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)is paper is concerned with existence, uniqueness, and almost sure exponential stability of solutions to nonlinear stochastic
systemwithMarkovian switching and Lévy noises. Firstly, the existence and uniqueness of solutions to the system is studied.)en,
the almost sure exponential stability of the system is derived. Finally, an example is presented to illustrate the results.

1. Introduction

In practical engineering applications, some linear systems
may be affected by external factors or internal causes to
appear nonlinear phenomena, such as deformation of the
spring due to excessive external force, sensor measurement
due to environmental influences, or their own causes leading
to the input and output show a nonlinear relationship. )is
makes nonlinearity an important factor that cannot be ig-
nored. On the contrary, almost all dynamic systems are
nonlinear. If the input and output of the system are not
proportional, the system can be regarded as a nonlinear
system.Moreover, most systems are affected by some kind of
noise, and such noise usually shows a certain random
characteristic. )erefore, it is reasonable and necessary to
model the actual system with a nonlinear stochastic system.
With the development of science and technology, nonlinear
stochastic systems have attracted the attention of many
scholars ([1, 2]). However, in engineering practice, most
random disturbances exhibit non-Gauss characteristics. In
recent years, with the development of the Lévy process
theory, Lévy noise, as an important type of non-Gauss noise,
has been widely used in engineering systems, economic
systems, and management systems and has attracted great
attention from scholars. Bertoin [3] introduced the basic
theory of the Lévy process. Applebaum [4] introduced

stochastic integral and stochastic differential equation
driven by Lévy process. Applebaum [5] proposed that Lévy
noise can be decomposed into a continuous part and a jump
part which, respectively, corresponds to the diffusion and
jump term in systems by Lévy-Itô decomposition.Wong and
Guan [6] used fast Fourier transform to solve option pricing
in Lévy process. Liao et al. [7] studied pricing power options
with generalized jump diffusion.

During actual project operation, the system may appear
between systems described by homogeneous models with
different coefficients due to factors such as component
failures and repairs, changes in the connection methods of
subsystems, and changes in operating points of nonlinear
systems after linearization [8]. Obviously, the deterministic
model cannot accurately represent this switching rela-
tionship between different subsystems nor can it achieve
the effect expected in engineering. By studying the nature of
the Markov process, the scholars found that it can well
reflect this switching relationship between subsystems, and
it has been introduced to simulate such systems. In general,
the state of a continuous Markov transition system consists
of two parts. One part is the modal state of the system, and
the other part is the system state. )erefore, the Markov
transition system is sometimes called the hybrid system.
Over the past few decades, many authors studied the
systems with Markovian switching. For example, Xi [9]
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studied the stability of system with Markovian switching
and jump diffusions. Huang and Mao [10] applied Holder’s
inequality, Chebyshev’s inequality, and Borel–Cantelli’s
lemma to analyze the almost sure stability of nonlinear time
delayed stochastic systems with Markovian switching and
jump diffusion. Zhou et al. [11] studied slide mode and
delay-dependent adaptive exponential synchronization in
pth moment for stochastic delayed neural networks with
Markovian switching. Wu et al. [12] discussed the stabi-
lization of stochastic coupled systems with Markovian
switching via feedback control based on discrete-time
observations.

For any practical system, it will always be disturbed by
various random factors during its normal operation. In
this case, whether the system can maintain the pre-
determined working state safely is a basic and important
research content. In the past few decades, the problem of
stability of systems has been investigated by many authors
[13–16]. For example, Liu et al. [17] constructed an
equivalent set of delay differential algebraic equations to
study the stability of systems modeled as neutral delay
differential equations. Wu et al. [18] analyzed the almost
sure globally asymptotical stability and almost sure ex-
ponential stability for switched systems with semi-Mar-
kovian switching, Markovian switching, and renewal
process switching signals, respectively. Li et al. [19] used
piecewise constant Lyapunov matrices and the general-
ized Kalman–Yakubovich–Popov lemma to discuss strong
delay-independent stability of linear time-invariant sys-
tems. Song and Xu [20] investigated the stability of the
metastable low and high concentration states under non-
Gaussian noise based on the stochastic basin of attraction.
However, there are few literature studies about the ex-
istence, uniqueness, and almost sure exponential stability
of solutions to nonlinear stochastic system with Mar-
kovian switching and Lévy noises. )is paper uses
probability analysis methods to study the existence and
uniqueness of global solution to nonlinear stochastic
system with Markovian switching and Lévy noises under
the condition of local Lipschitz condition and local linear
growth condition. )en, the almost sure exponential
stability of the solution is proved by the generalized Itô
formula, the law of large numbers for local martingale,
and the ergodic of Markovian chain.

)is paper is organized as follows. In Section 2, we
introduce the nonlinear stochastic system with Markovian
switching and Lévy noises. Some important assumptions,
definitions, and lemmas are given as well. In Section 3, the
existence and the almost sure exponential stability of the
global unique solution to the system are studied. In Section
4, a numerical example is provided. )e conclusion is given
in Section 5.

2. Problem Formulation and Preliminaries

Let (Ω,F,P) be a complete probability space equipped with
a right continuous and increasing family of σ-algebras
( Ft􏼈 􏼉t≥ 0). Denoted byC1,2(Rn × R+ × S;R+), the family of
positive real-valued functions V(x, t, i) defined on

Rn × R+ × S are continuously twice differentiable in x ∈ Rn

and once differentiable in t ∈ R+. Let r(t), t≥ 0 be a right-
continuous Markov chain on the probability space taking
values in a finite state space S � 1, 2, . . . , N{ } with generator
Γ � (cij)N×N given by

P r(t + Δ) � j | r(t) � i􏼈 􏼉 �
cijΔ + o(Δ), i≠ j,

1 + ciiΔ + o(Δ), i � j,
􏼨

(1)

where Δ> 0 and cij ≥ 0 is the transition rate from i to j if i≠ j

while cii � − 􏽐i≠jcij.
We consider the following nonlinear stochastic system:

dx(t) � f(x(t), t, r(t))dt + g(x(t), t, r(t))dB(t)

+ 􏽚
Y

G(x(t− ), t, r(t− ), y)N(dt, dy),
(2)

where x(0) � x0 ∈ F0, r(0) � r0 ∈ S, x(t− ) � lims↓tx(s),
B(t) is an m-dimensional standard Brownian motion,
N(t, y) is a Poisson random measure on [0, +∞) × Rn with
compensator 􏽥N(t, y) which satisfies
􏽥N(t, y) � N(dt, dy) − ](dy)dt, ](dy) is a Lévy measure,
f: Rn × R+ × S⟶ Rn, g: Rn × R+ × S⟶ Rn×m, and
G: Rn × R+ × S × Rn⟶ Rn. We assume that B(t),
N(t, y), and r(t) in system (1) are independent, andMarkov
chain is ergodic. )en, Markov chain has a unique stable
distribution π � (π1, π2, . . . , πN) ∈ R1×N. π can be solved by
the following equation:

πΓ � 0 s.t. 􏽐
N

j�1
πj � 1, ∀j ∈ S . (3)

We put the following assumptions, definitions, and
lemmas.

Assumption 1. For each K> 0, there exists LK > 0 such that,
for any t≥ 0, |x1| ∨|x2|≤K and i ∈ S, |f(x1, t, i) − f(x2,

t, i)|2 + |g(x1, t, i) − g(x2, t, i)|2 + 􏽒
Y

|G(x1, t, i, y) − G(x2, t,

i, y)|2](dy)≤Lk.

Assumption 2. )ere exists V(x, t, i) ∈ C1,2(Rn × R+×

S;R+) and m(s) ∈ L1(R+;R+) such that
lim|x|⟶∞inf t≥0,i∈SV(x, t, i) �∞ and LV(x, t, i)≤m(s).

Assumption 3. f(0, t, i) ≡ 0, g(0, t, i) ≡ 0, G(0, t, i, y) ≡ 0,
∀i ∈ S, and ∀y ∈ Y.

Definition 1. )e solution of system (1) is said to be almost
sure exponential stability if there exists λ> 0 satisfying

lim
t⟶∞

sup
1
t
log x t; x0, r0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑< 0, (4)

for any x0 ∈F0 and r0 ∈ S.
Given V ∈ C1,2(Rn × R+ × S;R+), we define the oper-

ator LV by
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LV(x, t, i) � Vt(x, t, i) + Vx(x, t, i)f(x, t, i)

+
1
2
trace g

T
(x, t, i)Vxx(x, t, i)g(x, t, i)􏽨 􏽩

+ 􏽚
Y

􏽘

l

k�1
V x + G

k
x, t, i, yk( 􏼁, t, i􏼐 􏼑􏽨

− V(x, t, i)]k dyk( 􏼁 + 􏽘
N

j�1
cijV(x, t, j).

(5)

Lemma 1 (see [21]). Let H � H(t){ }t≥0 be a real-valued local
martingale and H(0) � 0, then

lim
t⟶∞

􏽚
t

0

d〈H, H〉s

(1 + s)2
<∞, a.s.,

⇒ lim
t⟶∞

H(t)

t
� 0, a.s.

(6)

Remark 1. According to Assumption 1, it is easy to check
that system (1) satisfies local linear growth condition. Since,
the local solution of system (1) exists and is unique. In the
next section, we prove that the global unique solution exists.

3. Existence, Uniqueness, and Almost Sure
Exponential Stability of Solutions to
Nonlinear Stochastic System withMarkovian
Switching and Lévy Noises

In the following theorem, the existence and uniqueness of
solutions to nonlinear stochastic system with Markovian
switching and Lévy noises are derived.

Theorem 1. Suppose that Assumptions 1 and 2 hold. ,en,
the system has a global unique solution x(t), t≥ 0{ }.

Proof. For the given initial values x0 and r0, we assume that
|x0|≤ η. For k≥ η, k ∈ N, let

f
(k)

(x, t, i) � f
|x|∧ k

|x|
x, t, i􏼠 􏼡,

g
(k)

(x, t, i) � g
|x|∧ k

|x|
x, t, i􏼠 􏼡,

(7)

where ((|x|∧ k/|x|)x) � 0 when x � 0.
It is easy to check that f(k) and g(k) satisfy the local

Lipschitz condition and linear growth condition. )en, we
obtain that

dxk(t) � f
(k)

xk(t), t, r(t)( 􏼁dt + g
(k)

xk(t), t, r(t)( 􏼁dB(t)

+ 􏽚
Y

Gxk(t− ), t, r(t− )N(dt, dy)

(8)

has the global unique solution.
For k ∈ N, we define the stopping time:

αk � inf t≥ 0: xk(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ k􏽮 􏽯, (9)

where infϕ �∞.
It can be checked that when 0≤ t≤ αk and xk(t) � xk+1,

namely, αk􏼈 􏼉 is increasing. )erefore, there exists a stopping
time α such that

α � lim
n⟶∞

αk. (10)

Define

x(t) � lim
k⟶∞

xk(t), 0≤ t< α. (11)

Obviously, when 0≤ t< α, x(t) is the unique solution of
system (1).

We now show that x(t).
For t≥ 0, according to Itô formula, we have

EV xk t∧ αk( 􏼁, t∧ αk, r t∧ αk( 􏼁( 􏼁

� EV xk(0), (0), r(0)( 􏼁 + E􏽚
t∧ αk

0
L

(k)
V xk(s), s, r(s)( 􏼁ds,

(12)

where L(k)V(xk(s), s, r(s)) � LV(xk(s), s, r(s)) when
0≤ s≤ t∧ αk.

)en, from Assumption 1, we obtain

EV xk t∧ αk( 􏼁, t∧ αk, r t∧ αk( 􏼁( 􏼁

≤EV x0, 0, r0( 􏼁 + 􏽚
t

0
m(s)ds

<∞.

(13)

Moreover, since

P αk ≤ t􏼈 􏼉 inf
|x|≥n,t≥0,i∈S

V(x, t, i)

≤􏽚
αk ≤ t

V xk t∧ αk( 􏼁, t∧ αk, r t∧ αk( 􏼁( 􏼁dP

≤EV xk t∧ αk( 􏼁, t∧ αk, r t∧ αk( 􏼁( 􏼁,

(14)

we have

P αk ≤ t􏼈 􏼉≤
EV x0, 0, r0( 􏼁 + 􏽚

t

0
m(s)ds

inf |x|≥n,t≥0,i∈SV(x, t, i)
.

(15)

When t⟶∞, it follows that
P α≤ t{ } � 0. (16)

)erefore,

P α �∞{ } � 1. (17)

)e proof is complete.

In the following theorem, the almost sure exponential
stability for the nonlinear stochastic system with Markovian
switching and Lévy noises is derived. )e conditions of
stability only depend on the state of Markovian chain and
some constants.
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Theorem 2. Suppose that Assumptions 1 and 3 hold. For any
x(t) ∈ Rn, if there exists a symmetric positive definite matrix
F and some constants ci ∈ R, δi, ξi, σi ≥ 0, (i ∈ S) satisfy

2x
T
Ff(x, t, i) + tr g

T
(x, t, i)Fg(x, t, i)􏼐 􏼑≤ cix

T
Fx,

(18)

x
T

Fg(x, t, i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≥ δi x

T
Fx􏼐 􏼑

2
, (19)

ξi|x|≤ |G(x, t, i, y) + x|≤ σi|x|, (20)

􏽘

N

i�1
πi ci − 2δi + log

λmax(F)σ2i
λmin(F)

􏼠 􏼡< 0, (21)

system (2) is almost sure exponential stability.

Proof. According to the generalized Itô formula, we have

log x
T
(t)Fx(t)􏼐 􏼑

� log x
T
0 Fx0􏼐 􏼑 + 􏽚

t

0

2xT(s)Ff(x(s), s, r(s)) + tr gT(x(s), s, r(s))Fg(x(s), s, r(s))( 􏼁

xT(s)Fx(s)
􏼠

−
2 xT(s)Fg(x(s), s, r(s))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

xT(s)Fx(s)( )
2 + 􏽘

N

j�1
cijlog x

T
(t)Fx(t)􏼐 􏼑⎞⎠ds

+ 􏽚
t

0

2xT(s)Fg(x(s), s, r(s))

xT(s)Fx(s)
dB(s)

+ 􏽚
t

0
􏽚

Y
log (x(s) + GH(x(s− ), s, r(s− ), y))

T
F(x(s) + G(x(s− ), s, r(s− ), y))􏼐􏼐

− log x
T
(s)Fx(s)􏼐 􏼑􏼑N(ds, dy)

� log x
T
0 Fx0􏼐 􏼑 + 􏽚

t

0

2xT(s)Ff(x(s), s, r(s)) + tr gT(x(s), s, r(s)Fg(x(s), s, r(s)))( 􏼁

xT(s)Fx(s)
􏼠 −

2 | xT(s)Fg(s)2

xT(s)Fx(s)( )
2 􏼡ds

+ 􏽚
t

0

2xT(s)Fg(x(s), s, r(s))

xT(s)Fx(s)
dB(s)

+ 􏽚
t

0
􏽚

Y

(log x(s) + G(x(s− ), s, r(s− ), y))TF(x(s) + G(x(s− ), s, r(s− ), y))

xT(s)Fx(s)
􏽥N(ds, dy)

+ 􏽚
t

0
􏽚

Y

(log x(s) + G(x(s− ), s, r(s− ), y))TF(x(s) + G(x(s− ), s, r(s− ), y))

xT(s)Fx(s)
](dy)ds.

(22)

Let

H1 � 􏽚
t

0

2xT(s)Fg(x(s), s, r(s))

xT(s)Fx(s)
dB(s),

H2 � 􏽚
t

0
􏽚

Y

log (x(s) + G(x(s− ), s, r(s− ), y))TF(x(s) + G(x(s− ), s, r(s− ), y))

xT(s)Fx(s)
􏽥N(ds, dy).

(23)
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It is obvious that H1 and H2 are local martingale.
)en, the quadratic variation of H1 satisfies

􏽚
t

0

d〈H1, H1〉s
(1 + s)2

� 􏽚
t

0

4 xT(s)Fg(x(s), s, r(s))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

xT(s)Fx(s)( )
2
(1 + s)2

ds

≤ 􏽚
t

0

4Lk|x(s)|4‖F‖2

λ2min(F)|x(s)|4(1 + s)2
ds

≤
4Lk‖F‖2

λ2min(F)
􏽚
∞

0

1
(1 + s)2

ds<∞.

(24)

From equation (12), we obtain

log
λmin(F)ξ2r(s− )

λmax(F)

≤ log
λmin(F)|x(s) + G(x(s− ), s, r(s− ), y)||2

λmax(F)|x(s)|2

≤ log
(x(s) + G(x(s− ), s, r(s− ), y))TF(x(s) + G(x(s− ), s, r(s− ), y))

xT(s)Fx(s)

≤ log
λmax(F)|x(s) + G(x(s− ), s, r(s− ), y)|2

λmin(F)|x(s)|2

≤ log
λmax(F)σ2r(s− )

λmin(F)
.

(25)

Hence,

log
(x(s) + G(x(s− ), s, r(s− ), y))TF(x(s) + G(x(s− ), s, r(s− ), y))

xT(s)Fx(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤H, (26)

where H � |log(λmin(F)ξ2r(s− )/λmax(F))|∨|log(λmax(F)

σ2r(s− )/λmin(F))|.
)us,

􏽚
t

0

d〈H2, H2〉s
(1 + s)2

� 􏽚
t

0

log (x(s) + G(x(s− ), s, r(s− ), y))TF(x(s) + G(x(s− ), s, r(s− ), y))/xT(s)Fx(s)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

(1 + s)2
ds

≤L 􏽚
∞

0

1
(1 + s)2

ds<∞.

(27)

Complexity 5



)erefore, according to Lemma 1, it follows that

lim
t⟶∞

H1(t)

t
� 0, (28)

lim
t⟶∞

H2(t)

t
� 0. (29)

From equation (12), we have

􏽚
t

0
􏽚

Y
log

(x(s) + G(x(s− ), s, r(s− ), y))TF(x(s) + G(x(s− ), s, r(s− ), y))

xT(s)Fx(s)
](dy)ds

≤ 􏽚
t

0
􏽚

Y
log

λmax(F)|x(s) + G(x(s− ), s, r(s− ), y)|2

λmin(F)|x(s)|2
](dy)ds

≤ 􏽚
t

0
log

λmax(F)σ2r(s− )

λmin(F)
ds.

(30)

Together with equations (10) and (11), it can be checked
that

log x
T
(t)Fx(t)􏼐 􏼑

≤ log x
T
(0)Fx(0)􏼐 􏼑 + H1(t) + H2(t)

+ 􏽚
t

0
cr(s) − 2δr(s) + log

λmax(F)σ2r(s− )

λmin(F)
􏼠 􏼡ds.

(31)

According to the ergodic of the Markovian chain, we
have

lim
t⟶∞

1
t

􏽚
t

0
cr(s) − 2δr(s) + log

λmax(F)σ2r(s− )

λmin(F)
􏼠 􏼡ds

� 􏽘
N

i�1
πi ci − 2δi + log

λmax(F)σ2i
λmin(F)

􏼠 􏼡.

(32)

From equations (15)–(18), we obtain

lim
t⟶∞

sup
1
t
log(|x(t)|)

�
1
2

lim
t⟶∞

sup
1
t
log x

T
(t)Fx(t)􏼐 􏼑

≤
1
2

􏽘

N

i�1
πi ci − 2δi + log

λmax(F)σ2i
λmin(F)

􏼠 􏼡< 0.

(33)

)e proof is complete.

4. Example

Let B(t) be a one-dimensional Brownian motion. )e
character measure υ of Poisson jump satisfies
υ(dy) � ζϕ(dy), where ζ � 1.5 is the intensity of Poisson
distribution and ϕ is the probability intensity of the standard
normal distributed variable y, F � I2, r(t) ∈ S � 1, 2{ }, and

Γ � cij􏼐 􏼑2×2 �
− 5 5

3 − 3
􏼠 􏼡. (34)

Consider the following nonlinear stochastic system with
Markovian switching and Lévy noises:

dx(t) � f(x(t), t, r(t))dt + g(x(t), t, r(t))dB(t)

+􏽚
Y

H(x(t− ), t, r(t− ), y)N(dt, dy),
(35)

where

f(x(t), t, 1) � − 2x(t) +
1
3
sin(x(t)),

g(x(t), t, 1) �
1
2

x(t),

f(x(t), t, 2) � −
7
2

x(t) +
1
5
sin(x(t)),

g(x(t), t, 2) �
1
4

x(t),

H(x(t), t, 1, y) �
x(t)

2
,

H(x(t), t, 2, y) � − x(t).

(36)

)en, we obtain

π1 � 0.35,

π2 � 0.65,

c1 � − 9.26,

c2 � − 5.43,

δ1 � 0.25,

δ2 � 0.15,

ξ1 � 1.46,

ξ2 � 2.10,

σ1 � 2,

σ2 � 3.

(37)

)us, it is easy to check that
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1
2

􏽘

2

i�1
πi ci − 2δi + log

λmax(F)σ2i
λmin(F)

􏼠 􏼡 � − 0.1565< 0. (38)

)erefore, the system is almost sure exponential stability.
Figure 1 shows the simulation results.

5. Conclusion

)e aim of this paper is to study the existence, uniqueness,
and almost sure exponential stability of solution to nonlinear
stochastic system with Markovian switching and Lévy
noises. )e existence of the global unique solution to the
system has been derived. Almost sure exponential stability of
the solution has been analyzed by the generalized Itô for-
mula, the law of large numbers for local martingale, and the
ergodic of Markovian chain. Further research topics will
include the stability for the nonlinear delayed stochastic
system with Markovian switching and α stable noises [22].
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[3] J. Bertoin, Lévy Processes, Cambridge University Press,
Cambridge, UK, 1996.
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Figure 1: State trajectory.
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