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SIRSmodel is one of the most basic models in the dynamic warehouse model of infectious diseases, which describes the temporary
immunity after cure. �e discrete SIRS models with the Caputo deltas sense and the theories of fractional calculus and fractal
theory provide a reasonable and sensible perspective of studying infectious disease phenomenon. After discussing the �xed point
of the fractional order system, controllers of Julia sets are designed by utilizing �xed point, which are introduced as a whole and a
part in the models.�en, two totally di�erent coupled controllers are introduced to achieve the synchronization of Julia sets of the
discrete fractional order systems with di�erent parameters but with the same structure. And new proofs about the synchronization
of Julia sets are given. �e complexity and irregularity of Julia sets can be seen from the �gures, and the correctness of the
theoretical analysis is exhibited by the simulation results.

1. Introduction

�e control and prevention of infectious disease in practice
are always the integral part in ensuring human health and
security. Infectious diseases not only endanger human
�tness, but also lead to huge disaster to the national
economy and people’s livelihood. Due to the inability of
large scale experiments on infectious diseases, human
beings are su�ering hardships on the way to resist infec-
tious diseases. �erefore, it is particularly vital to analyze
them through theoretical quantitative research. Epidemic
dynamic is a branch of biological mathematics with mo-
mentous practical signi�cance, which establishes a model
to re�ect the quantitative change of infectious diseases in
the process of epidemic according to the relationship be-
tween disease infection and immunity among populations.
Since the classical SIS and SIR compartment models of
infectious diseases were put forward in 1927, they have
been widely used in the study of infectious disease dy-
namics. Based on qualitative and quantitative analysis and
simulation of the dynamic model of infectious diseases, the
key factors of disease transmission are analyzed. And the

optimal strategies for controlling diseases can be targeted
according to these theoretical results. �is provides some
useful information and reference value for people to
prevent and treat diseases. Hence, it is of great actual
meaning to study the dynamic model of infectious diseases
theoretically [1, 2].

A large number of studies show that fractional calculus
has more reasonable results than integral calculus in de-
scribing the systems with memory and genetic character-
istics. Fractional models can describe complex physics
problems more clearly and concisely, especially the non-
linear model and their physical meaning. Research has
shown that the fractional order equation o�ers a possibility
for the situation that the traditional integer order equation
cannot model [3]. Most importantly, the most prominent
feature of the body’s immune system is about its memory.
Coincidentally, the fractional order equations have the
characteristics of memory [4]. Integer order equations
cannot express the memory characteristics of the human
immune system and its dependence on past history, while
fractional order systems contain all information from the
start moment to current.
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For a long time, the infectious disease model has been
principally about the ordinary differential equation model
[5–7]. With the rapid development of fractional order
differential equation, many researchers try to utilize them
to study the dynamics of infectious diseases. In recent
years, with the continuous development of mathematical
theory, infectious disease models have been constantly
enriched. A series of theoretical tools such as stochastic
difference equation, functional differential equation, partial
differential equation, stochastic differential equation, and
fractional differential equation [8–12] have emerged,
broadening the types of infectious disease models. More-
over, there are many research achievements on the ap-
plications of fractional order calculus in discrete systems
[13–15], and the discrete models are more practical because
epidemiological statistics are collected in discrete time. )e
fractional order differential equation can be converted into
the fractional order difference equation through dis-
cretization. As the discrete system is obviously different
from the continuous system, the conclusion in the con-
tinuous fractional order system cannot be simply extended
to the discrete system. It is particularly important to study
infectious diseases through rational analysis of discrete
fractional difference systems.

)e controlling problem of the fractional order system is
considered as a new branch of control field because the
fractional order system has the characteristics of noninteger,
which cannot be simply analyzed by using the traditional
classical control theory. Moreover, the combination of the
control field and fractional order systems further promotes
the evolution of fractional order theory. )erefore, the
fractional order control system has achieved considerable
research results in both theoretical system and practical
application [16–18]. )e analysis and control of nonlinear
systems are prominent to understand dynamic systems.
Among them, there is a class of problems related to the Julia
set, see [19, 20]. Julia set can be regarded as a tool to judge the
stability of the system, and the analysis of Julia sets can put us
a favorable position to better understand the system. In
addition, people can control infectious diseases by con-
trolling the Julia sets of the systems. )erefore, how to ef-
fectively control Julia set becomes very critical. Scholars have
performed a wide range of studies on controlling the model
of integer order infectious diseases [21, 22], but there are
relatively few studies on controlling the model of the
fractional order. We attempt to extend the control methods
of the integer order to the fractional order system and utilize
the fractional order difference equation to study the control
of diseases. For example, by referring to the fixed point
analysis method of the integer order nonlinear system, the
fixed point method of the fractional order is found, so as to
control the Julia set of the fractional order infectious disease
system. Recently, synchronization problems in chaotic
systems have been widely studied [23–25]. Besides, syn-
chronization control fosters a reasonable and sensible
perspective of comprehending fractional order systems
[26–29]. Master-slave synchronization of chaotic fractional-
order Ikeda delay systems with linear coupling is studied in
[30]. Wang and Song [31] analyze the synchronization

conditions of the fractional order chaotic systems with the
activation feedback control method. In [32], the authors
utilize active control technique to synchronize different
fractional order chaotic dynamical systems.

)e main content of this paper is the follow-up work of
the literature [33], which applies the ideas of Julia set in
fractal theory and basic theoretical knowledge of fractional
calculus to the SIRS model. )e remainder of this article is
arranged as follows. In Section 2, the Julia set of the discrete
fractional difference SIRS model is introduced, fixed points
of the system are calculated, and effective control methods
are proposed. In Section 3, the synchronization of Julia sets
between systems is realized by designing two totally different
controllers and novel proofs about synchronization are
presented. Besides, the simulation results are given, and the
images reveal the complexity and irregularity of the Julia set.
Section 4 summarizes and anticipates the work of this paper.

Moreover, in [33], the authors researched the Julia set of
the discrete fractional SIRS model and designed three dif-
ferent controllers, which are added to different parts of the
model as a whole, a part, and a product factor, respectively,
to change the Julia set. Nevertheless, in this paper, two kinds
of control items including fixed points are designed for the
fractional order model, which are added into the system as a
whole and a part, respectively. In addition, we also introduce
two different synchronization methods and exhibit novel
proofs about the synchronization between systems. )e
methods to control Julia sets are completely different in these
two articles.

2. Preliminaries

Definition 1 (see [34]). Hausdorff distance is a measure of
similarity between two sets of points. It is a definition of
distance between two sets of points. Suppose there are two
sets A � a1, . . . , ap􏼈 􏼉 and B � b1, . . . , bq􏼈 􏼉, and then the
Hausdorff distance between the two sets of points is defined as
H(A, B) � max(h(A, B), h(B, A)). Among them, h(A, B) �

max(a ∈ A)min(b ∈ B)‖a − b‖, and h(B, A) � max(b ∈ B)

min(a ∈ A)‖b − a‖, ‖ · ‖ is the distance paradigm (e.g., L2 or
Euclidean distance) between the set of points A and B.

Here, H(A, B) is called the two-way Hausdorff distance,
which is the most basic form of the Hausdorff distance. And
h(A, B) and h(B, A) are, respectively, called the one-way
Hausdorff distance from set A to set B and from set B to set
A. )at is, h(A, B) actually sorts the distance between each
point ai in point set A and the point bj in set B which is
closest to the point ai. )e two-way Hausdorff distance
H(A, B) is the larger of the one-way distance h(A, B) and
h(B, A), which measures the maximum mismatch between
the two sets of points.

3. Julia Set of Discrete Fractional Order SIRS
Model and Fixed Point Control

Consider system (2) of the SIRS model in [33], in which the
effective contact rate coefficient is affected by seasonal
factors:
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dτ1
dt

� β0(1 + φ sin(ωt))τ21 1 − τ1 − τ2( 􏼁 − (d + v)τ1,

dτ2
dt

� p + vτ1 − (d + ε)τ2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where τ1 represents the number of persons susceptible to
infection and τ2 expresses the number of infected person.
Suppose the birth and natural death coefficients of the
population are equivalent to the constant d during epi-
demics, p signifies the inoculation rate, the removal rate
coefficient is shown by v, the immune loss rate coefficient is
denoted by ε, β0 means the effective contact rate coefficient,
and the seasonal influence factor is φ.

Take τ3 � sin(ωt) and τ4 � cos(ωt); thus, (dτ3/dt) �

ωτ4 and (dτ4/dt) � − ωτ3. )e following system (2) is
obtained:

dτ1
dt

� β0 1 + φτ3( 􏼁τ21 1 − τ1 − τ2( 􏼁 − (d + v)τ1,

dτ2
dt

� p + vτ1 − (d + ε)τ2,

dτ3
dt

� ωτ4,

dτ4
dt

� − ωτ3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where the initial values of τ3 and τ4 are τ3(0) � 0 and
τ4(0) � 1. According to the method and discretization
process of the literature [33], discretize the equation by using

_τi⟶
τi(t + Δt) − τi(t)

Δt
, i � 1, 2, 3, 4. (3)

So, the discrete version of system (2) is acquired:

xn+1 � (1 − c − q)xn + η 1 + bsn( 􏼁 1 − xn − yn( 􏼁x2
n,

yn+1 � qxn +(1 − c − e)yn + z,

sn+1 � sn + δrn,

rn+1 � rn − δsn,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where s0 � 0, r0 � 1, and η, b, c, q, e, z, and δ are system
parameters. Now, refer to the method of converting the
integer order equation into fractional order equation in [33],
subtract xn, yn, sn, and rn from both sides of the 4 equations
of system (4), rewrite the equation as a fractional one from
the perspective of discrete fractional calculus, and take the
momentums x(n), y(n), s(n), and r(n) into account.
)erefore, the numerical equations can be accurately pro-
posed to the following one, the fractional difference about 4
equations is introduced:

x(n) � x(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− (c + q)x(j − 1) + η(1 + bs(j − 1))(1 − x(j − 1) − y(j − 1))x(j − 1)

2
􏼐 􏼑,

y(n) � y(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(qx(j − 1) − (c + e)y(j − 1) + z),

s(n) � s(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(δr(j − 1)),

r(n) � r(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(− δs(j − 1)).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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Next, the thought of Julia set in fractal theory is used to
study fractional order dynamic systems (5).

Definition 2. Let

F(x, y, s, r) � x +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− (c + q)x + η(1 + bs)(1 − x − y)x

2
􏼐 􏼑,

G(x, y, s, r) � y +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(qx − (c + e)y + z),

S(x, y, s, r) � s +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(δr),

R(x, y, s, r) � r +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(− δs),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(x, y, s, r) � (F(x, y, s, r), G(x, y, s, r), S(x, y, s, r), R(x, y, s, r)).

(6)

)e set

D � (x, y, 0, 1) | H
n
(x, y, 0, 1)􏼈 􏼉

∞
n�1remains bounded􏼈 􏼉,

(7)

is referred to the filled Julia set which is correspondent with
the map H(x, y, 0, 1). Besides, the boundary of D is the Julia
set of the map H(x, y, 0, 1), and it is indicated by JH, which
means, JH � zD.

Obviously, simulating system (5) is difficult because it
has four dimensions. Fortunately, the equation can be

viewed as a mapping on the x − y plane because the initial
values of the third and fourth variables are already settled.

)e fractional order of the model are taken to be μ � 0.8
and the system parameters are taken to be η � 0.08, b �

0.02, c � 0.005, q � 0.005, e � 0.05, z � 0.005, and
δ � 0.001, Figure 1 shows the original correlative Julia set of
system (5).

Now, the fixed point is utilized to consider the stability of
system (5). Let the fixed point of the equation be
(x∗, y∗, s∗, r∗), so the following equation is presented:

x∗ � x∗ +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− (c + q)x

∗
+ η 1 + bs

∗
( 􏼁 1 − x

∗
− y
∗

( 􏼁x
∗2

􏼐 􏼑,

y∗ � y∗ +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
qx
∗

− (c + e)y
∗

+ z( 􏼁,

s∗ � s∗ +
δ
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
r
∗
,

r∗ � r∗ −
δ
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
s
∗
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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From [35], for α ∈ R and n ∈ N0 one has

∑nj�0
j − α − 1

j
( ) � n − α

n
( ). Besides, this equation is

equivalent to (1/Γ(μ))∑nj�0(Γ(n − j + μ)/Γ(n − j + 1)) �
n + μ
n

( ) � (Γ(n + μ + 1)/Γ(n + 1)Γ(μ + 1)) on the condition

of − α � μ because a
b

( ) ≔ Γ(a + 1)/(Γ(b + 1)Γ(a − b + 1)).

Also, referring to [36], this most striking conclusion can be
reached. So, the equation below is derived:

x∗ � x∗ +
Γ(n + μ)
Γ(n)Γ(μ + 1)

− (c + q)x∗ + η 1 + bs∗( ) 1 − x∗ − y∗( )x∗2( ),

y∗ � y∗ +
Γ(n + μ)
Γ(n)Γ(μ + 1)

qx∗ − (c + e)y∗ + z( ),

s∗ � s∗ + δ
Γ(n + μ)
Γ(n)Γ(μ + 1)

r∗,

r∗ � r∗ − δ
Γ(n + μ)
Γ(n)Γ(μ + 1)

s∗.




(9)

For the above equation, if δ � 0, s∗ and r∗ can be ar-
bitrary numbers, and if δ ≠ 0, thus s∗ � 0 and r∗ � 0.�ere is
no signi�cance of studying in the case of δ � 0, so just
consider the �xed point that both s∗ and t∗ are zero. �e
�xed point (x∗, y∗) is as follows:

(i) If x∗ � 0 and y∗ ≠ 0, (c + e)y∗ � υ and
(x∗, y∗) � (0, (υ/c + e)).

(ii) If x∗ ≠ 0 and y∗ � 0, dx∗ + υ � 0, (c + d)x∗ + a
(x∗ − 1)x∗2 � 0, υd3 + cυd2 + aυ2d + aυ3 � 0 and
(x∗, y∗) � (((− v)/d), 0).

(iii) If x∗ ≠ 0 and y∗ ≠ 0,

x∗ �
(c + e − υ)
2(c + e + d)

−

�����������������������������������
a2(v − c − e)2 − 4a(c + e + d)(c + d)(c + e)
√

2a(c + e + d)
,

y∗ �
dx∗ + υ
c + e

.

(10)

In general, cases (i) and (ii) have no actual signi�-
cance. �e common phenomenon is that the infected
coexist the recovered when an outbreak occurs. Fur-
thermore, they can coexist for a long time and neither of
them will suddenly go to zero. �erefore, we only consider
case (iii). Take the same system parameters; thus, the �xed
point of the system is (x∗, y∗, s∗, r∗) � (0.6596,
0.1509, 0, 0). �ere are three ways to import control items,
see [33]. Here, in order to control Julia set of model (5),
the control items by use of the �xed points are introduced
into di�erent parts of the model as a whole and a part. So,
the following controlled system (11) and system (12) are
obtained.

Firstly, control items with the �xed points
l(x2(j − 1) − x∗2)(y(j − 1) − y∗), l(y(j − 1) − y∗), l(s(j −
1) − s∗), and l(r(j − 1) − r∗) are introduced into the
model as a whole, which means that the controllers are
added to the inside of the summation sign to control the
Julia set:

x
–30 –20 –10 0 10 20 30

y

–30

–20

–10

0

10

20

30

Figure 1: Original Julia sets of system (5) when μ � 0.8, η � 0.08, b � 0.02, c � 0.005, q � 0.005, e � 0.05, z � 0.005, δ � 0.001.
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x(n) � x(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− ((c + q)x(j − 1) + η(1 + bs(j − 1))(1 − x(j − 1) − y(j − 1))x(j − 1)

2

+ l x2(j − 1) − x∗2( 􏼁 y(j − 1) − y∗( 􏼁􏼁,

y(n) � y(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
qx(j − 1) − (c + e)y(j − 1) + z + l y(j − 1) − y

∗
( 􏼁( 􏼁,

s(n) � s(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
δr(j − 1) + l s(j − 1) − s

∗
( 􏼁( 􏼁,

r(n) � r(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− δs(j − 1) + l r(j − 1) − r

∗
( 􏼁( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Take the fractional order μ as μ � 0.8 and the control
parameter l as (a) l � 0.02, (b) l � 0.04, (c) l � 0.05, (d) l �

0.06, (e) l � 0.07, and (f) l � 0.08. Figure 2 shows the rel-
evant Julia set with different control parameters l.

With the constant tiny increase of parameter l, the
structure of Julia set becomes more and more delicate.

Compared with Figure 2(e), figure 2(f) shrinks apparently,
and, the control of Julia set has been achieved.

Secondly, the fixed point control items
l(x2(n − 1) − x∗2)(y(n − 1) − y∗), l(y(n − 1) − y∗), l(s(n −

1)− s∗), and l(r(n − 1) − r∗) are added into the model as a
part; more precisely, the controller is imported to the outside
of the summation sign to implement control over Julia set:

x(n) � x(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− (c + q)x(j − 1) + η(1 + bs(j − 1))(1 − x(j − 1) − y(j − 1))x(j − 1)

2
􏼐 􏼑

+ l x2(n − 1) − x∗2( 􏼁 y(n − 1) − y∗( 􏼁,

y(n) � y(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(qx(j − 1) − (c + e)y(j − 1) + z) + l y(n − 1) − y

∗
( 􏼁,

s(n) � s(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(δr(j − 1)) + l s(n − 1) − s

∗
( 􏼁,

r(n) � r(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(− δs(j − 1)) + l r(n − 1) − r

∗
( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Also, the fractional order μ is taken as μ � 0.8 and the
control parameters l are fetched as (a) l � 0.001, (b) l �

0.002, (c) l � 0.005, (d) l � 0.008, (e) l � 0.015, and (f) l �

0.017, and the images about the correlative Julia set with
disparate control parameters l are exhibited in Figure 3.

In Figure 3, as the parameter l increases, the area of
the filled-in Julia set becomes smaller and smaller. In
Figures 3(e) and 3(f ), some points are not in the interior
of the Julia set, which means that the connectivity of the
Julia set is closely interrelated with the control pa-
rameter l.

If the values are inside the Julia set, the trajectory is
bounded and the number of infected people is limited.
Relatively, if the values are outside the Julia set, the trajectory
is unbounded; at this moment, the number of infected
people is unlimited and the epidemic is out of control. In this
section, the fixed point control methods are designed for the
discrete fractional order SIRS model; from these figures,
some initial values are iterated from points outside the set
into the set, which means the infected person is controlled.
)e control of infectious diseases is realized by controlling
Julia sets of systems.
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4. Synchronization of Julia Sets of the Discrete
Fractional Order SIRS Model

Di�erent biological systems sometimes require similar or even
identical characteristics. Consider synchronization in di�erent

systems is necessary. In this section, the synchronization
methods are applied to the investigation of Julia set.

Theorem 1. If |C(n) − x(n)|, |D(n) − y(n)|, |A(n) − s(n)|,
and |B(n) − r(n)| are bounded for any �nite l and n ∈ N, the
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Figure 2:�e changing process of Julia sets of the controlled system (11) when (a) l � 0.02; (b) l � 0.04; (c) l � 0.05; (d) l � 0.06; (e) l � 0.07;
(f ) l � 0.08.
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synchronization between system (5) and system (14) or (27) is
realized.

Proof. Take C(n) and x(n) as an example. If |C(n) − x(n)|
is bounded, then x(n) is bounded if C(n) is bounded, and
C(n) is bounded if x(n) is bounded. �erefore, C(n) and

x(n) have the same boundedness. And according to the
de�nition of Julia set, C(n) is synchronized with x(n).
Similarly, D(n) is synchronized with y(n), A(n) is syn-
chronized with s(n), and B(n) is synchronized with r(n).
�erefore, the synchronization of Julia sets between
system (5) and system (14) or (27) is acquired.
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Figure 3: �e changing process of Julia sets of the controlled system (12) when (a) l � 0.001; (b) l � 0.002; (c) l � 0.005; (d) l � 0.008;
(e) l � 0.015; (f ) l � 0.017.
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In this section, different coupling terms are designed to
achieve synchronization between the initial system and the
target system. By using the idea of the Julia set, the syn-
chronization process is shown in our simulation figures. □

4.1. >e First Synchronization of Julia Sets. Consider system
(13) with the same structure of equation form (5) but with
different parameter 􏽢e:

C(n) � C(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
( − (c + q)C(j − 1)

+ η(1 + bA(j − 1))(1 − C(j − 1) − D(j − 1))C(j − 1)2􏼁,

D(n) � D(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(qC(j − 1)

− (c + 􏽢e)D(j − 1) + z),

A(n) � A(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(δB(j − 1)),

B(n) � B(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(− δA(j − 1)),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where 􏽢e≠ e> 0. In an effort to tie systems (5) and (13) to-
gether, nonlinear coupling terms are devised to enable one
Julia set of the SIRS model change to be another. We added
coupling terms h1 and h2 into equation (13), so we obtain

C(n) � C(0) +
1
Γ(μ)

􏽘
n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
( − (c + q)C(j − 1)

+ η(1 + bA(j − 1))(1 − C(j − 1) − D(j − 1))C(j − 1)2􏼁 + h1,

D(n) � D(0) +
1
Γ(μ)

􏽘
n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(qC(j − 1))

− (c + 􏽢e)D(j − 1) + z) + h2,

A(n) � A(0) +
1
Γ(μ)

􏽘
n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(δB(j − 1)),

B(n) � B(0) −
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(δA(j − 1)),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where

h1 � l
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− η(1 + bA(j − 1))(1 − C(j − 1) − D(j − 1))C(j − 1)

2
+ η(1 + bs(j − 1))(1 − x(j − 1)􏼐⎛⎝

− y(j − 1))x(j − 1)
2
􏼑⎞⎠,

h2 � l
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
((c + 􏽢e)D(j − 1) − (c + e)y(j − 1))⎛⎝ ⎞⎠.

(15)

It is evident that different Julia sets are obtained by
selecting different coupling parameters l. Taking the control
parameter as (a) l � 0.09, (b) l � 0.095, (c) l � 0.1, (d) l �

0.2, (e) l � 0.5, and (f) l � 0.7, other system parameters
remain unchanged, and Figure 4 is obtained.

In Figure 4, Figure 4(a) is shown in blue, which is the
background, and the synchronization process diagrams of
Julia set of this method are shown in red. As can be seen
from Figure 4, Julia set in Figure 4(a) looks like a star with
four horns. In addition, with the increase of the control
parameter l, the graph lines become mellow and full and the
area of the Julia sets becomes larger and larger, eventually it
overlaps with original Figure 1.

We use Hausdorff distance to measure the matching
degree between the images, as shown in Table 1; the
Hausdorff distances gradually decrease to 0, and two images
are getting closer and closer. And Hausdorff distance has
turned into 0 since Figure 4(d), seen from Figure 4(d), some
of the points have coincided with the original figure. By the
definition of Hausdorff distance, it becomes 0 as long as two
points overlap. )erefore, it also reflects the synchronization
between system (5) and system (14).

Next, we give a proof about this method to achieve the
synchronization of trajectories between systems (5) and (14).
In order to promote the expression of this demonstration,
take
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E1,j− 1 � η(1 + bs(j − 1))(1 − x(j − 1) − y(j − 1))x(j − 1)2,

E2,j− 1 � η(1 + bA(j − 1))(1 − C(j − 1) − D(j − 1))C(j − 1)2.

⎧⎪⎨

⎪⎩

(16)

Theorem 2. >e synchronization of system (5) and system
(14) can be achieved if |C(n) − x(n)|, |D(n) − y(n)|,
|A(n) − s(n)|, and |B(n) − r(n)| are bounded when
0< c + q< 1, n ∈ N, and l is limited.

Proof. Here, take the synchronization between C(n) and
x(n) for an example. Substitute equation (16) into system (5)
and system (14), so we have
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Figure 4:)e synchronization process of Julia sets between system (5) and system (14) when (a) l � 0.09; (b) l � 0.095; (c) l � 0.1; (d) l � 0.2;
(e) l � 0.5; (f ) l � 0.7.

Table 1: )e Hausdorff distance of Figure 4.

l 0.09 0.095 0.1 0.2 0.5 0.7
Hausdorff distance 5.0687 0.2642 0.2118 0 0 0
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C(n) � C(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− (c + q)C(j − 1) + E2,j− 1􏼐 􏼑

+
l

Γ(μ)
􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
E1,j− 1 − E2,j− 1􏼐 􏼑,

x(n) � x(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− (c + q)x(j − 1) + E1,j− 1􏼐 􏼑.

(17)

Observe that if we utilize the general binomial coefficient
a

b
􏼠 􏼡 ≔ (Γ(a + 1)/Γ(b + 1)Γ(a − b + 1)), see [35], then

(Γ(n − j + μ)/Γ(n − j + 1)Γ(μ)) can be rewritten as
n − 1 − j + μ

n − j
􏼠 􏼡. )us, the above equations can be rewritten

as

C(n) � C(0) + 􏽘
n

j�1

n − j − 1 + μ

n − j
􏼠 􏼡 − (c + q)C(j − 1) + E2,j− 1􏼐 􏼑

+ l 􏽘
n

j�1

n − j − 1 + μ

n − j
􏼠 􏼡 E1,j− 1 − E2,j− 1􏼐 􏼑,

x(n) � x(0) + 􏽘
n

j�1

n − j − 1 + μ

n − j
􏼠 􏼡 − (c + q)x(j − 1) + E1,j− 1􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

)erefore, take the item as n − 1, and the C(n − 1) and
x(n − 1) can be expressed as

C(n − 1) � C(0) + 􏽘

n− 1

j�1

n − j − 2 + μ

n − 1 − j
􏼠 􏼡 − (c + q)C(j − 1) + E2,j− 1􏼐 􏼑

+ l 􏽘
n− 1

j�1

n − j − 2 + μ

n − 1 − j
􏼠 􏼡 E1,j− 1 − E2,j− 1􏼐 􏼑,

x(n − 1) � x(0) + 􏽘
n− 1

j�1

n − j − 2 + μ

n − 1 − j
􏼠 􏼡 − (c + q)x(j − 1) + E1,j− 1􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Next, C(n) in system (18) minus C(n − 1) in system (19)
and x(n − 1) is subtracted by x(n). And see [35], for α ∈ R

and k ∈ N1 one has α
k

􏼠 􏼡 −
α − 1
k − 1􏼠 􏼡 �

α − 1
k

􏼠 􏼡, and set

α � n − 1 − j + μ and k � n − j, distinctly,
n − 1 − j + μ

n − j
􏼠 􏼡 −

n − 2 − j + μ
n − 1 − j

􏼠 􏼡 �
n − 2 − j + μ

n − j
􏼠 􏼡.

)en, we obtain

C(n) − C(n − 1) � − (c + q) 􏽘

n

j�1

n − j − 2 + μ

n − j
􏼠 􏼡C(j − 1)

+ 􏽘
n

j�1

n − j − 2 + μ

n − j
􏼠 􏼡 lE1,j− 1 +(1 − l)E2,j− 1􏼐 􏼑,

x(n) − x(n − 1) � − (c + q) 􏽘
n

j�1

n − j − 2 + μ

n − j
􏼠 􏼡x(j − 1)

+ 􏽘
n

j�1

n − j − 2 + μ

n − j
􏼠 􏼡E1,j− 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where j � 1, 2, . . . , n − 1, n − 2 − j + μ
n − j

􏼠 􏼡 � ((n − 2 − j +

μ)(n − 3 − j + μ) · · · μ(μ − 1)/(n − j)!)< 0, and j � n,
μ − 2
0􏼠 􏼡 � 1.

During system (20), C(n) − C(n − 1) minus
x(n) − x(n − 1), so the following equation is presented:

C(n) − C(n − 1) − (x(n) − x(n − 1)) � − (c + q) 􏽘
n− 1

j�1

n − j − 2 + μ

n − j
􏼠 􏼡(C(j − 1) − x(j − 1)) − (c + q)(C(n − 1) − x(n − 1))

+ 􏽘
n

j�1

n − j − 2 + μ

n − j
􏼠 􏼡(1 − l) E2,j− 1 − E1,j− 1􏼐 􏼑.

(21)

Move − (c + q)(C(n − 1) − x(n − 1)) to the left-hand
side of the above equation, and then take the absolute value
of both sides. Make Fj � |C(j) − x(j)|, j � 1, 2, . . . , n, and
0< c + q< 1. Furthermore, from the definition of Julia set
[33], apparently, the Julia sets are bounded. Assume the
bounded region is Ω, and there is a m0 meets hm0(z) ∉ ω, in

that way, the Julia set is fixed. In addition, there is always a
T> 0, which is content with |z|<T for any z ∈ ω because of
the bounded region ω. )erefore, there are positive number
M and N which enable Fj <M, j � 1, 2, . . . , n − 1, and
|E2,j− 1 − E1,j− 1|<N, j � 1, 2, . . . , n. So, we get the following
inequality:
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Fn − (1 − c − q)Fn− 1 ≤ − (c + q) 􏽘
n− 1

j�1

n − j − 2 + μ

n − j
􏼠 􏼡M − |1 − l| 􏽘

n− 1

j�1

n − j − 2 + μ

n − j
􏼠 􏼡N +|1 − l|N. (22)

Due to n − 2 − j + μ
n − j

􏼠 􏼡 �
n − 1 − j + μ

n − j
􏼠 􏼡−

n − 2 − j + μ
n − 1 − j

􏼠 􏼡, sum from j � 1 to j � n − 1, so

􏽐
n− 1
j�1

n − 2 − j + μ
n − j

􏼠 􏼡 �
n − 2 + μ

n − 1􏼠 􏼡 − 1. )us,

Fn − (1 − c − q)Fn− 1 ≤ − (c + q)
n − 2 + μ

n − 1
􏼠 􏼡 − 1􏼢 􏼣M − |1 − l|

n − 2 + μ

n − 1
􏼠 􏼡 − 1􏼢 􏼣N +|1 − l|N. (23)

In this equation, n − 2 + μ
n − 1􏼠 􏼡 � ((n − 2 + μ)(n − 3+

μ) · · · (1 + μ)μ)/(n − 1)!> 0, thus − (c + q)
n − 2 + μ

n − 1􏼠 􏼡M<
0 and − |1 − l|

n − 2 + μ
n − 1􏼠 􏼡N< 0. Iterating the inequality, we

gain

Fn ≤ (1 − c − q)Fn− 1 +(c + q)M + 2|1 − l|N

≤ (1 − c − q) (1 − c − q)Fn− 2 +(c + q)M + 2|1 − l|N􏼂 􏼃 +(c + q)M + 2|1 − l|N

� (1 − c − q)
2
Fn− 2 +[(c + q)M + 2|1 − l|N](1 +(1 − c − q))

≤ · · · ≤ (1 − c − q)
n
F0 +[(c + q)M + 2|1 − l|N]

1 − (1 − c − q)n

1 − (1 − c − q)

≤ (1 − c − q)
n
F0 + M + 2|1 − l|N

1 − (1 − c − q)n

c + q
,

(24)

where 0< c + q< 1. Notice that |C0 − x0| is bounded since
the initial values C0 and x0 are fetched inside the bounded
region ω, thus F0 is limited. Considering n ∈ N, so
(1 − c − q)n and (1 − (1 − c − q)n)/(c + q) are finite. Besides,
l is limited, then 2|1 − l|N(1 − (1 − c − q)n)/(c + q) is
bounded. Obviously, Fn � |C(n) − x(n)| is bounded. Simi-
larly, |D(n) − y(n)|, |A(n) − s(n)|, and |B(n) − r(n)| are also
bounded. Because the proof is analogous and simple, we do

not expand the proof here. According to )eorem 1, the
synchronization of Julia sets between systems (5) and (14) is
acquired finally and the proof of theorem 2 is finished. □

4.2. >e Second Synchronization of Julia Sets. Similarly,
consider a system (25) with the same structure of equation
form (5) but with different parameters 􏽢η and 􏽢q:

C(n) � C(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− (c + 􏽢q)C(j − 1) + 􏽢η(1 + bA(j − 1))(1 − C(j − 1) − D(j − 1))C(j − 1)

2
􏼐 􏼑,

D(n) � D(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(􏽢qC(j − 1) − (c + e)D(j − 1) + z),

A(n) � A(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(δB(j − 1)),

B(n) � B(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(− δA(j − 1)),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)
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Figure 5: )e synchronization process of Julia sets between system (5) and system (27) when (a) l � 0; (b) l � 0.2; (c) l � 0.4; (d) l � 0.6;
(e) l � 0.8; (f ) l � 0.9.

Complexity 13



where 􏽢η≠ η> 0 and 􏽢q≠ q> 0. To facilitate the description of
this synchronization method, denote

C
∗∗

� C(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− (c + 􏽢q)C(j − 1) + 􏽢η(1 + bA(j − 1))(1 − C(j − 1) − D(j − 1))C(j − 1)

2
􏼐 􏼑,

C
∗

� C(0) +
1
Γ(μ)

􏽘

n− 1

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− (c + 􏽢q)C(j − 1) + 􏽢η(1 + bA(j − 1))(1 − C(j − 1) − D(j − 1))C(j − 1)

2
􏼐 􏼑,

x
∗∗

� x(0) +
1
Γ(μ)

􏽘

n− 1

j�1

Γ(n − j + μ)

Γ(n − j + 1)
− (c + q)x(j − 1) + η(1 + bs(j − 1))(1 − x(j − 1) − y(j − 1))x(j − 1)

2
􏼐 􏼑,

D
∗∗

� D(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(􏽢qC(j − 1) − (c + e)D(j − 1) + z),

D
∗

� D(0) +
1
Γ(μ)

􏽘

n− 1

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(􏽢qC(j − 1) − (c + e)D(j − 1) + z),

y
∗∗

� y(0) +
1
Γ(μ)

􏽘

n− 1

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(qx(j − 1) − (c + e)y(j − 1) + z).

(26)

In order to connect these Julia sets of systems (5) and
(25) together, add two coupling terms − C∗ + x∗∗ − l((C∗∗ −

C∗) − (x(n) − x∗∗)) and − D∗ + y∗∗ − l((D∗∗ − D∗) −

(y(n) − y∗∗)) into system (25), so we obtain

C(n) � C∗∗ − C∗ + x∗∗ − l C∗∗ − C∗( ) − x(n) − x∗∗( )( ),

D(n) � D∗∗ − D∗ + y∗∗ − l D∗∗ − D∗( ) − y(n) − y∗∗( 􏼁( 􏼁,

A(n) � A(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(δB(j − 1)),

B(n) � B(0) +
1
Γ(μ)

􏽘

n

j�1

Γ(n − j + μ)

Γ(n − j + 1)
(− δA(j − 1)).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

Apparently, by selecting different coupling parameters l,
disparate Julia sets of system (27) are demonstrated.

Taking Figure 1 as the background frame, shown in blue,
the synchronization process diagrams of the Julia set of this
method are exhibited, shown in red. From Figure 5, we can
find that the Julia set in Figure 5(a) is shaped somewhat like
the number 8. Besides, with the increase of control pa-
rameters l, the graphs expand horizontally and finally
synchronize with the initial Figure 1. As can be seen from
Figure 5, the points of the initial system have partially
overlapped with the points of the target system since
Figure 5(a), and then the calculated Hausdorff distance is 0
invariably.

Theorem 3. If |C(n) − x(n)|⟶ 0, |D(n) − y(n)|⟶ 0,
and |A(n) − s(n)|, |B(n) − r(n)| are bounded when l⟶ 1
and n ∈ N, and the synchronization between system (5) and
system (27) is gained.

Proof. From equations (5) and (27), C(n) minus x(n), so we
have

C(n) − x(n) � (1 − l) C
∗∗

− C
∗

( 􏼁 − x(n) − x
∗∗

( 􏼁( 􏼁. (28)

Take the absolute value of both sides of this equation. As
we described in)eorem 1, because of the bounded Julia set,
|(C∗∗ − C∗) − (x(n) − x∗∗)| is less than |C∗∗ − C∗| + |x(n) −

x∗∗| and less than a positive number, thus

C(n) − x(n) � |1 − l| C
∗∗

− C
∗

( 􏼁 − x(n) − x
∗∗

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ |1 − l| C
∗∗

− C
∗
| + |x(n) − x

∗∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑.

(29)

)e limit of the right side of this equation tends to 0 as
l⟶ 1. Analogously, |D(n) − y(n)|⟶ 0, |A(n) − s(n)|,
and |B(n) − r(n)| are bounded if l⟶ 1 and n ∈ N. )us,
the synchronization of Julia sets between systems (5) and
(27) is implemented and the proof is completed. □

5. Conclusion

)e discrete SIRS model defined by Caputo fractional cal-
culus is mainly analyzed in this paper, the mathematical
expression of discrete fractional difference equation is ob-
tained, and then the control and synchronization of Julia set
of this model are discussed. We calculate the fixed point of
the fractional order system and design the fixed point
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control terms for the system. )e structure of the control
terms is similar, but the positions adding into system are
different so that the control results are completely distinct.
In addition, two kinds of synchronization controllers are
proposed to realize the synchronization between system (5)
and system (14) or (27), and novel proofs about synchro-
nization of the two Julia sets are meticulously derived.
Simulation results show that the newly designed controllers
can realize the synchronization of the discrete fractional
order systems.

)is paper combines the ideas of fractional calculus and
fractal, which will provide the possibility to deeply under-
stand the fractional dynamics and better describe the
nonlinear phenomena in nature. More importantly, the
control and synchronization methods used in this paper can
be applied and extended to other potential applications to
solve practical problems of infectious diseases. It was
worthwhile noting that we synchronized two systems with
different parameters but with the same structure and
designed control items and coupling terms to implement the
control over Julia sets. However, the structure and size of
Julia sets of the fractional order system are not only de-
pendent on system parameters but also on the fractional
orders, so an interesting question is whether we can design
control items to realize the synchronization between two
fractional order systems with different fractional orders.
)erefore, there is still a good deal of challenging work to do.
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