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 is paper presents a load estimation method applicable to complex power networks (namely, heavily meshed secondary
networks) based on available network transformer measurements.  e method consists of three steps: network reduction, load
forecasting, and state estimation. e network is �rst mathematically reduced to the terminals of loads andmeasurement points. A
load forecasting approach based on temperature is proposed to solve the network unobservability.  e relationship between
outdoor temperature and power consumption is studied. A power-temperature curve, a nonlinear function, is obtained to forecast
loads as the temperature varies. An “e�ective temperature” re�ecting complex weather conditions (sun irradiation, humidity, rain,
etc.) is introduced to properly consider the e�ect on the power consumption of cooling and heating devices. State estimation is
adopted to compute loads using network transformer measurements and forecasted loads. Experiments conducted on a real
secondary network in New York City with 1040 buses verify the e�ectiveness of the proposed method.

1. Introduction

Power networks are one kind of the most complex arti�cial
network in the world. Load estimation has long been an
important issue in electrical power systems for energy
management and operation. Di�ering from load forecasting
aiming for o�ine studies with mainly historical data, load
estimation usually aims to obtain real-time load data by
using two kinds of measurements: real-time measurements
and load pseudomeasurements resulting from monthly
billing data, monthly peak load readings, transformers peak
load analysis, and existing diversi�ed load curves [1, 2]. In
power systems, loads of an observable network can be es-
timated using state estimation (SE) methods, which are
widely utilized since their introduction to transmission
systems in 1968 [3–8].  e basic idea of SE is to compute the
unknowns through available redundant measurements
[9, 10].  ese measurements could be voltage, phase, power
injection, power �ow, or current from substations, gener-
ators, or transformers [11, 12]. However, the required

measurements are not usually enough to satisfy the network
observability.

Network unobservability can be solved by adding more
measurements or pseudomeasurements. Extra measure-
ments can be obtained by installing more monitors (or
meters) in an electrical network.  e more devices are in-
stalled, the better accuracy of the estimated values would be
obtained. Supervisory control and data acquisition
(SCADA) systems [9–15] or phasor measurement units
(PMUs) [14–18] are often installed to provide enough
measurements. However, device installation is not always
possible due to various reasons, in particular high cost.
Under this condition, pseudomeasurements, which could be
a forecasted value derived from historical data or an esti-
mated value derived from a mathematical model, are used to
make the network observable. Various techniques are used
to forecast loads, such as support vector regression machines
[19, 20], arti�cial neural networks [21, 22], hybridization of
self-organized maps and support vector machines [23, 24],
fuzzy-logic decision approach [25], linear regression [26],
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and k-means [27]. ,ese methods use historical load data
and other related information, for example, weather con-
ditions, to train the forecaster [19–23] or build a liner re-
gression model [26]. In addition, the model-based method
presented in [28], which constructs load models for each
building, was used to estimate loads.,is method might give
a good estimation if all building types are thoroughly
studied, but this is a really tough task for a meshed secondary
network.

Smart meters can also be installed to help providing
more information [29, 30], and their effectiveness was tested
in small network, such as network with 8 loads [31], 110
houses [32], and 400 meters [33]. However, it is not (yet)
possible to install smart meters at the connection points of
every customer.

So far, the solutions mentioned above cannot be directly
used to estimate loads in a heavily meshed secondary net-
work (HMSN) due to the following points:

(1) An HMSN is a very typical complex power network
and a low-voltage network where the loads are fed by
network transformers connected at the secondaries.
Only at the substation and the network transformers
we can obtain the available real-time measurements,
which are obtained from the SCADA at the sub-
station and the remote monitoring system (RMS) at
the secondary of the network transformers.

(2) ,e available measurements in a distribution system
are not always enough to estimate the loads. ,is
situation is the most adverse when trying to estimate
the loads of an HMSN, in which load measurements
are not normally available. ,is means that there are
no historical load measurements as pseudomea-
surements to start the state estimation process. ,us,
load estimation of an HMSN is an extremely chal-
lenging task. ,is problem motivates this research.

(3) Device placement is widely used at the high and
medium voltage levels [34–36]. ,e installation of
meters at the low-voltage level is still very limited due
to the high cost [31, 37]. In addition, the cost of smart
meters also prevents their universalization in low-
voltage distribution networks.

(4) Meter placement and load forecasting are helpful to
estimate loads in a distribution system. But they
mainly focused on radial or weakly meshed systems
[2, 29, 30, 38–42] due to high cost or lack of historical
data.

To estimate loads of an unobservable HMSN, this paper
proposes a load estimation method based on available
network transformer measurements. ,e main contribu-
tions are as follows:

(1) ,is is the first attempt to find a way to estimate loads
of a typical complex power network (namely, an
HMSN) based on a limited number of transformer
measurements and forecasted loads, instead of his-
torical load measurements. ,e proposed method,
which consists of three steps: network reduction, load

forecasting, and state estimation, is inspired by our
observations and analysis of the strong relationship
existing among temperature, load consumption, and
transformer measurements in a long-term investi-
gation. ,e advantage of this method is the avoidance
of complex relationship analysis among power de-
mands and influential factors, such as weather con-
dition, building insulation, and cooling/heating
systems.

(2) A power-temperature curve derived from standard
load shapes is introduced to forecast loads. ,e
forecasting accuracy is enhanced by introducing the
concept of effective temperature reflecting varied
weather conditions.

(3) A weighting factor for the least-squares state esti-
mation method is presented to make sure that every
building provides an equivalent contribution in
relative and absolute terms. ,is prevents for the
errors to concentrate on large or small loads.

A real heavily meshed secondary network in New York
City with 1040 buses is used to conduct experiments to verify
the effectiveness of the proposed method.

,e remainder of this paper is organized as follows.
Section 2 states the problem to be solved. ,e three main
steps, network reduction, load forecasting, and state esti-
mation, are detailed in Sections 3–5, respectively. In Section
6, experimental results and analysis are presented. Finally,
conclusions are drawn in Section 7.

2. Problem Statement

Low-voltage highly meshed secondary networks (HMSNs)
are frequently used in densely populated metropolitan areas
in North America to improve reliability. ,e unique char-
acteristic of these networks is that the transformer sec-
ondaries are all tied together by a heavily meshed low-
voltage network from where the loads are connected. In
HMSNs, there are numerous parallel paths from the sub-
station to the loads offering the greatest reliability amongst
the currently used distribution system configurations. For
example, the topology of a typical network is shown in
Figure 1, where the secondary network is highly meshed, and
the medium voltage (MV) distribution feeders are radial and
each one contains 20 to 50 network transformers. For more
details, the reader is referred to [16].

To clearly show the structure of an HMSN, Figure 2
provides a zoomed in version of the secondary network in
Figure 1. In this figure, all buses in the network can be
classified into three types: transformer, load, and connection
bus. Transformers have measurements on the secondary side
(see Figure 2). ,rough the RMS, utilities know the power
flow on the transformers at 15min intervals. ,ese mea-
surement points can be considered as generators in this
paper since reverse power cannot be allowed by the network
protectors [16]. ,e presence of distributed generators
(DGs) in the network does not affect this assumption since
DGs are not allowed to push power back to the primary by
the network protectors. DGs are modeled as negative loads.

2 Complexity



 e loads (buildings) only have measurement of energy
averaged over 30 days.  e problem consists in estimating
the loads of this highly unobservable system for the 8760
hours of the year. Connection buses are those buses that only
connect paths together, which have no loads or measure-
ments. A typical network has hundreds of measuring points
and thousands of unknown loads. It also has a substantial
number of connection buses and multiple parallel con-
nections between two buses.

 ere are almost no real-time or historical load mea-
surements to ensure the observability of HMSNs.  e ob-
servability of HMSN refers to the case when the number of
measurements obtained is smaller than the number of
measurements required by the state estimation. In this
paper, as shown in Figure 2, only secondary transformers
have real-time measurements. All the loads and connection
buses have no real-time measurements. So, the HMSN is
unobservable. A way to estimate unknown loads without the
installation of additional meters is the use of available in-
formation at hand, which could be

(1) Real-time measurements of voltage, current, power,
etc., from the remote monitoring system (RMS) at

the secondary of the network transformers every 15
minutes

(2) Monthly consumer bills, measuring the energy av-
eraged over a month

(3) Typical load shapes for each building type, which are
obtained from measurements over several years of
typical buildings

To estimate loads in such an unobservable secondary
network, this paper proposes a load estimation method
based on secondary transformer measurements without the
installation of additional meters at loads.  e method is
composed of three main steps: network reduction, load
forecasting, and state estimation. A schematic diagram of the
proposed method is shown in Figure 3. First of all, the
secondary network is mathematically reduced to load/
measurement points terminals to make it suitable for state
estimation. Subsequently, we introduce a method to forecast
loads using available measurements, standard load shapes,
and temperature. Finally, the forecasted loads regarded as
pseudomeasurements and secondary transformer mea-
surements are used to estimate the loads by using a state
estimation algorithm.

3. Network Reduction

A real secondary network is far more complex than the one
shown in Figure 2. As multiple parallel transmission lines
between two buses are used to guarantee network reliability,
many buses are used for connection.  ere are numerous
connection buses without measurements in a real secondary
network. For example, there are 505 connection buses in a
1040-bus network.  eir existence greatly increases the
computational burden of load estimation andmay also cause
estimation failure due to a large number of unknown buses.
Furthermore, many spot networks in a secondary network
can be considered as known loads since they are fed directly
from 3 or 4 transformers.  erefore, it is necessary to reduce
the network before load forecasting.  e steps for network
reduction are as follows:

(1) Merge parallel transmission lines between two buses

Substation
transformers

Network
transformers

Measurement points
(RMS)

Loads
120/208V

Secondary grid
120/208V

138kV

13.8kV

Measurement points
(SCADA)

Figure 1: Topology of a typical secondary network.  e secondary network is highly meshed.  e only real-time measurements are the
SCADA at the substation and the remote monitoring system (RMS) at the secondary of the network transformers.

Measuring point

Loads

Figure 2: Schematic diagram of the secondary network in Figure 1.
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(2) Eliminate connection buses without measurement or
load using Kron reduction [43]

(3) Remove spot networks from the network

,e first and second steps are done mathematically
accurately. ,us, the network reduction does not change the
state (voltage magnitude and angle) of buses. ,e third step,
spot networks removal, is done to eliminate the independent
networks, which have no effect on the main grid. So, the
network reduction does not change the accuracy of forecast.

4. Load Forecasting

,is section discusses how to forecast loads in an HMSN as
pseudomeasurements from available information at hand. In
the considered HMSN, the available information consists of
only transformer measurements, monthly customer bills, and
typical load shapes at 15min intervals and up to over one year.
,erefore, themethod is applicable for short-, mid-, and long-
term load forecasting. ,us, to forecast loads from the very
limited available information is a challenging problem
[44–46].

To solve this problem, we look at the relationship be-
tween transformer measurements and weather conditions,
from which a power-temperature curve could be obtained to
forecast loads, together with loads’ monthly bills and typical
load shapes. As usual, the outdoor temperature is the main
factor affecting power consumption; at the same time,
building types and other weather conditions such as solar
radiation also have an influence on the power consumption
to a certain degree. To reflect the real case of power con-
sumption, an improved outdoor temperature, called effec-
tive temperature, is introduced to forecast unknown loads.

In this section, we first introduce a forecasting method in
Section 4.1 and then describe the load forecasting algorithm
in Section 4.2.

4.1. Forecasting Method. To get the desired forecasting re-
sults, first the actual data of transformers and temperature

are analyzed, and then a mathematical relationship between
power and temperature called power-temperature curve
(PTC) is derived. Using the derived PTC and outdoor
temperature, the load shape of a transformer can be fore-
casted. ,en, a weather influence factor called effective
temperature is introduced to replace the outdoor temper-
ature to obtain the load shape that matches well with real
transformer measurements. ,is investigation indicates the
feasibility and effectivity of the forecasting method. ,e
method is used to forecast unknown loads in the next
section.

,emain idea of the proposed forecastingmethod can be
described by using the following main steps:

(1) Collection and analysis of the actual data of trans-
formers and outdoor temperature of the HMSN
under research

(2) Correlation analysis between power and outdoor
temperature

(3) Derivation of the power-temperature curve
(4) Verification and analysis of power-temperature

curve
(5) Rectification for outdoor temperature

,e steps are detailed one by one next.

4.1.1. Collection and Analysis of the Actual Data.
Transformer load data are collected from a real secondary
network [16]. ,e sampling time interval is one hour.
Temperature data are obtained from a weather forecast
website [47]. For example, we have collected and analyzed
the data of a network transformer in an HMSN in 2010.
Figure 4 shows the yearly load shape and the outdoor
temperature.

4.1.2. Correlation Analysis between Power and Outdoor
Temperature. To analyze the correlation between power and
temperature, the load shape data are classified into 4 dif-
ferent day types: weekday, Saturday, Sunday, and National
Public Holiday. ,e relationship among power consump-
tion, temperature, and time of the day with respect to the
weekday is illustrated in Figure 5, where a very clear cor-
relation between temperature and power can be observed.
,ere is a valley at around 50°F (10°C), fromwhich the power
changes as the temperature increases or decreases. ,is
phenomenon can also be observed roughly in Figure 4. ,e
peak of electrical power appears on the hottest day in July,
when air conditioners are running at full capacity. ,e valley
appears in the spring and fall, when cooling and heating
systems are not used. One can observe from Figure 5 that the
correlation between power and temperature changes with
the time of the day. ,is results from several reasons: (1) in
residential buildings, the temperature setting of cooling or
heating systems varies during the day; (2) in some com-
mercial buildings, the cooling and heating systems are
turned on/off at given times, which causes a rapid power
increase at the beginning of business hours; (3) the weather
conditions such as strong solar irradiation or high humidity

Secondary
network

Transformer
measurements

Outdoor
temperature

Loads’ monthly bill
typical load shapes

Reduced
network

Power-temperature curve
effective temperature

Forecasted loads

Estimated loads

I – Network reduction
II – Load forecasting
III – State estimation

I

II

III
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Figure 3: Schematic diagram of proposed load estimation method.
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are also important factors, which cause the air conditioners
to work harder early afternoon in the summer days.

According to the analysis of the relationship between
power consumption, temperature, and time of the day, the
behavior of power versus temperature at 2 AM and 11 AM is
plotted in Figure 6, respectively.

4.1.3. Derivation of the Power-Temperature Curve. It is
observed from Figure 6 that except for Holiday data, there is
a parabolic curve-like distribution, which can be easily
approximated by a third-order polynomial function. ,is is
called the power-temperature curve (PTC) in this paper and
is shown with solid lines in Figure 6. It is worth pointing out
that the third-order polynomial function is a proper curve-fit
technique here by trading off the performance and com-
plexity of several popular methods like neural networks,
support vector machines, and hybrid approaches.

To make the power-temperature curve easy to use, it
needs to be normalized. According to our investigation, it is
a good choice to consider the power at the almost lowest
temperature 50°F (10°C) to perform the normalization be-
cause this point suffers less influence from cooling or heating
systems. ,e normalization is formulated as

PNom(T, t) �
P(T, t) − P TBase, t( 

P TBase, t( 
, (1)

where PNom is the normalized power, T is temperature, t is
the time of a day, and TBase is the base temperature, which is
set to 50°F in this paper.

As usual, the normalized power-temperature curves
slightly vary with networks (also buildings), the time of the
day, and day types, but each of them can be well approxi-
mated by a third-order polynomial function.,is can also be
observed in Figure 7, where the normalized power-tem-
perature curves of four networks are shown. Once the
power-temperature curve is obtained, it can be used to
forecast the load shape using standard day load shapes and
outdoor temperatures.

4.1.4. Verification and Analysis of the Power-Temperature
Curve. To test the effectiveness of the obtained power-
temperature curve, a yearly load shape is forecasted based on
the standard day load shape and temperature recordings in
2010. Here, we select three days, March 22, March 27, and
March 28, when the temperature was around 50°F, as
standard day load shapes for weekday, Saturday, and Sun-
day. Figure 8 shows the comparisons between the original
and the forecasted load shapes. ,e forecasted load shape is
very close to the original one at the valley, which verifies the
effectiveness of the power-temperature curve. We also note,
however, that the differences between the original and
computed load shapes are slightly larger for the peak time,
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Figure 4: Actual load shape and outdoor temperature of one substation in NYC for 2010: (a) load shape; (b) outdoor temperature.
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when weather conditions are more complex. ,is deviation
can be further rectified by introducing an effective tem-
perature, which can reflect weather condition, not just
outdoor temperature.

4.1.5. Rectification for Outdoor Temperature. According to
the test and analysis of TPC, there is a little bias at the peak
time, due to the complex weather conditions. In this re-
search, the weather conditions are the concepts with a
general meaning and represent the concentrated influence of
many factors such as building type, building thermal
insulation, temperature, solar radiation, rain, humidity, and

wind speed. ,ese factors are not decided by consumers
themselves andmainly related to the weather conditions.We
name them weather influence factors. ,e relations among
weather influence factors are very complicated and therefore
it is very difficult to derive a definitely mathematical for-
mulation for load forecasting. Several investigations about
the relation between weather conditions and loads were
made in [26, 33] based on historical data of loads. It is worth
noting that historical data of loads are not available in this
research.

To reduce the bias, the concept called effective tem-
perature reflecting various weather conditions is introduced
to rectify the outdoor temperature. Effective temperature
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can well represent the effect of outdoor weather conditions
on the duty cycle of heating/cooling systems. It is known that
the indoor comfort conditions depend on the outdoor
temperature, humidity, pressure, wind speed, sunshine
strength, building thermal insulation, and so on. An attempt
about the use of the effective temperature is made to rep-
resent how much the power of heating/cooling systems
would be affected by various weather conditions.

In what follows, real secondary transformer measure-
ments are used to obtain effective temperature by rectifying
the outdoor temperature. To obtain the effective tempera-
ture, the power-temperature curve is first obtained by a
polynomial regression as shown in Figure 6, and then actual
secondary transformer measurements are projected on the
power-temperature curve. ,us, the corresponding effective
temperature can be obtained. For example, suppose that the
solid line in Figure 9 is a temperature-power curve obtained,
where point A denotes a real measurement with power PA
and its corresponding outdoor temperature is TA. ,e
projected point of A is point B on the power-temperature
curve. So, TB is the effective temperature at point A.

To show the reasonableness of the effective temperature,
Figure 10 compares the introduced effective temperature
with outdoor temperature under different weather condi-
tions. When it is clear, the effective temperature approxi-
mates the outdoor temperature. But when the weather

conditions change drastically such as rain, the outdoor
temperature will drop rapidly. In contrast to outdoor
temperature, the effective temperature drops more smoothly
and maintains at an average temperature, which is much
closer to the actual situation. Figure 11 shows the forecasted
load shape based on effective temperature. Comparing it
with outdoor temperature in Figure 8, we can find that the
effective temperature produces the load shapes more closely
to the real load shape than outdoor temperature.

,e effective temperature might be affected by random
changes of loads or regression errors. Fortunately, there are
many sources to get the effective temperature in one

Original
Predicted

50

100

150
Po

w
er

 (M
VA

)

01/04 01/07 01/10 01/0101/01
Time (day/month)

(a)

Original
Predicted

40

60

80

100

Po
w

er
 (M

VA
)

03/03 04/03 05/03 06/03 07/03 08/0302/03
Time (day/month)

(b)

Original
Predicted

60

100

140

Po
w

er
 (M

VA
)

07/07 08/07 09/07 10/07 11/07 12/0706/07
Time (day/month)

(c)

Figure 8: Comparison between the original load shapes and forecasted load shapes based on outdoor temperature: (a) envelope of the entire
year; (b) valley; (c) peak.

PA

TATB

Po
w

er

Temperature

AB

Figure 9: Effective temperature transition schematic graph.

Complexity 7



secondary network, e.g., there are 142 secondary trans-
formers in the HMSN considered in this paper. ,e mean
value of these effective temperatures can be used to largely
decrease the uncertainty.

4.2. Load ForecastingAlgorithm. In Section 4.1, the proposed
forecasting method has been verified by the actual data of
transformers. Different from transformers in an HMSN, load
measurements are not available and what we can obtain are

typical load shapes for various building types and monthly
customer bills. Typical load shapes include several day load
shapes, which correspond to different temperature intervals,
respectively. ,ese typical load shapes are too rough to be
pseudomeasurements, but they can be used to derive PTC,
which could be combined with effective temperature to
forecast loads. On the other hand, local weather conditions
have similar influence on the secondary transformer mea-
surements and loads because both transformers and buildings
in an HMSN are located within a relatively small geographical
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area. ,us, the effective temperature derived from the TPC of
transformers can also be used to construct load shapes of
buildings. ,e steps for forecasting loads are as follows:

(1) Obtain typical load shapes with respect to building
types and monthly bills

(2) Derive the power temperature curve by using the
approach described in Section 4.1

(3) Combine the PTC with the effective temperature
found from transformers in Section 4.1 to obtain
normalized load shapes

(4) Scale the normalized load shapes using monthly bills
(5) Compute the loads from the scaled load shapes

It is worth pointing out that the spatial electric load
forecasting by considering weather impacts was discussed
for power delivery system planning in [46]. In this book,
Chapter 5 analyzed the weather’s impact on electric load for
electricity demand and energy usage and developed equa-
tions to draw peak electricity demand for transmission and
distribution planning based on statistical analysis. Chapter 6
further discussed the extreme weather that causes peak
demand, while in this paper, there are two important points
that are different from [46]: (1) the secondary distribution
network is an unobservable network due to the lack of real-
time load measurements; (2) although the historical weather
data can be obtained from some public website, there are no
historical load measurements except for monthly bills. ,e
secondary network considered in this paper is always located
in a “subarea” and is affected by “microclimates.” ,e “ef-
fective temperature” is first derived from the secondary
transformers and then is used to forecast loads. Following
the load forecasting, the state estimation is used to obtain a
more accurate estimation of all loads.

5. State Estimation

In Section 4, a forecasting method is introduced to forecast
loads to be pseudomeasurements. Unlike transformer
measurements, the pseudomeasurements are the approxi-
mation values of real measurements and can effectively solve
the unobserved problem of HMSN as shown in Figure 2. If
the voltage magnitudes and angles of points are carefully
adjusted to satisfy power flow equations, the deviation be-
tween pseudomeasurements and real measurements could
decrease step by step. ,us, in this section, a state estimation
technique is used to compute loads by adjusting appropriate
voltage magnitudes and angles of all points by iteration.

,e basic idea of state estimation is to use meter mea-
surements, which may not be accurate or have errors, to
estimate the state vectors (voltage magnitude and angle)
[48–51]. ,is can be formulated as the following minimi-
zation problem:

min
M

i�1
zi − hi(x) 

2
, (2)

where zi is the ith measurement, hi is the corresponding
estimated value,M is the total number of measurements, and

x is the state vector, which consists of voltage magnitudes
and angles. In a network with N buses, x � [|v1|, |v2|

, . . . , |vN|, θ2, . . . , θN]T. θ1 � 0 is chosen as the arbitrary
reference angle.

Measurements have different accuracies, and each one is
usually assigned a weight factor. ,e more accurate the
measurement is, a larger weight is assigned. ,is is the so-
called weighted least square (WLS) state estimation [52, 53],
formulated as follows:

min J(x) � zi − hi(x) 
TW zi − hi(x) , (3)

where J(x) is the objective function and W is the weighting
factor matrix. ,is equation is solved using the
Gauss–Newton iterative method. State vector x is updated at
each iteration using

Δx � HTWH 
− 1
HTW[z − h(x)], (4)

where H is the Jacobian matrix of h(x). ,e iterations
continue until J(x) is smaller than a preset convergence
criterion. ,e detailed procedure can be found in [19].

Once the state vector is obtained, the voltage magnitude
and angle of each bus and the load can be calculated using
the power flow equations. To start the state estimation
process, the initial value of x is set as (flat start): |vi| � 1,
θi � 0. ,e results of x obtained from the previous time are
used as the initial values for the next time.,is technique can
greatly reduce the computation time.

,e weighting matrix W in (4) is a diagonal matrix,
defined as W� diag [w1, w2, . . ., wN], where wi is the
weighting factor corresponding to the ith measurement,
and is set to wi � (σ2i )− 1 in [19], where σ is the standard
deviation of the ith measurement.

Suppose that the measurements follow a Gaussian dis-
tribution. ,erefore, three standard deviations (±3σ) about
the mean value account for over 99% of the area under the
curve. ,us, the standard deviation for a given error is
computed as [54, 55]:

σi �
μi × %error
3 × 100

, (5)

where μi is the mean of the ith measurement and %error is
the corresponding maximum error.

As usual, the real-time measurements from secondary
transformers are very accurate and should be assigned a
large weighting factor, namely, a small standard deviation σ,
while the pseudomeasurements from buildings measure-
ments are forecasted values, which may not be accurate, and
should be assigned a small weighting factor.,us, the setting
in (5) is not suitable for this kind of measurements. ,is is
because the buildings in a secondary network always have
different power demands, e.g., some demands are very large,
hundred kW, while the others are very small, only a few kW.
If we use (5), all buildings will get the same relative esti-
mation error, but different absolute estimation errors. For
example, if the relative estimation error is 10%, the absolute
estimation errors will be 0.1 and 10 for buildings with powers
1 kW and 100 kW, respectively. To decrease the absolute
estimation error for the buildings with large power demand,
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we propose a modified weighting factor σ′ to balance the
absolute estimation and relative errors. σ′ is defined as

σi
′ �

��μi

√
× %error

3 × 100
. (6)

,e difference between σ′ in (6) and σ in (5) can be
observed in Figure 12. It is clear that σ′ increases slower than
σ as the mean value of measurements increases through
adding a square root operation.

,e pseudocode algorithm for the state estimation is
illustrated in Figure 13, where zi represents real-time
measurements for secondary transformer buses (P, Q, V)
and pseudomeasurements for load buses (P, Q); the
weighting factor σi

′ corresponds to each measurement Zi; the
static vector xk � [|v1|, |v2|, . . . , |vN|, θ2, . . . , θN]T.

From Figure 13, the computational complexity of this
algorithm can be analyzed.,e steps before theWHILE loop
have the time complexity Ο(N). Steps (vi) and (vii) have the
time complexityΟ(N2). ,us, the state estimation algorithm
has the time complexity Ο(N2).

It is worth pointing out that the topology of the model is
considered to be accurate in this research. If there are
missing or wrong data of buses, the estimation accuracy will
decrease. In fact, the system is an unobservable network. If
the disturbance comes from the real-time measurements of
transformers, a relatively larger influence may occur, due to
the larger weights. On the other hand, if the disturbance
comes from the pseudomeasurements of loads, which are
forecasted based on long observations, the model is not
sensitive to the disturbance, due to the smaller weights.

6. Experiment

In this section, a real highly meshed secondary network in
NYC is used to test the effectiveness of the proposedmethod.
,e results of network reduction are first provided to show
its feasibility. ,en, the comparisons of estimation errors are
given to verify the effectiveness of the modified weighting
matrix. Finally, estimation results are shown.

6.1. Results of Network Reduction. To illustrate the feasibility
of network reduction, a relatively small network in New
York City presented in [16] is used as example to conduct the
experiment. ,e original network consists of 311 load buses,
244 transformers, 505 connection buses, and 3354 cable
sections, which are listed in Table 1.,emethod described in
Section 4 is used to reduce the network. ,e reduced
numbers of load buses, transformers, connection buses, and
cable sections are also listed in Table 1. ,e reduced network
is much simpler than the original one.

6.2. Results of Modified Weighting Factor. In this section,
the simulation data described in Section 6.3 are used to
conduct the experiments to show the reasonableness of the
modified weighting factor σ′ in (6).,e weighting factor σ in
(5) and constant weighting factor σ″ (larger values for
transformer measurements and smaller values for pseudo-
measurements) are also considered to make a comparison.

,e results for the three weighting factors are shown in
Figure 14.

It can be seen from Figure 14 that themodified weighting
factor σ′ in (6) has smaller absolute errors than the weighting
factor σ in (5) as shown in Figure 14(a) and has smaller
relative errors than the factor σ″ as shown in Figure 14(b).
,ese results indicate that the modified weighting factor has
a better tradeoff between relative and absolute errors than
the other two weighting factors.

6.3. Estimating Results. To accomplish load estimation for a
highly meshed secondary network in which only trans-
formers’ measurements, monthly bills, and typical load
shapes are available, we follow the three steps illustrated in

Original σ
Proposed σ

100 102101

μ

0

5

10

σ

Figure 12: Difference between σ′ in (6) and σ in (5) according to
mean values of measurements.

Begin
(i) Set measurements zi

Calculate weighting factor σ′i using (6)
k = 0
Initialize the static vector xk

While (max∆x> a preset criterion ε) do
Calculate the estimated value h(xk) and its Jacobian

matrix H (xk)
Calculate ∆x using (4) 
xk+1 = xk + ∆xk

k = k + 1
End
Calculate real and reactive power of loads using power flow 

based on xk+1

End

(ii)
(iii)
(iv)
(v)

(vi)

(vii)
(viii)

(ix)

Figure 13: Pseudocode algorithm for the state estimation.

Table 1: Reduced results of a real small network in New York City.

Networks Load
buses Transformers Connection

buses
Cable
sections

Original 311 224 505 3354
Reduced 284 142 0 322
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Figure 3: network reduction, load forecasting, and state
estimation, to obtain the experimental results.

We first obtain the reduced network by following the
steps described in Section 3. Subsequently, we use the
available standard load shape to obtain the testing data. ,e
detailed procedures are described as follows.

All buildings are classified by customer class. ,ere are
seven typical building types: residential, religious, small
general, large general, public buildings, public and private,
and electrically heated schools. For each building type, we
have a standard day load shape for each season. To create
realistic conditions, each building should have its own load
shape. ,ere are three steps, scaling, shifting, and
smoothing, to modify the standard load shape and make it
distinct for each building. Scaling uses a random value from
80% to 120%. Shifting is to move the curve one hour before
or after with a probability 20%. Smoothing is applied to
prevent unreasonable changes with time. ,e new value
should be around the original value and is not larger or
smaller than 20%. ,e modification process is shown in
Figure 15. It is worth pointing out that the second step is
only applied to residential and small general service in our
simulation since other buildings such as schools and public
building always have fixed opening hours and do not shift
their loads randomly.

,e modified load shape is combined with the power-
temperature curve, which is derived from standard load
shape, to create the yearly load shape for each building. ,e
power-temperature curve is also randomly modified to make
the data more realistic, as shown in Figure 16. ,e maximal
deviation in the modified curve is less than 5% of the original
curve.,e obtained building yearly load shape is taken as the
real-time measurements of the building and sent to a power
flow simulation tool, OpenDSS in this case. ,rough solving
the power flow problem, the measurements of secondary
transformers and monthly bills of each building can be
computed. ,ese measurements are what we can achieve
from the network and are used for the state estimation.

,e produced testing data consisting of standard load
shapes, secondary transformer measurements, and monthly
bills are used for state estimation. ,e absolute and relative
estimation errors (absolute value) between the true load and

estimated load for all the buses at peak time (2:00 PM, July 6,
2010) are shown in Figure 17. ,e true values refer to the
simulated power demands discussed above. ,ese errors fall
within an acceptable range and most loads have both small
relative and absolute errors. ,e larger absolute estimation
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Figure 14: Estimation errors obtained by σ (dash-dot), σ″ (solid), and σ′ (dash): (a) absolute estimation error; (b) relative estimation error.
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errors occur in the largest loads, but their relative estimation
errors are small. Similarly, the smaller loads have small
absolute estimation errors than others, even when their
relative estimation error is a little larger. Figure 18 shows the
comparison between the original loads shapes (namely true
value) and the estimated load shapes for one week for the
load with the largest estimation error. ,e absolute esti-
mation errors of most buses are less than 5MVA on the
valley day and less than 10MVA on the peak day when peak
demand is nearly 300MVA.

7. Conclusions

,is paper has presented a method to estimate unobservable
highly meshed secondary networks based on available
transformer measurements, standard load shapes, and
monthly bills. Experimental results of a real network in New
York City show the feasibility and effectiveness of the
proposed method in identifying hundreds of loads. ,is
work indicates that the extremely challenging task, load
estimation of highly meshed secondary networks, can be
successfully solved by using the introduced method con-
sisting of three steps: network reduction, load forecasting,
and state estimation. We also introduced an effective tem-
perature reflecting various weather conditions to rectify the

outdoor temperature and a weighing factor to balance the
absolute and relative errors of state estimation.

,e proposed method is suitable for estimating loads of
complex power loads in metropolitan areas, where the
network topology is known and the secondary transformers
are installed with measurements.

Future work will focus on the refinement of the state
estimation methods used in the load estimation, such as
computing complexity and the estimation robustness with
respect to number of measurements, number of states, re-
siduals in bad data detection, measurement error, parameter
error, and topological error. Even the forecast approach or
optimization techniques based on membrane computing
could be considered [56–60].

Data Availability

,e data used in this paper come from a specific complex
power network. In response to the readers’ requirements, the
authors would consider sharing them.
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