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Acceleration of urbanization has brought about a series of problems, which include irreversible changes to urban surfaces and
continuous increases in land surface temperatures (LSTs). In this context, analysis of the driving factors and spatial heterogeneity
of urban LST is of considerable importance for mitigating urban heat island effects and promoting healthy and comfortable urban
living environments. This study explored the relationship between the spatial characteristics and driving factors of the LST by
using a geographically weighted regression (GWR) model to analyze multisource data from the Xigang District of Dalian City. The
results showed that the urban heat island effect in Xigang District is significant, with LSTs generally above 28°C at the end of
August, mostly concentrated in the range of 38-40°C. The highest LST values were detected in northern port and harbor areas; the
lowest LST values occurred in mountainous forest areas. The global Moran’s I value was 0.994, which was indicative of a very high
positive correlation, and local Moran’s I values formed H-H and L-L type clusters concentrated in the northern harbor area and
southern mountainous area, respectively. Finally, the GWR model could reflect the spatial heterogeneity of the relationships
between LST and its driving factors well. Among these, in terms of natural physical factors, digital elevation model, normalized
difference vegetation index, and modified normalized difference water index data were found to be negatively correlated with LSTs
in most cases; in the social dimension, the point-of-interest number and building-coverage ratio were generally positively
correlated with LSTs.

1. Introduction

Since the initiation of China’s economic reforms in the
1970s, the country has experienced rapid urbanization and
numerous economic leaps, which have been accompanied by
a surge in population growth, shortages of resources and
space for living and commercial production, large-scale
conversion of vegetation cover into impervious surfaces, and
reductions in ecological space. The intensification of human
activities and the consequential increase in industrial and
residential energy consumption have led to the emergence of
the urban heat island (UHI) effect and a decline in the
quality of the thermal environment [1]. In view of frequent
extremely high-temperature weather events in recent years,
urban land surface temperatures influence both the health
and comfort of urban residents and adversely destabilize

ecosystems. The temperature also affects energy consump-
tion, air quality, and vegetation phenology [2] and has far-
reaching impacts on public health, urban settlements, and
microclimates [3].

In the early 19™ century, Howard et al. [4] began to
observe differences in land surface temperatures (LSTs) in
urban and suburban areas. Nowadays, thermal-infrared
remote sensing technology has become an effective tool for
the study of LSTs because of its ability to detect the thermal
radiation emitted by ground objects. The measurement of
changes in surface temperature has advanced from using
observation data from meteorological stations to conducting
multisource data analyses; this has alleviated the problem of
limited coverage by meteorological stations. Many retrieval
algorithms have been proposed for different sensors. Based
on the required channels, these algorithms can be
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categorized into single-channel, split-window, and multi-
channel [5-7]. Different remote sensing sensors are used at
different scales; for example, low-resolution remote sensing
images, such as those of the National Oceanic and Atmo-
spheric Administration (NOAA) and Moderate Resolution
Imaging Spectroradiometer (MODIS), are generally used for
interprovincial and other large-scale retrievals; medium-
high-resolution remote sensing data, such as from Landsat
or SPOT (Satellite Pour I'Observation de la Terre), are often
used for small-scale retrievals or detailed studies that require
high-resolution imagery [8-10]. Studies have been con-
ducted on daytime, nighttime, seasonal, and annual LST
trends [11]; the effects of two-dimensional (2D) and three-
dimensional (3D) urban morphology on LST [12, 13]; the
effects of architectural forms and spaces on LST [14, 15];
changes in LST along urban-rural gradients [16]; the driving
factors of LST; the impacts of the UHI effect on urban air
circulation and vegetation phenology [17]; and the simu-
lation of urban thermal environments by using models such
as the Weather Research and Forecasting (WRF) Model and
Urban Canopy Model (UCM) [18].

Presently, studies on the driving factors of LST generally
focus on meteorological characteristics, landscape features,
remote sensing spectral information, land use types, and
urban morphology [19, 20]. Climatic factors such as wind
speed, precipitation, sunshine duration, and climate all have
an impact on LST, but these are not the root cause of the
UHI effect. Reductions in natural features (e.g., water bodies
and vegetation cover), the expansion of urban land (building
density), and the intensification of human activities all ac-
celerate heat accumulation and contribute to a significant
increase in the LST [21, 22].

Extracting relevant indices from remote sensing images
has become an effective tool in LST research. In urban
systems, surface cover is mainly composed of vegetation,
water bodies, and impervious surfaces. The normalized
difference vegetation index (NDVTI) is often used to extract
green vegetation information [23]; the normalized difference
moisture index (NDMI) or modified normalized difference
water index (MNDWTI) are used to extract data on water
bodies [24]; and the normalized difference built-up index
(NDBI) [25, 26] is used to extract data on impervious
surfaces. In addition, some studies have used land use data to
calculate transfer matrix and landscape index data to study
the effects of urban morphology on LST. These studies have
proposed that changes in land cover are the primary factor
driving changes in LST and have suggested that urban
planning can be used to alleviate the UHI effect [27-29]. In
the social dimension, statistical data such as the gross do-
mestic product (GDP), population size, and air quality are
often used for research. Finally, regression and correlation
analysis are useful tools that can be used to analyze the
relationships between LST and its driving factors; however,
to some extent, correlation coefficients are affected by the
research scale [16].

Variables vary from location to location. Therefore,
ordinary statistical analyses have limitations while carrying
out the driving factor analysis on LSTs. In regard to the
measure  of spatial autocorrelation, the global
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autocorrelation approach was developed by Moran; later,
some scholars proposed the local autocorrelation Moran
index and Geary index [30]. Based on the idea of local
smoothing, Brunsdon et al. [31] embedded the spatial po-
sition of data into regression parameters for the first time,
and they proposed a geographically weighted regression
model to describe the characteristics of regional nonsta-
tionary data; this was continuously improved upon after-
wards [32]. Moreover, for the study of spatial heterogeneity,
methods such as the semivariance function and spatial
expansion model can also be used [33].

In this study, a multisource data analysis was conducted
to investigate the impacts of natural physical and social
factors on LST. The relationships between different driving
factors and the spatial characteristics and heterogeneity of
LST in Xigang District, located in the coastal city of Dalian,
were analyzed. This study aims to provide an effective tool
for urban planning and environmental management in
order to alleviate problematic UHI effects.

2. Data and Research Methods

2.1. Study Area. Xigang District (38°57'-38°51'N and
121°34'-121°39’E) is one of the main urban areas of Dalian,
Liaoning Province. The study area (Figure 1) covers seven
streets within a built-up village area having a resident
population of 300,000. Dalian is a well-developed and
functionally diverse coastal city, with a monsoon-influenced
humid climate. The air is humid in summer, with an annual
average temperature fluctuation of 10°C and an annual
maximum temperature of 35°C. The topography is char-
acterized by higher elevations in a mountainous area to the
south and lower elevations to the north. The driving factors
of LST analyzed in this study change gradually and are
representative of the study area.

2.2. Data Sources and Processing. This study was conducted
by using Landsat 8 remote sensing imagery, point-of-interest
(POI) data, building-structure data, meteorological data,
and digital elevation model (DEM) data (Table 1). The POI
and building-structure data were taken from Baidu’s Open
Platform. After cropping the remote sensing image to fit the
administrative boundary of the study area, we applied ra-
diometric and atmospheric corrections; then, relevant in-
dices and LST were extracted from the processed image.
Considering that the spatial distribution of UHI does not
show seasonal variations, but the UHI intensity tends to be
higher in summer [34], and taking into account weather
conditions during image capture, a remote sensing image
captured at the end of August was selected for use.

Cities are a product of human construction activity in
the natural environment; therefore, when considering the
driving factors of LST changes, both social and natural
factors should be selected and analyzed comprehensively.
Consequently, the following five factors were selected for the
analysis (Table 2): average DEM value, average NDVI value,
average MNDWI value, POI number (NUMpgp), and
building-coverage ratio (Ay).
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F1GURE 1: Location of the study area. (a) Digital elevation model (DEM) of the study region; (b) and (c) study area location within China and

within Dalian, respectively.

TaBLE 1: Data information.

Type® Sensor and resolution (m) Data source Time

Landsat8 OLI 30 USGS (https://glovis.usgs.gov) 28 August 2019 10:35 UTC +8
TIRS 100

Street center 1::10000 Dalian land resources and housing bureau

POI Baidu mMap (https://www.baidu.com) March 2019

Building data Baidu map March 2019

Meteorological data https://rp5.ru 28 August 2019

DEM 30

China Academy of Sciences (http://www.gscloud.cn)

“DEM, digital elevation model; POI, point-of-interest number.

As the study area is coastal and within a maritime cli-
mate, it is not sufficient to consider whether a location is a
water body or not; it is also necessary to consider the dif-
ferences in humidity between different locations in the study
area. For this reason, the MNDWTI, which is more effective in
urban areas, was used to extract moisture conditions [24].
Vegetation cover was extracted by using the NDVI, and
terrain features were derived from a DEM.

For the social dimension, the effects of population
density and human economic activity, as well as the number
of man-made structures on the LST in the study area, were
considered. Population density and economic activity of
each grid-cell are reflected by its number of POI, and the
proportion of man-made structures is reflected by Ay. POI
data are a type of point-like big data that describe real
features. POI data can be used to record spatial and attribute
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TaBLE 2: Driving factors and information.
Type Factor® Formula Variable description Description
DEM Average elevation per grid
(unit: m)
and represent reflectance in red and near- .

Natural NDVI ((onir = Pred) (PNIR + Pred)) PRed ANC PR TEP infrared bands Average NDVI per grid

and represent reflectance in green and .
MNDWT ((pgreen = Pswirt)! (PGreen + Pswiri)) Poreen Pswm;ﬁ(ﬁnfrared bands & Average MNDWTI per grid

NUMpor Number POI per grid

Social Av (S, F.JA) x 100% n represents plot number, F; represents base areaof ~ Proportion of building

i=1 i 0

building i, A represents grid area

base area per grid

“DEM, digital elevation model; NDVI, normalized difference vegetation index; MNDWI, modified normalized difference water index (MNDWI); NUMpoy,

point-of-interest number; A,, building-coverage ratio.

information of human activities, where POI spatial infor-
mation can represent the physical locations of human ac-
tivities on a microscale, and POI attribute information
reflects, to a certain extent, economic and social activity
[35, 36]. The number of man-made structures is represented
by Ay; Ay can accurately reflect different factors over a
period of time without the problem of multicollinearity
between different factors.

2.3. Research Methods

2.3.1. Surface Temperature Retrieval. The highly specialized
mono-window algorithm of Tan et al. [37] was used for LST
retrieval from the Landsat image. This algorithm produces
highly accurate results with very few parameters, and it
incorporates surface and atmospheric effects directly into
the algorithm, as shown in the following equations:

. {fal-C-D)+[(b-1)(1-C-D)+1]T, - DT,}
' C (1)
+273.15,
C=er, (2)
D=(1-¢[1-(1-¢r1], (3)

where T is the retrieved LST (°C); a and b are constants
(based on the existing research, a=-67.355351 and
b=0.458606); T}, is the brightness temperature (K); T, is the
effective mean atmospheric temperature (K); C and D are
intermediate variables, which can be derived from the
surface emissivity; ¢ is the atmospheric transmittance; and 7
represents the thermal-infrared band, which was calculated
according to the atmospheric parameters on NASA’s official
website.

2.3.2. Moran’s I Index. Based on the Third Law of Geog-
raphy, the similarities and differences in spatial localization
or stratification of different areas correspond to the simi-
larities and differences of target variables in these areas [38].
Global Moran’s I quantitatively describes the spatial cor-
relation of LST at a global range. Local Moran’s I [39] can be
used to further explain clusters of LST values at a local range
and to determine whether any LST values are abnormal,

which provides the basis for analyzing the spatial hetero-
geneity of LST.

2.3.3. Geographically Weighted Regression. The geographi-
cally weighted regression (GWR) model allows for the
analysis of data characterized by spatial nonstationarity and
for exploring the spatial heterogeneity of the relationship
between LST and its driving factors [40]. Based on the
existing research [41] and actual conditions in the study area,
we divided the study area into a 30 m x 30 m grid, and DEM,
NDVI, MNDWI, NUMpq;, Ay, and LST were extracted for
each grid-cell. To improve the accuracy of the GWR model,
the conventional ordinary linear least squares (OLS) model
was used for preliminary tests of the driving factors. The
variance inflation factor (VIF) test was performed to ensure
that there was no multicollinearity between the variables.
When VIF < 7.5, the GRW can be carried out by using the
following equation:

yi = Bo (U vi) + Zﬂn (w5, vi) X + 6;, (4)

i=1

where y; is the observed variable; f (u;, v;) is the regression
constant of the sample point at the (u;,v;) coordinate;
B, (u;,v;) is the regression parameter and is a function of the
geographic location of variable # at the sample point; 7 is the
number of factors; x;, is the value of the independent
variable x, at the sample point; and 6, is the random error.

3. Results

3.1. Spatial Differentiation of LSTs. Figure 2 shows the re-
trieved LST of the Xigang District. The maximum temper-
ature difference was 15°C. It was evident that the UHI effect
was significant in the study area, and the overall LSTs rose
gradually from the south to the north, with the highest LST
values occurring close to the harbor and the lowest LST
values occurring in mountain forest areas. The LST was
generally above 28°C; only 0.20% of the LST values fell below
28°C. The proportions were all between 10% and 20% in the
range greater than 40 and that at 28-40°C divided into 2-
degree increments. The majority of LST values fell within the
range of 38-40°C and covered an area of 4,86.18 hectares,
accounting for 19.10% of the land in Xigang District, and the
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FIGURE 2: Surface temperature distribution.

36-38°C range covered an area of 4,61.61 hectares, ac-
counting for 11.66% of the land in Xigang District; these data
indicate that the UHI effect is significant in the study area
(Table 3).

3.2. Spatial Heterogeneity of LSTs. The univariate autocor-
relation value of LST in the study area was 0.994, and the
standard deviation was 4.139, which indicates an exceedingly
high positive correlation. According to preliminary judg-
ments, urban population flow, similarities of artificial ma-
terial media in terms of its heat conduction properties, and
influences of coastal city humidity made the data highly
spatially autocorrelated. It was evident from Figure 3 that
local spatial autocorrelation values formed an H-H (Hight-
Hight) cluster in Xianglujiao Township, Zhanbei Township,
and Beijing Township (northern Xigang), and an L-L (Low-
Low) cluster was present in Bayi Township, Baiyun Town-
ship, and People’s Square Township (southern Xigang);
these findings are consistent with the LST values, and no
abnormal values were detected.

3.3. GWR Analysis of Driving Factors. The regression pa-
rameters of the LST established by OLS and factors are as
follows (Table 4): the VIF of each factor was less than 3.500
(Table 5), so there was no redundant problem, but the in-
terpretation of OLS on this problem was not very ideal, at
just 0.706, and the residual spatial autocorrelation result was
0.77.

After eliminating collinearity by using the VIF test, a
GWR model with an explanatory power of 89.50% was
established (see Table 6 for model parameters). The residual
spatial autocorrelation result was 0.77. The GWR model was
used to obtain the regression coefficients of the driving
factors in each grid (Figure 4). The statistical values (average,
maximum, minimum, median, upper, and lower quartiles of
each factor) are listed in Table 7. The coeflicients of all five
factors had both positive and negative symbols, thus dem-
onstrating the spatial nonstationarity of the relationships
between LST and the variables. In addition to NUMpg;
reaching significance at the 0.05 level, the remaining four
factors all reached significance at the 0.01 level.

It is evident from Figure 4 that the regression coefficient
values for the DEM were concentrated between —0.05 and 0.00.
In addition, in the northern harbor area and southern coastal
edge area, the DEM coefficient values were greater than zero;
coeflicients were normally distributed and negatively correlated
with the LST. It was found that, for the NDVI, with the ex-
ception of the maximum value, all other coeflicient values were
negative. The maximum and minimum values were extremely
far apart, and the coefficient values were relatively scattered, but
the positive values of the lowest interval were sparsely distributed
and concentrated mainly around the pier in the north. The
vegetation cover had the strongest inhibiting effect on the LST in
the southeast and northwest; from there, the inhibiting effect
dissipated, with some fluctuations, toward the north and central
parts of the study area, where it mostly showed a negative
correlation with LST. Similar to the NDVI, all of the MNDWI
regression coefficient values were negative, with the exception of
the maximum value, which was positive. The spatial distribution
of the coefficient values was relatively scattered, with positive
values distributed mostly in the central and southernmost areas
of the study area; in the remaining areas, the correlation with the
LST was negative. The POI coefficient values in the range of
0.0-0.5 were mostly concentrated in the central part of Xigang;
other coefficient values were sparsely scattered throughout the
study area. For the most part, POI numbers showed a positive
correlation with the LST. The Ay coefficient values were all
positive with the exception of the minimum value. The coef-
ficient values increased from west and south to north and east,
most of them being positive, with some negative values dis-
tributed primarily in the west and south.

It was found that among the five factors considered in
this study, most of the DEM, NDVI, and MNDWTI values
were negatively correlated with LST, whereas the NUMpoy
and A, values were positively correlated with LST. Based on
the absolute values of the coefficients, it was found that, in
terms of natural factors, the NDVI had the strongest effect
on LST in the study area, followed by the MNDWTI; the DEM
had the weakest effect. In terms of social factors, the effect of
Ay on LST was stronger than that of NUMpgy.

4. Discussion

4.1. Improvements to the Model Accuracy. Multiple studies
have explored LST driving factors by using correlation in-
dices to represent the relationships between natural con-
ditions and human activities. Among the adopted indices,
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TaBLE 3: Land surface temperature statistics in Xigang District.

Temperature (°C) <28 28~30 30~32 32~34 34~36 36~38 38~40 >40

Area (hectare) 5.13 279.36 386.91 289.08 296.82 461.61 486.18 336.06

Proportion (%) 0.20 10.97 15.20 11.35 11.66 18.13 19.10 13.20

N

A

Beijing
street

Rixin’
street

Baiyun street

[ Xigang

[ Not significant
High-high
High-low
Low-high
Low-low

Bayi road street

—

FIGURE 3: Local spatial autocorrelation.

TaBLE 4: OLS model regression results.

AlICc R?
125491.367163 0.706132

R? adjusted
0.706079

F Jarque-Bera
13532.561  4804.062

TaBLE 5: The regression coefficients between LST and driving
factors.

DEM NDVI MNDWI NUMpo AV
Correlation —0.037 -18.232  —7.495 0.041  2.612
VIF 1798 3315 2.049 1042 1231

the NDBI [25], which is used for impervious surfaces, has
often been found to have multicollinearity with the NDVI.
Statistical data used to characterize the intensity of human
activity, such as GDP, population size, and air quality index
data, are difficult to apply spatially in urban areas with good
accuracy; a problematic time lag is also common. The
correlation coeflicient is affected to a certain extent by the
research scale [41]. Therefore, to improve the accuracy of the
model, the research scale was reduced to 30 m x 30 m. In this
study, the building-coverage ratio was selected to study the
impact of man-made structures on the LST in order to

eliminate the problem of multicollinearity. In addition, the
POI number, which is characterized by strong temporal
sensitivity and spatial continuous, was used to estimate the
population density and economic activities in each grid-cell
of the study area.

The selection of a regression model greatly affects the
results of correlation analysis between different factors.
For example, traditional regression models, such as the
OLS, consider the overall space to be homogeneous and
thereby ignore the spatial heterogeneity and complexity
of driving factors [40]. In this study, the OLS model was
used for pretesting. It was found that the explanatory
power of the OLS model was 70.61%, and the residual
spatial autocorrelation result was 0.77. The VIF test value
was less than 3.5, which was within the acceptable range.
The p values of all driving factors were statistically
significant at less than 0.01. On this basis, the GWR was
used to carry out a local regression analysis to establish
the relationships between different regression parame-
ters and their corresponding geographic locations and
thus provide for a more accurate model of the rela-
tionships between the LST and different geographic
factors. It was found that the GWR model was signifi-
cantly better than the OLS model, with an explanatory
power of 89.50%, and the residual spatial autocorrelation
result was 0.67. The spatial autocorrelation value of the
residual was still high, but it showed improvements
compared to the OLS.

4.2. Study Limitations. 'This study examined the relationships
between LST and natural and social driving factors; namely, the
terrain topography, vegetation coverage, humidity, POI
number, and building-coverage ratio. The building-coverage
ratio was selected instead of the commonly used NDBI to
eliminate the need for multispectral calculations and address
the problem of multicollinearity between the NDBI and NDVI,
with man-made structures and vegetation coexisting in the
same space. However, one of the limitations of the building-
coverage ratio is that it only accounts for building structures,
while ignoring impervious surfaces such as roads and public
squares; furthermore, it also does not reflect the effect of
building height on the ventilation corridors [42] in a three-
dimensional urban space [43, 44].

As the study area is located in a coastal city with no plains,
but with numerous hills, and owing to its monsoon-influenced
climate and sloping topography, there were significant differ-
ences in the LST between sunny and shady sides of hills, at the
foots and tops of hills, and in coastal and urban-center areas. In
this study, changes in LST were analyzed by using data collected
in summer, when the UHI effect is the strongest, but without
considering daytime and nighttime varjations and seasonality
[34]. The effects of fluctuations in the time series data [45] of
each driving factor were also ignored.
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TABLE 6: Regression results of the GWR model.

Bandwidth Residual squares Effective number Sigma AICc? R? R? adjusted
3693.778 3242.854 128.926 1.152 8092.930 0.900 0.895
2AICc, corrected Akaike Information Criterion.
;\I\
3 4 5
DEM NDVI MNDWI NUMpoi Av

<-0.05 <-20.00 <-15.00 <-1.00 <-1.00

-0.05-0.00 -20.00-15.00 -15.00-10.00 -1.00-0.50 -1.00-0.00

0.00-0.05 -15.00-10.00 -10.00-5.00 -0.50-0.00 0.00-1.00

0.05-0.10 -10.00-5.00 -5.00-0.00 0.00-0.50 1.00-2.00 1km

>0.10 >-5.00 >0.00 >0.50 >2.00 —

FIGURE 4: Regression factor coefficients. DEM, digital elevation model; NDVI, normalized difference vegetation index; MNDWI, modified
normalized difference water index (MNDWI); NUMpqj, point-of-interest number; A,, building-coverage ratio.

TaBLE 7: Descriptive analysis of regression coefficients.

Impact factor” Minimum Lower quartile Median Upper quartile Maximum
DEM™** -0.137 -0.028 —0.010 0.006 0.254
NDVI** -31.634 -13.817 -9.556 -6.623 20.238
MNDWTI** -29.910 -10.706 -7.011 -2.905 12.466
NUMpor* -4.143 -0.021 0.076 0.232 5.905
AV** -6.090 0.096 0.733 1.660 8.205
Intercept 29.726 35.428 37.934 39.533 43.187

“DEM, digital elevation model; NDVI, normalized difference vegetation index; MNDWI, modified normalized difference water index (MNDWI); NUMpoy,
point-of-interest number; A,, building-coverage ratio.

5. Conclusions

In this study, the spatial distribution characteristics of LST in
the Xigang District of Dalian, a typical coastal city in China,
and its natural and social influencing factors were analyzed
based on multivariate data, including remote sensing im-
agery, building-structure vectors, meteorological data, POI

data, and DEM data. The results are as follows.

(1) The urban heat island effect in Xigang is significant;
LSTs in the study area increase gradually from south
to north; LST temperatures at the end of August
generally remain above 28°C, with most values

concentrated in the range of 38°C to 40°C.

(2) The global autocorrelation value was 0.994, which is

indicative of a very high positive correlation; local
autocorrelation values form H-H and L-L type

clusters concentrated in the northern harbor area
and southern mountainous area, respectively.

(3) The GWR produced significantly better results than
the OLS; regression coefficients had both positive
and negative values and thus indicate spatial het-
erogeneity. The DEM, NDVI, and MNDWI were
mostly negatively correlated with LST, whereas
NUMPOI and Ay were mostly positively correlated
with LST. Among the natural factors, NDVT had the
strongest effect on LST, followed by the MNDWT; the
DEM had the weakest effect. Among the social
factors, the effect of Ay, on LST was more significant
than that of NUMpg,.

The issue of world climate change is a topic that has been

discussed since the Industrial Revolution. From this article,
it is evident that natural factors contribute significantly to



suppress the increase in LSTs. In particular, it is necessary to
construct public areas covered by vegetation, such as for-
ested roadways, parks, roof gardens, and artificial wetlands,
which can increase urban ecological sensitivity, promote
ecological cycles, and fix carbon dioxide. In the social di-
mension, the increase in the proportion of artificial buildings
will lead to increases in the surface temperature. We should,
therefore, strive to find new building materials, build sponge
cities, and reduce the heat absorption of impervious surfaces.
The POI density was found to have a little effect on the
surface temperature, but the CO, produced by human ac-
tivities and life processes is the primary cause of atmospheric
warming. Furthermore, for the sustainable progress of
mankind, the development and use of new energy sources
will play a particularly crucial role. This will remain an
enduring challenge for the future.

Data Availability

Remote sensing imagery was acquired from USGS (https://
glovis.usgs.gov). POI and building data were taken from the
Baidu Map (https://www.baidu.com). Meteorological data
were queried at RP5 (https://rp5.ru). DEM was downloaded
from the China Academy of Sciences website (http://www.
gscloud.cn).
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