn). □

4. Conclusion

+e Ediz eccentric connectivity index of a network is a
topological invariant. In this paper, we have investigated
some mathematical properties thereof. Furthermore, we
explored similarity measures for networks by using the Ediz
eccentric connectivity index. We compare the network
similarity measures based on the Ediz eccentric connectivity
index and other well-known topological indices such as
Wiener index, Randić index, graph energy, the largest ad-
jacent eigenvalues, the largest Laplacian eigenvalue, and
connectivity eccentric index by means of two different
methods. Numerical results show that the similarity measure
based on Wiener index has more advantage than the one
based on Ediz eccentric connectivity index, but the measure
based on Ediz eccentric connectivity index has more

advantage than the ones based on other topological indices
(graph energy, Randić index, the largest adjacent eigenvalue,
the largest Laplacian eigenvalue, and connective eccentricity
index).+is means that the similarity measure based on Ediz
eccentric connectivity index has certain advantage to some
extent.

Actually, there are many useful topological indices,
which are widely investigated, such as Wiener polarity index
[30], eccentric connectivity index [31, 32], Estrada index
[33], Laplacian Estrada index [34], extended Estrada index
[35], and Kirchhoff index [36]. In the future we would like to
study the network similarity measure, which is studied in
this paper, based on the above indices and explore the re-
lations between them and the one based on Ediz eccentric
connectivity index.
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