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In this paper, a multi-unmanned underwater vehicle (UUV) cooperative dynamic maneuver decision-making algorithm is
proposed based on the combination of game theory and intuitionistic fuzzy sets. Underwater environments with weak con-
nectivity, underwater noise, and dynamic uncertainties are fully considered through intuitionistic fuzzy sets, which solves one of
the main problems in making decisions underwater. Subsequently, the intuitionistic fuzzy multiattribute evaluation of a UUV
maneuver strategy is conducted, and the intuitionistic fuzzy payment matrix of the cooperative dynamic maneuver game is
obtained. *ereafter, the Nash equilibrium condition is proposed to satisfy the intuitionistic fuzzy total order, and the Nash
equilibriummaneuver decision-makingmodel under a dynamic underwater environment is established. Meanwhile, the modified
particle swarm optimization method is presented to solve the established problem and find the optimal strategy. Finally, an
example is used to verify the superiority of the proposed cooperative dynamic maneuver decision-making algorithm.

1. Introduction

Unmanned underwater vehicles (UUVs) are characterized
by their small size, superior maneuverability, low cost,
preferable stealth, etc. *ey can operate independently or
under a manned operation. *e multi-UUV control algo-
rithm has gained increased attention, which involves a
multi-UUV cooperative formation control, cooperative
navigation, cooperative confrontation, etc. [1–5]. At present,
research on multi-UUV collaborative formation and navi-
gation has had prosperous developments [2, 6]. However,
studies on multi-UUV cooperative confrontation are still
quite limited. Multi-UUV cooperative confrontation can be
applied to marine scientific investigation and military
confrontation, including underwater multitarget tracking,
surveillance, and detection, effectively increasing the radius
of underwater operation and reducing underwater equip-
ment losses and casualties.

Maneuver decision-making is key to multi-UUV co-
operative confrontation because it acts as the basic action in
each confrontation step [7]. Current studies on maneuver

decision-making mainly focus on unmanned aerial vehicles
(UAVs) and land unmanned system (LUS) clusters, among
others [8]. *ere are many studies on single-agent control
technology but only a few on multiagent decision-making
technologies. *ere are also various studies on unilateral
strategy optimization but few on bilateral game theory.
Moreover, most references research path planning for a
single agent. For instance, in [4], the simulations give a
numerical experiment with six agents. *erefore, a more
scientific and accurate real-time confrontation strategy can
be formulated by introducing cooperative game theory into
the maneuvering and decision-making of unmanned system
clusters [9]. However, Wang et al. have only studied AUV
strategies and have not discussed the UAV number in their
study.

As opposed to other land or air unmanned vehicle
cluster confrontation, multi-UUV cooperative game theory
has some unique features. First, UUV has a low commu-
nication rate, poor information interaction ability, and weak
perception because of the weak connectivity in underwater
environments, making it difficult to locate a UUV cluster
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precisely and restricting the decision-making process.
Subsequently, in the confrontation process, not only the
antagonistic situation should be considered, but also the
cooperation between UUVs in the cluster is required. In
addition, underwater confrontation in a real-time situation
is dynamic and lasts for several rounds, which makes it more
complicated.

Dai et al. used game theory to realize the decision-
making of noncommunication multirobot (three in one
experiments) tasks [10], in which the joint probability
distribution of the robots were established according to the
distance information, and the dynamic game process with
incomplete information was presented. An approximate
dynamic programming method was proposed for the one-
to-one air combat maneuver problem in [11]. *e discrete
simulation model of the UAV air combat was analyzed and
validated through game theory by Poropudas et al. [12].
Suresh and Ghose synthetically considered the number of
UAVs, weapon configuration, and ground defense system,
discussed the tactical cooperation of UAVs in ground
confrontation, and proposed a four-to-four UAV grouping
algorithm based on Dubins’ path [13]. *e game charac-
teristics between 22 multirobot patrol formation and pa-
trolled objects were analyzed by Hernandez et al. and a
distributed dynamic collaboration method based on game
theory was proposed in [14]. Dahl et al. proposed the ap-
plication of space chain scheduling to solve the cooperative
game problem in three-to-three multirobot task allocation
[15]. Wang et al. studied a cooperative game-based auton-
omous cluster aggregation strategy for the cluster aggre-
gation behavior of a UAV cluster in implementing reentry
target-oriented cooperative surveillance [16]. For under-
water confrontation, Muhammed et al. proposed different
kinds of game theories for cooperation among acoustic
sensor nodes and compared their performances under
different conditions [17]. However, these existing studies
concentrated on the unmanned aerial and land systems
cluster, which have not fully considered the impact of un-
derwater environmental characteristics.

*is study focuses on two key factors in underwater
maneuver decision-making, namely, its weak interconnec-
tion characteristic and dynamic confrontation process.
Weak interconnection, including weak connectivity, un-
derwater noise, dynamic uncertainties, leads to the uncer-
tainty payments of the maneuver decision-making process
of UUVs. Classical game theory only discusses the game with
clear payments [18]. However, in an actual underwater
environment, the information provided is mostly fuzzy. If
this fuzzy information is converted into a clear value di-
rectly, it will lead to distortion and loss of real information.
Consequently, the maneuver decision-making algorithm
will naturally lose its viability as a strategy choice. *erefore,
in this study, a cooperative dynamic maneuver decision-
making algorithm is proposed based on intuitionistic fuzzy
game theory. Underwater environments with different kinds
of uncertainties are fully considered through the intui-
tionistic fuzzy sets, which solves one of the main problems of
underwater decision-making process. Meanwhile, the
intuitionistic fuzzy multiattribute evaluation of the UUV

maneuver strategy is performed, and the intuitionistic fuzzy
payment matrix of a mobile game is obtained. *e Nash
equilibrium condition satisfying the intuitionistic fuzzy total
order is proposed, and the Nash equilibrium maneuver
decision-making model under a dynamic underwater en-
vironment is established. Finally, the modified particle
swarm optimization method is used to solve the established
problem and find the optimal strategy. *e general diagram
of the maneuver decision-making process is shown in
Figure 1.

*e rest of this paper is organized as follows. Section 2
presents the maneuver attribute evaluation process. Section
3 provides the decision-making model based on intuition-
istic fuzzy game theory. Section 4 is the main result of the
existence of Nash equilibrium. *e cooperative dynamic
maneuvering strategy optimization is presented in Section 5.
Section 6 shows an example of multi-UUV confrontation.
Finally, conclusions are drawn in Section 7.

2. Maneuver Attribute Evaluation

To establish the fuzzy payoff matrix, the evaluation of multi-
UUV maneuver attributes is presented according to the
information based on the situation of different confronting
sides. *e confrontation trajectory of a multi-UUV can be
regarded as a combination of multiple maneuver actions.
*ere are seven basic maneuver actions in UUVs, namely,
keep the pace, speed up, speed down, left turn, right turn,
pitch up, and pitch down. It should be noted that these
actions might be limited according to the features of the
UUV. *e two confrontation sides are named as “A” and
“D”, respectively. *e maneuver strategy sets SA and SD of
sides “A” and “D” are defined as

SA � a1, . . . , a7 

SD � d1, . . . , d7 
 , (1)

where a1 and d1 denote the strategy “keep the pace,” a2 and
d2 denote the strategy “speed up,” a3 and d3 denote the
strategy “speed down,” a4 and d4 denote the strategy “left
turn,” a5 and d5 denote the strategy “right turn,” a6 and d6
denote the strategy “pitch up,” and a7d7 denote the strategy
“pitch down.”

Four attributes are considered in the maneuver attribute
set M:

M � H, V, E, F{ }, (2)

where H is the distance factor, V is the velocity factor, E is
the deflection angle, and F denotes the depression angle.

*e main difference between multi-UUV confrontation
and other confrontations with autonomous robots is the
information transmission mode. Due to the submarine
environment, the information in a multi-UUV confronta-
tion process is mainly received through underwater
acoustics. *e shallow water acoustic channel is a channel
with time-space-frequency variation [19]. It has a strong
multipath interference, high environmental noise, large
transmission loss, and notable Doppler shift effect [19].
*erefore, the information provided in the multi-UUV
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confrontation process has strong uncertainties. It is difficult
to accurately quantify the extent of the threat of each side
during the decision-making process [20]. Hence, in this
paper, each attribute is divided into seven levels by using an
intuitionistic fuzzy language. In a practical confrontation,
the fuzzy language can be transformed into a certain set to
participate in the decision-making process. Because the
intuitionistic fuzzy set could measure the degree of fuzziness
of the original information more comprehensively, the fuzzy
language is transformed into intuitionistic fuzzy sets here
[20, 21]. *e relationship between the fuzzy language and
fuzzy sets is listed in Table 1.

*e importance level lij of the ith maneuver attribute
factor mi relative to the jth one mj is obtained according to
experience and practical problems as presented in Table 2
[22].

*erefore, the importance level matrix L can be achieved
using the following equation:

L �

1 l12 l13 l14

l21 1 l23 l24

l31 l32 1 l34

l41 l42 l43 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where lji is the inverse of lij according to the definition of the
importance level.

*e threat weight wi(i � 1, 2, 3, 4) of each attribute is
obtained as

wi �


4
j�1 lij


4
i�1 

4
j�1 lij

. (4)

A multi-UUV confrontation model generally includes
two forms, one is a pure strategy model and the other is a
mixed strategy model. When the probability of one of the
mixed strategies is 1, it becomes a pure strategy model. In an
actual confrontation, both sides need to determine their

strategies according to the dynamic information of the
confrontation process and then achieve the payoff matrix of
both sides. According to equation (1), the dimensions of the
maneuver strategy sets SA and SD are both n � 7. *us, the
maneuver strategy of “A” is a1, a2, . . . , an and “D” selects
d1, d2, . . . , dn. *e intuitionistic fuzzy set
fij � (uij, vij)(i, j � 1, 2, . . . , n) can be obtained according
to Table 1 to quantitatively evaluate the chosen strategy,
where uij and vij are the membership and nonmembership
degrees [23]. *erefore, the fuzzy evaluation matrix under
the attribute m1, m2, m3, m4, of “A” is expressed as

(5)

Definition 1. For the intuitionistic fuzzy set fk � (uk, vk),
the weighted arithmetic integration factor (IFWAw) is
defined as

IFWAw � 
4

k�1
wkFk � 1 − 

4

k�1
1 − uk( 

wk , 
4

k�1
v

wk

k
⎞⎠,⎛⎝ (6)

where wk is the threat weight which satisfies
0≤wk ≤ 1, 

4
k�1 wk � 1.

*erefore, the fuzzy payoff matrix F can be achieved
through the following equation:

F �

f11 f12 · · · f1n

f21 f22 · · · f2n

⋮ ⋮ ⋱ ⋮

fn1 fn2 · · · fnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where fij � (uij, vij), uij � 1 − 
n
i�1 (1 − u

mi

ij )wi , and vij

� 
n
i�1 (v

mi

ij )wi (i, j � 1, 2, . . . , n).

3. Decision-Making Model Based on
Intuitionistic Fuzzy Game Theory

According to the above preliminaries in Section 2, a multi-
UUV cooperative dynamic maneuver decision-making
model is built in this section based on intuitionistic fuzzy
game theory. In actual confrontation, with the change of

Initialization

Situation information

Maneuver attribute evaluation

Decision-making model

Optimal equilibrium strategy
programming model

Maneuver
strategy set

Optimal?

Optimal confrontation strategy

No

Yes

Figure 1: Multi-UUV cooperative dynamic maneuver decision-
making.

Table 1: Relationship between the fuzzy language and fuzzy sets.

Fuzzy language Intuitionistic fuzzy sets *reat level
Extremely strong (1, 0) 1
Strong (0.85, 0.05) 2
Moderately strong (0.75, 0.1) 3
Medium (0.6, 0.25) 4
Moderately weak (0.5, 0.35) 5
Weak (0.35, 0.6) 6
Extremely weak (0.1, 0.85) 7
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real-time information, it is difficult for both sides to obtain
each other’s strategy in advance, so it is quite hard to
produce the optimal strategy. *e main characteristic of
game theory is that the action schemes adopted by the
participants are interdependent, and the gains depend on the
strategies adopted by both the participants and others. *en,
the optimal solution can also be found under the condition
that the information of the opponents is incomplete.

*e maneuver game under uncertain underwater en-
vironment discussed in this paper essentially belongs to the
category of two-person zero-sum game [12]. Each of the
confronting sides are regarded as players in the

confrontation process. Because on the uncertainty of un-
derwater environment and the weakness of interconnection,
the players’ judgment of the situation is often ambiguous
and uncertain. *erefore, the two-scale intuitionistic fuzzy
set is used to solve such problems.

Let F be the fuzzy payoff matrix, and the players “A” and
“D” choose pure strategies an ∈ SA, dn ∈ SD with probability
xn(n � 1, 2, . . . , 7) and yn (n � 1, 2, . . . , 7), respectively, and
denote a � (a1, a2, . . . , an)T and d � (d1, d2, . . . , dn)T, so we
call a and d the mixed strategies of “A” and “D.”

*en, denote

X � x x � x1, x2, . . . , xn( 
T ∈ Rn, 

n

i�1
xi � 1, xi ≥ 0, i � 1, 2, . . . , n



⎧⎨

⎩

⎫⎬

⎭,

Y � y y � y1, y2, . . . , yn( 
T ∈ Rn, 

n

j�1
yj � 1, yj ≥ 0, j � 1, 2, . . . , n,



⎧⎪⎨

⎪⎩

(8)

as the mixed strategy spaces of “A” and “D.” So
Γ � (A, X, D, Y; F) is the intuitionistic fuzzy two-player
zero-sum matrix game.

Definition 2. Under the fixed strategy (X, Y), the expected
return of player “A” is

E(x, y) � x
T
Fy � 1 − 

n

i�1


n

j�1
1 − uij 

xiyj
, 

n

i�1


n

j�1
vij

xiyj⎛⎝ ⎞⎠, (9)

according to the algorithms of intuitionistic fuzzy sets [24].
Besides, the expected return value of player “A” is

ΔE(x, y) � 1 − 
n

i�1


n

j�1
1 − uij 

xiyj
− 

n

i�1


n

j�1
vij

xiyj . (10)

*emembership degree and the nonmembership degree
of the intuitionistic fuzzy expected return represent the
acceptance and rejection of the strategy by the players, re-
spectively. Owing to the nature of two-scale conflict, the
score function method is usually used to rank the intui-
tionistic fuzzy sets.

Definition 3. Assume a1 � (ua1
, va1

) and d1 � (ud1
, vd1

)

which are the intuitionistic fuzzy sets, ηa1
� ua1

− va1
and

ηd1
� ud1

− vd1
which are the scores which represent the

degrees of the chosen strategy, satisfying the requirements of
decision, and ha1

� ua1
+ va1

and hd1
� ud1

+ vd1
are the ac-

curacies which represent the accuracies of the chosen
strategy, meeting the requirements of decision. *en, the

total order relation of these fuzzy sets can be achieved as
follows:

When ηa1
< ηd1

, we call a1 is less than d1, denoted as
a1⊆ a1;
When ηa1

� ηd1
and ha1
< hd1

, we call a1 is less than d1,
denoted as a1 ⊆ a1;
When ηa1

� ηd1
and ha1

� hd1
, we call a1 is equal to d1,

denoted as a1 � a1.

Definition 4. In the intuitionistic fuzzy zero-sum game
E : X × Y, if there exist strategy pairs
(x∗, y∗), (x∗ ∈ X, y∗ ∈ Y), for ∀x ∈ X, ∀y ∈ Y which
satisfy xTFy∗⊆ x∗TFy∗⊆ x∗TFy, we call the mixed strategy
(x∗, y∗) as the Nash equilibrium strategy which satisfies the
intuitionistic fuzzy game E.

*en, we will study the existence of the Nash equilibrium
strategy in the next section.

Table 2: Importance level of attributes.

Relative degree Extremely strong Moderately strong Strong Medium strong Equivalent
Value 2 1.75 1.5 1.25 1.0
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4. Main Result Discussion

To analyze the existence of the Nash equilibrium strategy of
the intuitionistic fuzzy game E in equation (9), the following
Lemma 1 is introduced first.

Lemma 1 (see [18]). *ere exists a Nash equilibrium of
mixed strategy for a game E, if the strategy space S of the
game E is a closed and convex set and payoff function ψ(·) is
continuous for any s ∈ S.

Based on Lemma 1, we obtain the existence of the Nash
equilibrium strategy of the intuitionistic fuzzy game E de-
scribed by the following *eorem 1.

Theorem 1. For the intuitionistic fuzzy game E, there exists a
Nash equilibrium of mixed strategy.

Proof. *e strategy space (X, Y) of an intuitionistic fuzzy
game E is mixed. So, for any two mixed strategy
s1, s2 ∈ (X, Y) and 0≤ λ≤ 1, it implies
λs1 + (1 − λ)s2 ∈ (X, Y), which means that the strategy
space (X, Y) is a closed and convex set.

Besides, the expected return value (10) is the payoff
function of the intuitionistic fuzzy game E. Equation (10) is
continuous for any (x, y) ∈ (X, Y). Based on Lemma 1,
there exists a Nash equilibrium of mixed strategy for the
intuitionistic fuzzy game E.

*is completes the proof of *eorem 1. □

Remark 1. Although the existence of the Nash equilibrium
of mixed strategy for the intuitionistic fuzzy game E (9) can
be ensured, it is difficult to obtain an analytical solution of
the Nash equilibrium. *us, most research studies try to
calculate the numerical solution of the Nash equilibrium by
using optimization algorithms. Based on Definition 4, the
analysis of optimization algorithms is given as follows.

According to the definition of the Nash equilibrium of
mixed strategy for the intuitionistic fuzzy game E in Defi-
nition 4, the optimal strategy of “A” is to maximize its
intuitionistic fuzzy expected return. On the other side, the
optimal strategy of “D” is to minimize its loss. *erefore,
according to the maximum and minimum theorem of game
theory [25], the nonlinear programming model can be used
here to find the optimal confrontation strategy:

max(ρ, σ)

s.t.

E x, ϑj  ⊇ (ρ, σ)


n

i�1
xi � 1, i � 1, 2, . . . , n

xi ≥ 0

ρ≥ 0, σ ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (11)

where max(ρ, σ) is the optimal expected return, which
satisfies equation (11), and ϑj is the jth pure strategy of y

with the mixed strategy of x. Notations E
−

(.) and ⊇ are
defined in Definition 2 and 3, respectively. Based on Defi-
nition 4, optimal expected return max(ρ, σ) and optimal
mixed strategy x∗ could be calculated.

Equivalently, for the mixed strategy y, it has
min(ζ, c)

s.t.

E ϑj, y  ⊆ (ζ, c)


n

i�1
yi � 1, i � 1, 2, . . . , n,

yi ≥ 0

ζ ≥ 0, c≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where min(ζ, c) is the optimal expected return, which
satisfies equation (12), and ϑj is the jth pure strategy of x

with the mixed strategy of y. Based on Definition 4, optimal
expected return min(ζ, c) and optimal mixed strategy y∗

could be calculated.
It is difficult to obtain the optimal solutions of equations

(11) and (12). *us, how to calculate these two optimization
problem equations (11) and (12) is shown in Section 5.

5. Cooperative Dynamic Maneuver
Strategy Optimization

*e intuitionistic fuzzy payoff matrix is obtained, and the
planning model is established according to the above at-
tribute evaluation. In this section, the optimal maneuvering
strategy of a multi-UUV game is achieved through the
modified particle swarm optimization (MPSO) method.
Variable detection vectors were added to widen the particle
exploration space in the proposed MPSO method. More-
over, the learning strategy is improved to aid the particles
jump out of the local optimum. Assuming that the problem
is in D-dimensional space, the velocity vectors and position
vectors are defined as

Vi � vi1, vi2, . . . , vi d ,

Pi � pi1, pi2, . . . , pi1 .
(13)

*e updated equations of velocity and position can be
expressed as

Vi d(t + 1) � αVi d(t) + c1 βBesti d(t) − Pi d(t)( ∗ rand1
+ c2 δ Besti d(t) − Pi d(t)( ∗ rand2,

Pi d(t + 1) � Pi d(t) + Vi d(t + 1),

(14)

where α is the inertial weight coefficient for linear decline,
c1, c2 are the acceleration coefficients, rand1, rand2 are the
random numbers generated from [0, 1], βBesti d represents
the best location for the ith particle (individual optimum),
and βBesti d represents the best location in the whole
population (global optimum).

In practice, the fitness function should be multimodal.
When the particle is trapped in the local optimum, the
proposed parameter optimization algorithm should be able
to change its original trajectory to adaptively explore a new
solution space. To achieve this, the learning strategy is ap-
plied in the proposed MPSO method. *ere are two key
points to be emphasized here. First, to improve the dynamic
performance of PSO, a new velocity update equation is
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designed. *en, a backward learning strategy based on
adaptive Gauss distribution is proposed to overcome the
blindness in stochastic evolutionary search, which enables
particles to escape from the local optimum. It should be
noted the proposed MPSO algorithm with the learning
ability does not increase the time complexity compared with
the original PSO algorithm. *e detailed steps of the MPSO
with the learning ability are shown in Figure 2.

In recent years, many studies have observed that if the
particles converge too fast, they will shrink locally in several
generations [26]. *is phenomenon leads to a similar search
behavior among individuals and loss of population diversity.
If the particles are trapped in the local region, it will be
difficult to have them jump out of the local optimum because
of their similar search behavior and lack of adaptive detection
ability. To improve the performance of the PSO algorithm,
particles should be able to adaptively change the original
trajectory and explore new spaces.*e problem here is how to
guide the particles to move to different regions, which might
become the global optimum, and explore the solution space
more extensively. *erefore, in this section, an improved
method with an adaptive detection vector is proposed as

Vi d(t + 1) � αVi d(t) + c1 βBesti d(t) − Pi d(t)( 
∗rand1

+ c2 δ Besti d(t) − Pi d(t)( 
∗rand2 + c3 R(t) − Pi d(t)( 

∗rand3.

(15)

*e added detection vector (R(t) − Pi d(t)) could help
the particles to cover a wider range of solutions with a larger
probability through the adaptive variable detection radius
R(t):

R(t) �
Pmaxd + Pmind( 

2
+

Pmaxd − Pmind( 

2
 e

− λt cos(2πμ),

(16)

where μ ∈ [0, 1] is a random number, Pmaxd , Pmind are the
upper and lower boundaries of the problem, λ is a variable
parameter, and t represents the iteration times. *e speed
update equation of the algorithm shows that the group
members can explore unvisited regions with high probability
in the solution space. *e larger detection radius enhances
the exploratory behavior of the particle, enables it to leave
the current region, and encourages it to search for other
regions. A small detection radius enhances the development
of particle optimum solutions by searching for a small area
near the optimum solution. Hence, the entire feasible so-
lution space can be covered and explored asmuch as possible
using the velocity update equation of the adaptive variable
detection vector.

6. Example

In this section, an example is given to verify the effec-
tiveness of the proposed decision-making algorithm.
Suppose “A” and “D” are engaged in an two-vs-two un-
derwater confrontation, which means that there are four
UUVs “A1,” “A2” and “D1,” “D2”. Each UUV has seven
strategies according to equation (1), hence both “A” and
“D” have 49 strategies. *e initial positions of “A1,” “A2”
are (−400m, 100m, and 800m), (−400m, 100m, and
800m) and “D1”, “D2” are (400m, 100m, and 800m),
(400m, −100m, and 800m), respectively. *e velocity,
deflection angle, and pitch angle of “A1,” “A2” are 23m/s,
−60°, and 5° and 23m/s, 60°, and −5°; the velocity, de-
flection angle, and pitch angle of “D1,” “D2” are 25m/s,
128°, and 3° and 25m/s, −128°, and −3°, correspondingly.
Both sides have the same control ability, and the time
interval of the confrontation steps is 5 s. It is evident that
“D” possesses some advantage at beginning. Notably, the
maximum maneuver steps should be decided according to
the effectiveness of the UUV used in the confrontation.
*ere are 40 steps in the confrontation process whose
return values are shown in Figure 3. According to Section 5,
the obtained return values show that the Nash equilibrium
condition of the intuitionistic fuzzy game is satisfied. Based
on Figure 3, this is a very weak dominant strategy equi-
librium. In theory, the strategy sets of “A” and “D” are the
same, such that their strategy equilibrium is a very weak
dominant.

To compare the confrontation performance, “A” em-
ploys the cooperative dynamic maneuver decision-making
algorithm proposed in this study, and “D” employs the
max-min decision-making algorithm during the multi-
UUV confrontation process [25]. *e three-dimensional
confrontation process with five main stages is shown in
Figures 4–8.*e red dotted line represents the path of “A1,”
the red solid line represents “A2,” and the blue dotted and
solid lines represent “D1” and “D2,” respectively. *e“⋆’’
shows the initial position, and“△’’ shows the current

Start

Parameter initialization
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fitness value

Optimal value of
individual particle

Global optimal 
value of population

No

No

Yes

Yes
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the individual optimal value
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Meet termination conditions?

Figure 2: MPSO with learning ability.
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position. *e confrontation ends when the return value of
one side reaches the absolute advantage. For stage 1, the
calculated optimal mix strategy of “A” is presented in
Table 3, and then, depicted in Figure 4; “D” possesses the
dominant position, in which “D1” tries to attack “A1” and
“D2” is moving towards “A2”. *e optimal mix strategy of
“A” for stage 2 is calculated and listed in Table 4. As shown
in Figure 5, “D1” and “D2” try to attack “A2,” and “A1”
attempts to turn to escape. Table 5 proposes the optimal
mix strategy of “A” in stage 3; in Figure 6, “D1” and “D2”
continue to attempt to attack “A2,” but “A2” turns to
escape, and “A1” turns to return to the confrontation. In

stage 4, the optimal mix strategy of “A” is shown in Table 6.
“A2” turns continuously and escapes successfully, “A1” also
turns and tries to move towards “D1” and “D2,” and “D1”
and “D2” turn back to “A2” in Figure 7. *e situation varies
here, in that “A” possesses the dominant position. Addi-
tionally, this is validated in Figure 3, in which the return
values change from negative to positive. In the end, both
“A1” and “A2” possess the dominant positions, such that
“A” achieves the absolute advantage and ends the con-
frontation, which is illustrated in Table 7 and Figure 8. *e
example validates the effectiveness of the proposed multi-
UUV maneuver decision-making algorithm.
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Figure 3: Return values.
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Figure 4: Multi-UUV cooperative dynamic maneuver decision-making: stage 1.
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Figure 5: Multi-UUV cooperative dynamic maneuver decision-making: stage 2.
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Figure 6: Multi-UUV cooperative dynamic maneuver decision-making: stage 3.
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Figure 8: Multi-UUV cooperative dynamic maneuver decision-making: stage 5.

Table 3: Calculated optimal mix strategy of “A”: stage 1.

A1∖A2 a1 a2 a3 a4 a5 a6 a7
a1 0 0 0 0 0 0 0
a2 0 0.2441 0.1420 0.2111 0 0 0.0009
a3 0 0 0 0.0003 0 0 0
a4 0 0 0 0.0003 0 0 0.0001
a5 0 0 0.0001 0 0 0 0
a6 0 0 0 0 0 0 0.0001
a7 0.0001 0.2296 0.1619 0.0094 0 0 0

Table 4: Calculated optimal mix strategy of “A”: stage 2.

A1∖A2 a1 a2 a3 a4 a5 a6 a7
a1 0 0 0 0 0 0 0
a2 0 0 0 0 0 0 0
a3 0 0 0 0 0 0.0001 0.0001
a4 0.0001 0.0001 0 0 0 0.0002 0
a5 0.0004 0 0 0 0.9985 0.0001 0.0001
a6 0 0 0 0 0.0003 0 0
a7 0 0 0 0 0 0 0

Table 5: Calculated optimal mix strategy of “A”: stage 3.

A1∖A2 a1 a2 a3 a4 a5 a6 a7
a1 0 0 0 0 0 0 0
a2 0 0 0 0 0 0 0
a3 0 0 0 0 0 0 0
a4 0 0 0 0.9998 0 0 0
a5 0 0 0 0 0 0 0
a6 0 0 0 0 0.0002 0 0
a7 0 0 0 0 0 0 0

Table 6: Calculated optimal mix strategy of “A”: stage 4.

A1∖A2 a1 a2 a3 a4 a5 a6 a7
a1 0 0 0 0 0 0 0
a2 0 0 0 0 0 0 0
a3 0 0 0 0 0 0 0
a4 0 0 0 1 0 0 0
a5 0 0 0 0 0 0 0
a6 0 0 0 0 0 0 0
a7 0 0 0 0 0 0 0
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7. Conclusion

In this study, an intuitionistic fuzzy set is introduced into
game theory to examine the cooperative dynamic maneuver
decision-making algorithm for a multi-UUV. *e charac-
teristics of underwater environment including different
kinds of uncertainties are expressed using intuitionistic
fuzzy sets. *e maneuver game model with intuitionistic
fuzzy information is established, and the condition of the
Nash equilibrium strategy is presented. Combined with the
background and model characteristics, the optimal ma-
neuver strategy is obtained using MPSO in each step of the
dynamic confrontation process. Moreover, an example of a
multi-UUV dynamic confrontation with several maneuver
decision-making steps is utilized to show the superiority and
effectiveness of the proposed maneuver decision-making
algorithm.
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