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An unmanned surface vehicle (USV) plans its global path before the mission starts. When dynamic obstacles appear during
sailing, the planned global path must be adjusted locally to avoid collision. .is study proposes a local path planning algorithm
based on the velocity obstacle (VO) method and modified quantum particle swarm optimization (MQPSO) for USV collision
avoidance..e collision avoidance model based on VO not only considers the velocity and course of the USV but also handles the
variable velocity and course of an obstacle. According to the collision avoidance model, the USV needs to adjust its velocity and
course simultaneously to avoid collision. Due to the kinematic constraints of the USV, the velocity window and course window of
the USV are determined by the dynamic window approach (DWA). In summary, local path planning is transformed into a
multiobjective optimization problem with multiple constraints in a continuous search space. .e optimization problem is to
obtain the USV’s optimal velocity variation and course variation to avoid collision and minimize its energy consumption under
the rules of the International Regulations for Preventing Collisions at Sea (COLREGs) and the kinematic constraints of the USV.
Since USV local path planning is completed in a short time, it is essential that the optimization algorithm can quickly obtain the
optimal value. MQPSO is primarily proposed to meet that requirement. In MQPSO, the efficiency of quantum encoding in
quantum computing and the optimization ability of representing the motion states of the particles with wave functions to cover
the whole feasible solution space are combined. Simulation results show that the proposed algorithm can obtain the optimal values
of the benchmark functions and effectively plan a collision-free path for a USV.

1. Introduction

An unmanned surface vehicle (USV) is an autonomous
marine vehicle that has emerged as a viable tool to perform
tasks that are dangerous or unsuitable for manned vessels.
Planning the path of a USV is important as regards safety
and efficiency [1]. USV path planning can be divided into
two stages: global path planning based on prior environ-
mental information and local path planning based on sensor
information [2]. Since unexpected conditions can occur
during USV sailing, such as other vessels and obstacles on its
path, the global path must be adjusted locally to avoid
collision. As part of local path planning, USV collision
avoidance for moving obstacles is carried out online based

on real-time information of shipborne sensors such as ra-
dars. .is paper studies local path planning for USV col-
lision avoidance.

All USVs must have the ability to autonomously avoid
obstacles, including land masses, watercraft, low-hanging
obstacles, submerged shallow obstacles, interface obstacles,
and submerged obstacles for USVs that tow systems [3].

.ere are some results for local path planning in the
literature. An obstacle-avoidance solution based on rules
and criteria was proposed, in which the collision avoidance
rules and criteria are determined according to the target’s
collision priority [4]. A method to calculate the collision
probabilities of vessels was established under the constraints
of mission space and number of vessels [5]. An alternative
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method assessed the collision risk for surface ships in close-
range encounters that is compliant with the International
Regulations for Preventing Collisions at Sea (COLREGs) [6].

.e velocity obstacle (VO) method is a local path
planning method that considers the velocity of obstacles [7].
.e method has been used to study the case of a single
vehicle avoiding some obstacles moving along known linear
trajectories. Using the relative velocity between the vehicle
and each obstacle, the dynamic problem is transformed into
a number of static problems. .ese are converted to a single
problem by vector transformation, and a set of velocity
vectors are calculated to avoid obstacles. To avoid collisions,
both the current position and the velocities of vehicles are
used to compute their future trajectories [8]. An improved
VO method was proposed to choose an optimal velocity by
introducing a cost function, which consists of a pass time
and clearance [9]. A conflict-free maneuver that aims to
avoid obstacles while limiting the deviation from the original
route was generated by the selective VO method [10]. A
finite-time velocity obstacle (FVO) method was used to plan
the motion of a mobile robot and complete a crossing
through an unknown environment [11]. Based on the
nonconvex nature of the FVO constraints, a parabolic
function and the approximated function were used to cal-
culate the optimal next-step velocity of a mobile robot to
ensure collision-free motion.

In [12, 13], considering the kinematic constraints of the
robot, a dynamic window approach (DWA) was proposed,
which calculates the velocity that the robot can reach within
a given time interval. .e reachable velocities constitute a set
of velocity space, known as dynamic window. .e path
planner selects the optimal feasible velocity vector from the
dynamic window by the objective functions. DWA was
proposed to plan an energy efficient local path for navigation
of omnidirectional battery-powered mobile robots in dy-
namic environments with incorporating a cost function
based on energy consumption [14].

.e COLREGs are maritime traffic regulations estab-
lished by the International Maritime Organization (IMO) to
prevent collisions between vessels. .e COLREGs specify
several collision situations during a voyage: head-on,
crossing, and overtaking [15]. It is reasonable for a USV to
follow COLREGs during navigation. Some researchers have
applied COLREGs to actual collision avoidance. When a
ship was detected, the range of its position during a given
time frame was estimated, and the path planning system,
considering COLREGs, produced a new, safe, and smooth
path in real time [16]. Based on the motion velocity model
and COLREGs, a reverse eccentric expansion method was
designed to deal with dynamic obstacles [17]. A multi-
objective optimization approach for path planning of an
autonomous surface vehicle combined COLREGs with good
seaman’s practice and stratified the objectives [18].

Some intelligent optimization algorithms have been
applied to the path planning of vehicles. .ese include ant
colony optimization [19], genetic algorithms [20], fuzzy
algorithms [21], and particle swarm optimization (PSO)
[22]. .e algorithms have global optimization ability and
overcome the shortcomings of many traditional path

planning algorithms. As a method to solve optimization
problems, PSO has been developed rapidly in recent years
and widely used in many fields, such as combinatorial
optimization [23], scheduling problems [24], and neural
networks [25].

With the development of quantum theory, to combine
quantum computing with intelligent optimization algo-
rithms has been proposed. Quantum-behaved particle
swarm optimization (QBPSO) was first proposed to improve
the global search ability of the original PSO [26]. .e po-
sition of a particle in PSO was sampled by the quantum delta
potential well model around themean best position [27]..e
basic principle of QBPSO is to regard the optimization
process as a moving process of particles in the potential field
of quantum mechanics to the lowest point of potential
energy (the center of the potential well) [28]. Compared with
PSO, the iterative equation of QBPSO needs no velocity
vectors of particles, is easier to tune, and requires fewer
parameters to implement [29].

Quantum mechanics principles and evolutionary com-
puting methods were first combined in [30]. A quantum bit
and superposition of states were used to solve the knapsack
problem by a quantum-inspired evolutionary algorithm
(QEA) [31]. Based on the QEA with a quantum rotation gate
strategy, an adaptive evolution-based quantum-inspired
evolutionary algorithm (AEQEA) introduced an adaptive
evolution mechanism [32]. A quantum ant colony algorithm
was used to plan the global path of a USV [33, 34]. A
quantum evolutionary algorithmwas integrated into particle
swarm optimization [35]. .e positions of particles were
encoded by probability amplitudes of quantum bits, and the
movements of particles were performed by quantum rota-
tion gates to achieve particle searching. Quantum-inspired
particle swarm optimization (QIPSO) has a stronger search
ability and quicker convergence speed, benefiting from
quantum computing theory, self-adaptive probability se-
lection, and chaotic sequence mutation [36].

.is study proposes a local path planning algorithm for
USV collision avoidance based on modified quantum par-
ticle swarm optimization (MQPSO)..emain contributions
are as follows:

(1) Based on the model proposed in [7, 17], a USV
collision avoidance model is established by the VO
method considering the constraints of USV kine-
matic model, the rules of COLREGs, and the
uncertainty of obstacle’s velocity. .e collision
avoidance model not only considers the velocity and
course of the USV but also handles the variable
velocity and course of an obstacle. According to the
collision avoidance model, the USV needs to adjust
its velocity and course simultaneously to avoid
collision and minimize its energy consumption. Due
to the kinematic constraints of the USV, the velocity
window and course window of the USV are deter-
mined by DWA. .erefore, the local path planning
for USV collision avoidance is transformed into a
multiobjective optimization problem with multiple
constraints in a continuous search space.
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(2) In order to solve the optimal value in a continuous
search space that satisfies a series of constraints, an
optimization algorithm is needed. Because the par-
ticles in QBPSO are encoded by real numbers in
[26–29], the search efficiency is low. .e motion
states of particles are represented by a vector of
velocity and position [36]. To avoid premature
convergence and local optima, a new optimization
algorithm called modified quantum particle swarm
optimization (MQPSO), combining QBPSO and
quantum computing, is proposed in this study. .e
quantum bits (Q-bits) are used to encode the po-
sitions of particles, and the motion states of particles
are determined by wave functions. A quantum
nongate is introduced to increase the population’s
diversity. Since USV local path planning is com-
pleted in a short time, it is essential that the opti-
mization algorithm can quickly obtain the optimal
value. MQPSO meets that requirement.

.e remainder of this study is organized as follows. In
Section 2, the model of USV local path planning is estab-
lished, and the USV kinematic model, the rules of COL-
REGs, the VO method, the velocity window and course
window of the USV, the collision avoidance model with
considering uncertainties, and the cost function of path
planning are described. In Section 3, the principles of
MQPSO are provided, and it is applied to plan a USV local
path. In Section 4, simulations for testing the performance of
MQPSO and USV local path planning using MQPSO are
presented. Conclusions are provided in Section 5.

2. Problem Statement

In this section, the USV kinematic model, rules of COL-
REGs, velocity obstacle method, and cost function of path
planning are introduced.

2.1. USV Kinematic Model. A three-degree-of-freedom
model is usually adopted for USV path planning. .e ki-
nematic equation can be expressed according as [16, 37]

_η � R(ψ)ν + Vc, (1)

where η � [x, y,ψ]T ∈ R3 is the vector including the posi-
tions and heading angle of the USV in the north-east coor-
dinate system. ν � [ur, vr, r]T is the relative velocity between
the USV and the ocean current in the body-fixed reference
frame, where ur � u − uc and vr � v − vc. u and v are the
velocities in surge and sway, respectively, of the USV. LetVc �

[Vcx, Vcy, 0]T ∈ R3 represent the velocity of the ocean current
in the north-east coordinate system. .e body-fixed ocean
current velocities (uc, vc) and north-east current velocities
(Vcx, Vcy) satisfy [uc, vc]

T � RT(ψ)[Vcx, Vcy]T, and the ro-
tation matrix R(ψ) is

R(ψ) �

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

.erefore, the USV moving in surge, sway, and yaw can
be described as

_x � ur cosψ − vr sinψ + Vcx,

_y � ur sinψ − vr cosψ + Vcy,

_ψ � r.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

.e relative velocity of the USV is

U �

������

u2
r + v2r



. (4)

.eUSV at position (x, y) moving in the sea has velocity

vusv �

������

_x2 + _y2


. (5)

2.2. Collision Avoidance Model

2.2.1. VO-Based Modeling. .e collision avoidance model is
established as follows. Figure 1 shows the schematic of
obstacle-avoidance modeling. Take the current position of
the USV, that is, point V, whose coordinates are (xv, yv), as
the origin of the north-east coordinate system, and point O,
whose coordinates are (xo, yo), as the current position of the
obstacle. .e USV and the obstacle are moving. vusv and vobs
are the velocities of the USV and obstacle, respectively..us,
Δv � vusv − vobs is the velocity difference between the USV
and the obstacle. α is the angle from the X-axis to vusv, which
is represented as the course angle of the USV. β is the angle
from the X-axis to vobs. θ is the angle from the X-axis to the
line VO. ϕ is the angle fromΔv to vusv. Although the shape of
the obstacle is unknown, the obstacle’s collision area can be
expanded to a circle. With the point O as the center and robs
as the radius, the circle of the collision area is constructed
and represented by ⊙O. .e lines VM and VN are two
tangents of the collision area ⊙O. c is the angle from the line
VO to Δv. μ is the angle from the line VO to VM, which is
called the minimum safety angle.

Based on the current velocity of the obstacle, to avoid
collision, the vector Δv cannot be in the polygon VMON in
the next time interval. .erefore, c + Δc> μ is the collision
avoidance criterion.

.e angle c is related to Δv. Δv is decomposed into
velocity components Δvo, directed to the obstacle, and Δve,
perpendicular to Δvo. .us, Δvo and Δve are represented as

Δve � vusv sin(α − θ) − vobs sin(β − θ),

Δvo � vusv cos(α − θ) − vobs cos(β − θ).

⎧⎨

⎩ (6)

As shown in Figure 1, the angle c is represented as

c � arctan
vusv sin(α − θ) − vobs sin(β − θ)

vusv cos(α − θ) − vobs cos(β − θ)
 . (7)

.e difference of c in the time interval Δt can be cal-
culated as
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Δc �
− vobs sin(α − β)

v2usv + v2obs + 2vusvvobs cos(α − β)
Δvusv

+
v2usv − vusvvobs cos(α − β)

v2usv + v2obs + 2vusvvobs cos(α − β)
Δα

+
− vusv sin(α − β)

v2usv + v2obs + 2vusvvobs cos(α − β)
Δvobs

+
v2obs − vusvvobs cos(α − β)

v2usv + v2obs + 2vusvvobs cos(α − β)
Δβ.

(8)

Since there is a relationship between vusv, vobs, and Δv, as
shown in Figure 2, the following equations hold:

vobs

sinϕ
�
Δv

sin|α − β|
,

vobs

sinϕ
�

vusv

sin(|α − β| + ϕ)
,

vusv � vobs cos(α − β) + Δv cos ϕ,

vobs � vusv cos(α − β) − Δv cos(|α − β| + ϕ),

Δv2 � v2usv + v2obs − 2vusvvobs cos(α − β).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Substituting (9) in (8) yields

Δc � −
sinϕ
Δv
Δvusv +

vusv cosϕ
Δv
Δα +

sin(|α − β| + ϕ)

Δv
Δvobs

−
vobs cos(|α − β| + ϕ)

Δv
Δβ,

(10)

where α, β, and vobs are measured by the shipborne sensors.
Δvobs and Δβ can also be measured. μ and ϕ are calculated as
follows:

μ � arcsin
robs��������������������

xv − xo( 
2

+ yv − yo( 
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (11)

ϕ � arcsin
vobs sin|α − β|

vusv − vobs



 . (12)

As shown in Figure 1, if c< μ, then the USV will collide
with the obstacle, so Δc must be adjusted to satisfy c> μ, that
is,

|c + Δc|> μ. (13)

.erefore, the adjustment range of Δc is
Δc> μ − c, c> 0,

Δc< − μ − c, c≤ 0.
 (14)

It can be concluded from (8) and (10) thatΔc is related to
Δvusv, Δα, Δvobs, and Δβ. But only Δvusv and Δα are control
variables of the USV. .us, the local path planning for USV
collision avoidance is transformed to solve the velocity
variation Δvusv and course variation Δα of the USV.

As mentioned above, the USV adjusts its velocity vusv
and the course α within a given time interval Δt to avoid
collision. However, due to the constraints of USV kine-
matics, the velocity and course of the USV will not change
much in a given time interval. DWA was introduced to
handle the kinematic constraints of the USV. .e DWA
considers the kinematics and calculates the velocity and
course that the USV can achieve within a given time window,
which is called the dynamic window VDW, respectively:

VDW �  vusv, α(  vusv
 ∈ vcur − ΔvusvΔt, vcur + ΔvusvΔt ,

α ∈ αcur − ΔαΔt, αcur + ΔαΔt ,

(15)
where vcur is the current velocity of the USV and αcur is the
current course of the USV [12].

.e velocity vusv and course α reached by USV within a
given Δt can be determined by (15). .e elements in the set
VDW are continuous. .erefore, the local path planner needs
to use optimization algorithm to obtain the optimized Δvusv
andΔα that meet the optimization objectives and constraints
within the feasible continuous space of velocity and course,
and then a new USV velocity vector vusv can be obtained to
avoid collision.

2.2.2. Uncertainty of the Obstacle. In actual collision
avoidance, the path planner must consider various types of
uncertainties. .e uncertainty in USV local path planning is
mainly divided into two categories: the uncertainty of sensor
detection and the uncertainty of obstacle motion.

It is assumed that moving obstacles are detected and
tracked by shipborne sensors. Performance characteristics of
the sensors in turn affect the noise and state estimation

Δv
ϕ

vusv vobs

α – β

Figure 2: Positional relationship between vusv, vobs, and Δv.

vusv

γ

μ
ϕ

Δve
Δv

α

β

Δvo

V

Y

X

N

O

M

θ

vobs vobs

Figure 1: Schematic of collision avoidance modeling.
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errors for the tracked obstacle. Another uncertainty is from
the imprecise motion of the moving obstacle [38]. .e
velocities of moving obstacle are assumed to be constant in
traditional VO, but in reality they do not move with constant
velocities. Considering the uncertainty of the obstacle, the
velocity of the obstacle is calculated as

vobs � vobs + δobs, (16)

where vobs is the nominal velocity (i.e., the expected velocity
that is estimated by the obstacle tracker) and δobs represents the
uncertainties of the obstacle’s velocity [38]. We assumed that
the uncertain component of the velocity lies in a set
δobs ∈⊙wobs, where ⊙wobs is a bound set and treated as a
constant. Since Δv � vusv − vobs, the vector Δv is also affected
by the uncertainty and cannot be in the polygon VMON in the
next time interval. Due to the uncertainty of vobs, the collision
area ⊙O with the worst case uncertainty ⊙WO is defined as

⊙WO � ⊙O⊕⊙wobs, (17)

where ⊕ is the Minkowski sum operation.
Figure 3 shows the same situation as shown in Figure 2

and takes into account the uncertainties. .e circle drawn
with a dotted line is represented as ⊙WO..e lines VM′ and
VN′ are two tangents of the area ⊙WO. .erefore, con-
sidering the uncertainties, the vector Δv will not be in the
polygon VM′ON′ to avoid collision in the next time interval.

2.3. Collision Avoidance Rules Based on COLREGs. Rules 13,
14, and 15 of the COLREGs [15] make provisions for three
types of collisions that may occur during the sailing of a
vessel, that is, head-on, crossing, and overtaking, respec-
tively. .e rules are as follows:

(1) Overtaking: any vessel overtaking any other shall
keep out of the way of the vessel being overtaken.

(2) Head-on: when two power-driven vessels are
meeting on reciprocal or nearly reciprocal courses so
as to involve risk of collision, each shall alter her
course to starboard so that each shall pass on the port
side of the other.

(3) Crossing: when two power-driven vessels are
crossing so as to involve risk of collision, the vessel
which has the other on her own starboard side shall
keep out of the way and shall, if the circumstances of
the case admit, avoid crossing ahead of the other
vessel.

However, the rules are only behavioral constraints on
operation and do not explicitly state the angle and scope in
practical applications. In this study, we assume that there is
no communication between the USV and the obstacle. Due
to the special nature of the unmanned operation, the USV is
regarded as the give-way vessel and the obstacle is regarded
as the stand-on vessel. .erefore, the USV must avoid the
obstacle [38]. According to the empirical data of collision
avoidance, the angle ranges of the four encounters of
overtaking, head-on, left crossing, and right crossing are
determined [39], as shown in Figure 4.

(1) Overtaking rule: when the relative course angle be-
tween the USV and the obstacle is within
[112.5°, 180°)∪ [− 180°, − 112.5°), that is,

(α − β) ∈ 112.5°, 180° ∪ − 180°, − 112.5° , (18)

the USV will pass along the port side of the obstacle, as
shown in Figure 5(a).

(2) Head-on rule: when the relative course angle be-
tween the USV and the obstacle satisfies [− 15°, 15°),
that is,

180° − (α − β)(  ∈ − 15°, 15° , (19)

the USV will sail along the starboard side of the obstacle, as
shown in Figure 5(b).

(3) Crossing from left rule: when the relative course
angle between the USV and the obstacle satisfies
[− 112.5°, − 15°), that is,

(α − β) ∈ − 112.5°, − 15° , (20)

the USV will adjust the course to its port side and sail along
the tail of the obstacle, as shown in Figure 5(c).

V X

N′

O

M′

γ

μ

θ

ϕ

α

β

Δve
Δv

Δvo

vobs
vobs

vusv

wobsY

Figure 3: Schematic of collision avoidance modeling considering
uncertainty.

Crossing

Crossing

Overtaking
Head-on

USV

112.5°

–15°

15°

–112.5°

αr

Figure 4: Possible encounter situations between USV and moving
obstacle.
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(4) Crossing from right rule: when the relative course
angle between the USV and the obstacle satisfies
[15°, 112.5°), that is,

(α − β) ∈ 15°, 112.5° , (21)

the USV will adjust the course to its starboard side and sail
along the tail of the obstacle, as shown in Figure 5(d).

2.4. Optimization Model of Local Path Planning. .e
mathematical model of the optimization objectives and
constraints of local path planning for USV collision
avoidance is constructed.

2.4.1. Objective Functions. According to Section 2.2, the
USV must adjust its velocity and course to avoid collisions.
To adjust these simultaneously, it is necessary to obtain the
optimal values of the two variables under constraints. Hence,
the local path planning for USV collision avoidance is
transformed to a multiobjective optimization problem. .e
energy consumption while sailing determines the USV’s
endurance and duration [34]. .erefore, the energy con-
sumption of the USV is considered as one of the objectives of
local path planning.

A USV sails on a preplanned global path until it detects
unsafe obstacles, such that local adjustment must be made to
the global path to avoid collision. To ensure the efficiency of
the USV’s task execution, it is expected that the motion of
the USV should be changed as little as possible during local
path planning, that is, the variations of the USV’s velocity
and course should be small.

In local path planning for USV collision avoidance, the
velocity variation, course variation, and energy consumption
of the USV during time interval Δt are used as the opti-
mization objectives.

Suppose the velocity of the USV at time t is vusv(t), and
after time interval Δt, its velocity is vusv(t + Δt). .e velocity
variation Jv is defined as

Jv � Δvusv


 � vusv(t + Δt) − vusv(t)


. (22)

Suppose the course of the USV at time t is α(t), and after
time interval Δt, its course is α(t + Δt). Consequently, the
course variation Jα is

Jα � |Δα| � |α(t + Δt) − α(t)|. (23)

.e energy consumption of the USV while sailing is
derived from the propulsion system. .e resistance deter-
mines the effective power of the vessel [40]. .e hydrody-
namic drag Fd is calculated as

Fd � 0.5ρ|U|
2
CDA, (24)

where ρ is the density of the water, CD is the drag coefficient,
A is the reference area, and U is obtained by (4).

Suppose the USV’s energy consumption after time in-
terval Δt is

Je � Fd|U|Δt � 0.5ρ|U|
3
CDAΔt. (25)

In summary, the cost function of USV local path
planning is established as

J � min w1Jv + w2Jα + w3Je( , (26)

where w1, w2, and w3 are the weights of Jv, Jα, and Je,
respectively.

2.4.2. Constraints of Local Path Planning. To plan an op-
timal local path for a USV, some constraints, such as ki-
nematic constraints, COLREGs rules, and obstacle-
avoidance constraints, must be met. .e kinematic con-
straints are the limitations of the USV’s velocity and course
variation. .e obstacle-avoidance constraints require the

USV

(a)

USV

(b)

USV

(c)

USV

(d)

Figure 5: Possible encounter situations and collision avoidance paths between the USV and the obstacle. (a) Overtaking. (b) Head-on.
(c) Crossing from left. (d) Crossing from right.
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USV to be outside the collision area, and these are obtained
from (14).

.erefore, the constraints of USV local path planning are
as follows:

0< vmin ≤ vusv ≤ vmax, (27)

Δvusv


≤ a, (28)

|Δα|≤ r · Δt, (29)

−
sinϕ
Δv
Δvusv +

vusv cosϕ
Δv
Δα +

sin(|α − β| + ϕ)

Δv
Δvobs

−
vobs cos(|α − β| + ϕ)

Δv
Δβ> μ − c, c> 0,

(30)

−
sinϕ
Δv
Δvusv +

vusv cosϕ
Δv
Δα +

sin(|α − β| + ϕ)

Δv
Δvobs

−
vobs cos(|α − β| + ϕ)

Δv
Δβ< − μ − c, c≤ 0,

(31)

where vmax and vmin are, respectively, the upper and lower
bounds of vusv and a is the limit of the size of Δvusv. (27),
(28), and (29) are constraints of USV kinematics. (30) and
(31) are collision avoidance constraints. In addition,
(18)–(21) are the constraints based on COLREGs.

In summary, the local path planning for USV collision
avoidance is transformed into a multiobjective optimization
problem with multiple constraints in a continuous search
space.

3. Optimization Algorithm

Asmentioned above, in order to obtain the velocity variation
Δvusv and course variation Δα in a continuous search space
that satisfies a series of constraints, an optimization algo-
rithm is needed. In this section, we introduce the MQPSO
algorithm, which is used to plan the local path for USV
collision avoidance.

3.1. Particle Swarm Optimization. PSO is an important
method in swarm intelligence. .e basic algorithm is as
follows [41]. In the n-dimensional space, a population of m
particles is represented as X � x1, x2, . . . , xm . .e position
and velocity vectors of particle i can be represented as xi �

[xi1, xi2, . . . , xin]T and vi � [vi1, vi2, . . . , vin]T, respectively.
.e n-dimensional best previous position vector is
pi � [pi1, pi2, . . . , pin]T, and the position vector of the best
among all particles in the population is pg � [pg1,

pg2, . . . , pgn]T. We substitute xi in the objective function to
calculate its fitness. Particle i changes its velocity and po-
sition according to the following equations:

vid(t + 1) � vid(t) + c1r1 pid(t) − xid(t)( 

+ c2r2 pgd(t) − xid(t) ,
(32)

xid(t + 1) � xid(t) + vid(t + 1), (33)

where d � 1, 2, . . . , n; i � 1, 2, . . . , m, and t is the current
iteration number. r1 and r2 are random numbers in [0, 1],
and c1 and c2 are positive constants. By the iteration of (32)
and (33), each particle in the population gradually ap-
proaches the global optimal solution.

3.2. Quantum-Behaved Particle Swarm Optimization. In
PSO, the velocity obtained by (32) is limited. In (33), the
particles’ movement range is also limited, such that particles
cannot cover the whole feasible solution space. .erefore,
PSO cannot guarantee a global optimal solution [42].

QBPSO uses the principle of quantum mechanics to
determine the states of particles by wave functions, and the
particles are bound by the center of the attractive potential
generated by the delta potential well. In this way, particles in
a quantum bound state can appear anywhere in the search
space with a certain probability density. .erefore, the
particles in QBPSO can be searched in the whole feasible
solution space and approach global optimality.

In QBPSO, each particle is treated as spinless and
moving in quantum space, and an individual particle is
assumed to move in a delta potential well. In quantum
mechanics space, the motion state of a particle is represented
by a wave function ψ, which replaces the method described
by the velocity vector and position vector of the particle. .e
probability density that a particle appears at a certain point
in the search space is represented by |ψ2|. After determining
the probability distribution function of the particles, a
particle’s position is determined by the Monte Carlo
method. In the n-dimensional space, a population is com-
posed ofm particles, and QBPSO updates related parameters
through the following equations:

pij(t) � φj(t)pbestij(t) + 1 − φj(t) gbestj(t),

φj(t) ∼ U(0, 1),
(34)

where 1≤ i≤m and 1≤ j≤ n; pij is the center position of a
delta potential well; pbestij is the best previous position of
particle i and is called the personal best (pbest) position; and
gbestj is the position of the best particle among all particles
and is called the global best (gbest) position [26, 43].

.e mean best position C(t) defined by the average of
the best previous positions of all the particles is

C(t) � C1(t), C2(t), . . . , Cn(t)(  �
1
m



m

i�1
Pi(t)

�
1
m



m

i�1
Pi1(t),

1
m



m

i�1
Pi2(t), . . . ,

1
m



m

i�1
Pin(t)⎛⎝ ⎞⎠.

(35)

.us, the position of particle i updates as follows:

Xij(t + 1) � pij(t) ± α Cj(t) − Xij(t)


 ln
1

uij(t)
  ,

uij(t) ∼ U(0, 1),

(36)
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where α is a contraction-expansion coefficient to adjust the
algorithm.

3.3. Modified Quantum Particle Swarm Optimization. In
QBPSO, particles with quantum behavior search in the
whole feasible solution space. However, since the particles in
QBPSO are encoded by real numbers, the search is only in
one-dimensional space, and the search efficiency is low.
Quantum bits are introduced to encode the positions of
particles to improve the performance of QBPSO. Since the
USV local path planning must be completed in real time, it is
essential that the optimization algorithm can quickly obtain
the optimal value. .erefore, MQPSO is proposed.

3.3.1. Quantum Code. .e quantum bit (Q-bit) is the basic
unit in quantum computing. A Q-bit is a system with two
possible states, |0〉 and |1〉. .e state of a Q-bit |φ〉 is
expressed as |φ〉 � cos θ · |0〉 + sin θ · |1〉, where cos θ and
sin θ are the probability amplitudes and θ is the phase angle
of |φ〉. |cos θ|2 and |sin θ|2 are the probabilities in state |0〉

and |1〉, respectively. .e state of |φ〉 collapses to state |0〉

with probability |cos θ|2 and to state |1〉 with probability
|sin θ|2. .us, the state of |φ〉 is an uncertain superposition
state between |0〉 and |1〉. When the dimension of an in-
dividual Xi is n, Xi is expressed as

Xi �
cos θi1

sin θi1



cos θi2

sin θi2



· · ·

· · ·



cos θin

sin θin


 , (37)

where Xic � (cos θi1, cos θi2, . . . , cos θin) and Xis �

(sin θi1, sin θi2, . . . , sin θin) are two sets of solutions for Xi.
.erefore, after quantum coding, in each iteration, every
individual has two sets of solutions and the search space is
doubled [35]. In this way, the ergodicity of the search space
can be enhanced and the optimization process can be
accelerated when the population size is same. In MQPSO,
quantum coding is combined with quantum-behaved par-
ticle swarm optimization, that is, the positions of the par-
ticles are encoded by Q-bits according to (37).

3.3.2. Solution Space Transformation. In MQPSO, each
particle in the population contains 2n Q-bits’ probability
amplitudes. Using linear transformation, these probability
amplitudes can be mapped from n-dimensional unit space to
the solution space of the optimization problem. Suppose the
Q-bit of particle i on the jth dimension is [cos θj

i , sin θ
j
i ]
T.

.e corresponding solution space is

X
j
ic �

bi 1 + cos θj
i  + ai 1 − cos θj

i  

2
,

X
j
is �

bi 1 + sin θj
i  + ai 1 − sin θj

i  

2
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(38)

where the probability amplitude cos θj
i of quantum state |0〉

corresponds to X
j
ic and the probability amplitude sin θj

i of
quantum state |1〉 corresponds to X

j
is [35].

3.3.3. Particle Evaluation. .e two sets of solutions
(Xic, Xis) corresponding to particle i are substituted in the
cost function to calculate its cost value. For the minimum
problem, the smaller the cost value of the particle, the better
the corresponding fitness value. .e best previous position
of particle i on the jth dimension is determined by

pbestij(t)

�
Xij(t), if f Xij(t) <f pbestij(t − 1) ,

pbestij(t − 1), if f Xij(t) ≥f pbestij(t − 1) ,

⎧⎪⎨

⎪⎩

(39)

where Xij is the current position of particle i on the jth
dimension.

.e best particle’s position gbestj among all particles in
the population on the jth dimension is

g � arg min
1≤i≤m

f pbestij(t)  , (40)

gbestj(t) � Pg(t), (41)

where g is the label of the particle in the global best position.

3.3.4. Particle State Update. In MQPSO, the update of the
particle’s position is converted to the update of the Q-bit
probability amplitude’s phase angle. In this paper, the
particle-updating mechanism in QBPSO is used to adjust the
phase angle θ of the Q-bit to update the particle’s position. In
the n-dimensional space, a population is composed of m
particles. At the tth iteration, the best previous position of
particle i and the position of the best among all particles in
the population are expressed by probability amplitudes as

pbestij(t) � cos θp
ij(t) , sin θp

ij(t)  
T
, (42)

gbestj(t) � cos θgj(t) , sin θgj(t)  
T
, (43)

where 1≤ i≤m and 1≤ j≤ n, respectively.
.e phase angle of the Q-bit in the delta potential well

center position Cij is

θc
ij(t) � φj(t)θp

ij(t) + 1 − φj(t) θgj(t)

φj(t) ∼ U(0, 1),
(44)

where θp
ij(t) and θgj(t) are, respectively, the phase angles of

the best previous position of particle i and the position of the
best among all particles.

.erefore, at the (t + 1)th iteration, the phase angle of
the Q-bit of the position of the ith particle is

θij(t + 1) � θc
ij(t) ± α

1
m



m

i�1
θp

ij(t) − θij(t) 




ln

1
uij(t)

 

uij(t) ∼ U(0, 1),

(45)

where m is the number of the particles.
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In summary, the position of particle i on the jth di-
mension at the (t + 1)th iteration is expressed as

Xij(t + 1) �
cos θij(t + 1) 

sin θij(t + 1) 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (46)

3.3.5. Mutation Operation. Because the population loses its
diversity during optimization [27], the PSO algorithm tends
to fall into local extreme values. So, the population mutation
factor, that is, quantum nongate, is introduced to increase
the population’s diversity [35]. First, the mutation proba-
bility Pi must be determined, and we choose a random
number Rndi in (0, 1) for each particle. If Rndi <Pi, then we
randomly select n/2 Q-bits and switch the probability am-
plitudes of Q-bits by the quantum non-gate, such as

0 1

1 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

cos θij 

sin θij 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

sin θij 

cos θij 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

cos
π
2

− θij 

sin
π
2

− θij 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (47)

Since the mutation operation is independent of the best
previous position of the particle and the position of the best
among all particles, it can increase the diversity of the
population.

3.3.6. Pseudocodes of MQPSO. Based on the above, the main
steps of MQPSO to obtain the minimum value of the op-
timization problem are shown as Algorithm 1.

3.4. Local Path Planning Based on MQPSO. As described in
Section 2, the local path planning for USV collision
avoidance is transformed to a multiobjective optimization
problem with multiple constraints. First, we formulate the
optimization model of USV local path planning according to
(18)–(21) and (22)–(31). Without loss of generality, it is
assumed that the USV detects the obstacle that will affect its
safe navigation at the waypoint P1 when t � 0. According to
the optimization model, MQPSO can obtain the velocity
variation Δvusv(t) and course variation Δα(t). .en, the
USV sails at velocity vusv(t + Δt) � vusv(t) + Δvusv(t) and
course α(t + Δt) � α(t) + Δα(t) to reach the waypoint P2.
We repeat this process until the USV has completed collision
avoidance. .e waypoints are connected to form a local path
for USV collision avoidance.

4. Evaluation and Simulation Studies

4.1. Performance Evaluation of MQPSO. To examine the
effectiveness and efficiency of MQPSO, its performance is
compared with that of PSO and QBPSO on five different
kinds of test benchmark functions. .e five benchmark
functions are listed in Table 1. .ey are the Ackley, Grie-
wank, Rastrigin, Rosenbrock, and Schaffer functions as
defined as follows.

f1(x) is Ackley function. Ackley function is an n-di-
mensional function with one narrow global optimum basin

and many minor local optima [44]. .e function gets the
minimum value of 0 at (x1, x2, . . . , xn) � (0, 0, . . . , 0).

f2(x) is Griewank function. Griewank function has a


N
i�1 cos(xi/

�
i

√
) component causing linkages among vari-

ables, therebymaking it difficult to reach the global optimum
[44]. .e function gets the minimum value of 0 at
(x1, x2, . . . , xn) � (0, 0, . . . , 0).

f3(x) is Rastrigin function. Rastrigin function is a
complex multimodel problem with a large number of local
optima. .ere are about 10n local optimum in the range
xi ∈ [− 5.12, 5.12]. When attempting to solve Rastrigin
function, algorithms may easily fall into a local optimum
[44]. .e function gets the minimum value of 0 at
(x1, x2, . . . , xn) � (0, 0, . . . , 0).

f4(x) is Rosenbrock function. Because Rosenbrock
function provides little information for the optimization
algorithm, it is difficult for the algorithm to identify the
search direction and find the optimal solution [28]. .e
function gets the minimum value of 0 at
(x1, x2, . . . , xn) � (1, 1, . . . , 1).

f5(x1, x2) is Schaffer function. Schaffer function is a
two-dimensional complex function. Because the function
has strong oscillation characteristics, it is difficult to find the
global optimal value [28]. .e function gets the minimum
value of 0 at (x1, x2) � (1, 1).

In the test, the maximum number of iterations is 300, the
number of particles is 50, and the dimensions of the
benchmark functions are 30. .e parameters of PSO,
QBPSO, and MQPSO are consistent.

Since all the above test benchmark functions are min-
imization problems, the smaller the final value of these
functions, the better the performance of the corresponding
algorithm. .e test results, which contain optimal value, the
number of iterations for optimization algorithm to converge
to the minimum, the calculation time, and the average
calculation time for per iteration, are listed in Table 2. .e
1st, 5th, and 9th rows of Table 2, respectively, show the
optimal values obtained by PSO, QBPSO, and MQPSO for
benchmark functions f1 to f5. .e 2nd, 6th, and 10th rows
show the number of iterations required for PSO, QBPSO,
and MQPSO to converge to the minimum..e 3rd, 7th, and
11th rows, respectively, show the calculation time required
for the benchmark functions f1 to f5 to perform the entire
optimization calculation based on PSO, QBPSO, and
MQPSO. .e 4th, 8th, and 12th rows, respectively, show the
average calculation time taken by each iteration of bench-
mark functions f1 to f5 based on PSO, QBPSO, and
MQPSO.

.e data in Table 2 show that MQPSO is superior to PSO
and QBPSO in both the optimal value and the number of
iterations that converge to the minimum.

.e optimal values obtained by MQPSO and QBPSO are
lower than obtained by PSO. Because the motion states of
particles in MQPSO and QBPSO are determined by wave
functions, the particles can cover the whole feasible solution
space. MQPSO uses the above methods to avoid falling into
local extreme values. AndMQPSO further avoids falling into
local extremes by using a quantum nongate to increase the
population’s diversity. .erefore, the optimal values
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obtained by MQPSO are slightly lower than those obtained
by QBPSO and PSO.

.e number of iterations required for MQPSO to
converge to the minimum is obviously lower than for
QBPSO and PSO. Because the positions of the particles are
encoded by Q-bits, the search space is doubled, and the
convergence speed is faster.

In PSO, the strategy of first calculating the particle’s
velocity at the next moment and then updating the positions
of the particles is adopted, as shown in (32) and (33). So, the
calculation time is long. QBPSO uses a method of directly

updating the particles’ positions, which reduces the calcu-
lation time. .e particle’s position update strategy of
MQPSO is based on QBPSO. However, if the number of
encoded Q-bits is n, each particle is updated n times in
MQPSO. .erefore, the increasing calculation will lead to
the longer calculation time. As the calculation time in-
creases, the number of particle’s position updates is also
increased, improving the optimization ability of the
algorithm.

Simulation results show that the optimization capability
of MQPSO is indeed better than QBPSO and PSO.

Input: the number of the particles m,
the dimension of the problem n,
the maximum of iterations Tmax;

Output: optimal solution gbest;
(1) Initialize the position of each particle, pbest, and gbest according to (37), (42), and (43), respectively;
(2) t←0;
(3) if t≤Tmax, then
(4) t←t + 1;
(5) for each particle i, do
(6) for each dimension j, do
(7) Calculate the particle’s fitness value according to (26);
(8) Update pbestij(t) according to (39);
(9) Update gbest(t) according to (40) and (41);
(10) Calculate θc

ij(t) according to (44);
(11) Update θij(t + 1) according to (45);
(12) Determine the new position of particle i according to (46);
(13) Output the optimal solution gbest.

ALGORITHM 1: MQPSO.

Table 1: Benchmark functions.

Benchmark function Search limit

f1(x) � − 20 exp(− 0.2
������������

(1/N) 
N
i�1 x2

i



) − exp((1/N) 
N
i�1 cos(2πxi)) + 20 + exp(1) xi ∈ [− 8, 8]

f2(x) � 
N
i�1 (x2

i /4000) − 
N
i�1 cos(xi/

�
i

√
) + 1 xi ∈ [− 600, 600]

f3(x) � 
N
i�1[x2

i − 10 cos(2πxi) + 10] xi ∈ [− 5.12, 5.12]

f4(x) � 
N− 1
i�1 [100(x2

i − xi+1) + (xi − 1)2] xi ∈ [− 8, 8]

f5(x1, x2) � 0.5 + (((sin
������
x2
1 + x2

2


)2 − 0.5)/(1 + 0.001(x2

1 + x2
2))

2) x1, x2 ∈ [− 10, 10]

Table 2: Results of three algorithms on benchmark functions.

Algorithm Performance f1(x) f2(x) f3(x) f4(x) f5(x1, x2)

PSO

Optimal value 1.55 × 10− 3 5.56 × 10− 3 5.61 × 10− 2 2.03 × 10− 3 6.32 × 10− 3

Iteration 228 245 258 206 261
Time (s) 1.8619 1.8428 1.9653 1.5378 1.6795

Average time per iteration (s) 0.0062 0.0061 0.0066 0.0051 0.0056

QBPSO

Optimal value 9.37 × 10− 4 2.05 × 10− 3 2.56 × 10− 2 1.25 × 10− 3 3.12 × 10− 3

Iteration 215 231 254 197 263
Time (s) 1.4844 1.4688 1.4531 1.1563 1.2031

Average time per iteration (s) 0.0049 0.0049 0.0048 0.0039 0.0040

MQPSO

Optimal value 9.15 × 10− 4 1.86 × 10− 3 1.96 × 10− 2 1.12 × 10− 3 2.89 × 10− 3

Iteration 149 158 136 132 142
Time (s) 1.5271 1.5163 1.5534 1.3123 1.4808

Average time per iteration (s) 0.0051 0.0051 0.0052 0.0044 0.0049
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4.2. Simulations of USV Local Path Planning. In this section,
some simulations of USV local path planning based on
MQPSO, QBPSO, and PSO considering the uncertainty of
obstacle’s velocity are discussed.

It is assumed that the USV can detect the motion states of
the obstacle by the shipborne sensors and estimate its motion
states, that is, Δvobs and Δβ in (10) can be measured..e initial
motion information for the USV and the obstacles in Cases 1–3
is listed in Table 3. If the USV does not avoid collision when it
detects an obstacle that affects its safe navigation at t � 0 s, then
the USV will collide with the obstacle at t � 20 s. .e time
interval ΔT is 2 s. In this way, the USV will plan a local path
every 2 seconds, that is, 10 calculations will be performed
during the entire collision avoidance.

.e radius of the collision area ⊙O is 30m, and the radius
of ⊙wobs is 9m. .e parameters in (25) are set as CD � 1 and
A � 300. In Cases 1–3, the weights [w1, w2, w3] are
[1000, 100, 1] in (26). .e constraints in (27), (28), and (29),
respectively, are 0m/s< vusv ≤ 22m/s, |Δvusv|≤ 0.25m/s, and
|Δα|/Δt≤ 2°.

In the simulations, the maximum number of iterations is
200 and the number of particles is 50. A particle represents a
candidate solution, so the particles are two-dimensional,
where one dimension represents Δvusv and the other rep-
resents Δα. .e parameters of MQPSO, QBPSO, and PSO
are consistent.

Figures 6–8 show the planned local paths for USV
collision avoidance based on MQPSO considering uncer-
tainty in Cases 1–3, respectively. .e location of the USV is
represented by a blue pentagon every two seconds. .e
location of the obstacle is represented by a red triangle every
two seconds. .e location of the USV is represented by a
black pentagon at t � 20 s. .e collision area is represented
as a dotted red line at t � 20 s, and the USV global path is
represented by a dotted green line.

Table 4 shows the cost values in each calculation, re-
spectively, obtained by MQPSO, QBPSO, and PSO in Cases
1–3, where J(1) represents the first calculation performed
by local path planner when t � 0 and so on. From the data
in Table 4, we can conclude that the cost value obtained by
the USV local path planner based on MQPSO is lower than

those obtained by QBPSO and PSO. According to the
evaluation criteria of (25), the paths obtained by MQPSO
are better than the paths obtained by QBPSO and PSO.
.erefore, it is reasonable to choose MQPSO as the op-
timization algorithm of USV local path planning in this
study.

Figures 6–8 show the paths obtained by MQPSO can
avoid the moving obstacle in Cases 1–3. After t � 20 s, the
USV returns to the global path as soon as possible. In Cases
1–3, the strategy of simultaneously adjusting the velocity and
course of the USV is adopted.

As shown in Table 3, the encounter situation of Case 1
between the USV and the obstacle is overtaking. According
to the rules in COLREGs and Section 2.3, the USV should
pass along the port side of the obstacle. As shown in Figure 6,
the local path planner based on MQPSO can obtain a col-
lision-free path that meets the rules of COLREGs on

Table 3: Initial motion information for USV and obstacle.

Case 1 Case 2 Case 3
Initial location of USV (0, 0) (0, 0) (0, 0)

Location of goal (500, 500) (500, 500) (500, 500)

vusv(0) 18m/s 18m/s 18m/s
α(0) 45° 45° 45°
Initial location of obstacle (150, 150) (500, 400) (450, 40)

vobs(0) 5m/s 10m/s 10m/s
β(0) 45° − 145° 125°
Δvobs 0.6m/s 0.8m/s 0.8m/s
Δβ 0.8594° 0.8594° − 0.8594°
Encounter situation Overtaking Head-on Crossing from right
Whether to follow COLREGs Yes Yes Yes
Expected time of collision 20s 20s 20s
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Figure 6: Local path for USV collision avoidance based onMQPSO
in Case 1.
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Figure 7: Local path for USV collision avoidance based on MQPSO in Case 2.
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Figure 8: Local path for USV collision avoidance based on MQPSO in Case 3.

Table 4: Cost values in each calculation.

Algorithm J(1) J(2) J(3) J(4) J(5) J(6) J(7) J(8) J(9) J(10)

Case 1
MQPSO 1319.75 1305.67 1328.42 1323.27 1322.91 1325.21 1525.87 1595.71 1698.57 1784.21
QBPSO 1406.68 1433.61 1407.88 1383.07 1357.21 1358.81 1600.38 1692.81 1784.61 1844.95
PSO 1420.98 1430.80 1443.26 1424.96 1413.08 1398.57 1634.82 1774.58 1877.89 1918.35

Case 2
MQPSO 1048.58 1037.63 1013.48 1007.50 967.91 937.69 917.59 890.68 845.15 836.10
QBPSO 1138.62 1130.76 1097.33 1071.18 1037.98 1006.69 979.31 952.58 908.22 888.58
PSO 1186.66 1167.49 1162.48 1118.84 1086.32 1058.32 1040.08 1005.78 967.77 949.83

Case 3
MQPSO 992.27 980.16 988.98 967.42 965.07 961.52 948.09 953.24 936.98 932.10
QBPSO 1017.63 1020.35 1022.21 1006.77 1018.66 996.09 984.16 986.49 986.19 972.12
PSO 1097.36 1083.25 1069.46 1063.22 1050.69 1055.83 1053.99 1041.82 1020.96 1021.23
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overtaking. .e adjusted velocity and course of the USV
within 0–20 s in Case 1 are shown in Figure 9(a) and 9(b),
respectively. As shown in Table 3, the encounter situation of
Case 2 between the USV and the obstacle is head-on.
According to the rules in COLREGs and Section 2.3, the
USV should sail along the starboard side of the obstacle. As
shown in Figure 7, the local path planner based on MQPSO
can obtain a collision-free path that meets the rules of
COLREGs on head-on. .e adjusted velocity and course of
the USVwithin 0–20 s in Case 2 are shown in Figure 9(c) and
9(d), respectively. As shown in Table 3, the encounter sit-
uation of Case 3 between the USV and the obstacle is
crossing from right. According to the rules in COLREGs and
Section 2.3, the USV should adjust the course to its starboard
side and sail along the tail of the obstacle. As shown in
Figure 8, the local path planner based onMQPSO can obtain
a collision-free path that meets the rules of COLREGs on
crossing from right. .e adjusted velocity and course of the
USV within 0–20 s in Case 3 are shown in Figure 9(e) and
9(f), respectively.

.e results verify that the proposed algorithm can ef-
fectively plan the local path for USV collision avoidance.

5. Conclusions

.is study proposes a local path planning algorithm for USV
collision avoidance based on MQPSO.

First, a USV collision avoidance model is established,
which is composed of USV kinematics, COLREGs rules, the

uncertainty of the obstacle’s velocity, and a VO method,
which not only considers the velocity and course of the
USV but also handles variable velocities and courses of an
obstacle. Due to the kinematic constraints of the USV, the
velocity window and course window of the USV are de-
termined by DWA. In this way, local path planning for
USV collision avoidance is transformed into a multi-
objective optimization problem with multiple constraints
in a continuous search space. .us, a USV can avoid
collision by simultaneously adjusting its optimized velocity
and course.

Second, to solve the optimization problem, MQPSO is
primarily proposed. MQPSO is an optimization algorithm
combining quantum computing with QBPSO. It benefits
from the high efficiency of quantum computing and the
optimization ability of QBPSO. Simulation results show that
MQPSO converges more quickly than PSO and QBPSO and
avoids falling into local extreme values. .e effectiveness of
the proposed collision avoidance model is verified. Per-
formance evaluation tests on benchmark functions show
that MQPSO is superior to PSO and QBPSO in both the
optimal value and the number of iterations required for
convergence, and the proposed algorithm based on MQPSO
can effectively and efficiently plan a collision-free USV path.

In future work, the collision avoidance model proposed
in this study should consider multiple obstacles that a USV
may encounter during navigation. Moreover, the correlation
between multiple objectives should be calculated, and
MQPSO should accommodate multiobjective processing.
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Figure 9: Adjusted velocity and course based on MQPSO in Cases 1–3.
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.e uncertainties of the obstacle’s velocity and course are
also considered in future works.
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