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+e performance level of a multistate system (MSS) can vary among different values rather than only two states (perfect
functioning and complete failure). To improve the reliability of MSSs, a maintenance strategy has been adopted to satisfy customer
demand, and reliability modeling of MSS with preventive maintenance and customer demand is proposed. According to the
regular degradation and random failure at each state, based on the Markov random process, the proposed MSS with preventive
maintenance can be modeled to satisfy the customer demand in a specific state. +is model can also be adapted to compute other
reliability indices. Based on this model, the effect of different preventive maintenance actions on the reliability indices can be
analyzed and further compared. Two numerical examples have been illustrated to show the validity of the proposed model. +e
reliability model presented in this study can be used to assess the type of MSS and help reliability engineers to compare different
maintenance actions quantitatively and make optimal decisions.

1. Introduction

Generally, all systems and/or components will undergo an
aging process before complete failure. +is aging process is
often modeled as a continuous and deterministic function of
time. For example, the failure rate is usually depicted as a
bath tub curve as a function of time. However, in most real-
life situations, the failure rate depends not only on time but
also on the states of the systems and/or components.
Moreover, the traditional binary reliability theory assumes
that there are only two states: perfect functioning and
complete failure. +e binary-state assumption may over-
simplify the practical circumstances. A multistate degra-
dation system may operate in an intermediate state between
perfect functioning and complete failure.+ese intermediate
states can be caused by system deterioration or peripheral
factors, such as fatigue, burn-in, vibration, efficiency, failure
of nonessential components, and the number of random
shocks. Furthermore, the sojourn times in every state are

typically uncertain, which can result in the uncertainty of the
state-dependent failure rate. +erefore, reliability modeling
and evaluation of such multistate degraded systems have
been impelled, some of which are discussed in the following.

+e basic concepts, such as models, definitions of the
structure function, and the properties of a stochastic mul-
tistate degradation system, were developed [1–3]. +e no-
tions of minimal path set, minimal cut set, coherence, and
component relevancy have also been introduced. Based on
these concepts, some corresponding performance measures,
such as reliability, availability, mean time-to-failure, and
redundancy can be deduced as the reliability description of
the system under study [4–13].

To retain the reliability of a degraded system at a desired
level, maintenance plays an important role. +ere are two
types of maintenance that are based on time: corrective
maintenance (CM) and preventive maintenance (PM). An
optimal PM scheduling for a system consisting of deterio-
rating components was developed, and the simulated
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annealing method was employed to obtain the optimum
solution [14]. A reliability model based on Markov was
presented to evaluate a three-state system, and a novel
approach based on the Markov process to solve the dif-
ferential equations reduced the computational time signif-
icantly [15]. +e system reliability of a multistate network
with multiple sinks was modeled as one of the probabilities,
and an efficient algorithm was developed [16]. To improve
the availability of nuclear power systems, the PM optimi-
zation for the series-parallel structure was modeled and a
metaheuristic method was applied to solve the formulated
problem [17]. Aiming at the degradation modeling and
failure probability quantification of nuclear power plant
piping systems, a multistate physics modeling approach had
been proposed and applied to the piping system of a
pressured water reactor undergoing thermal fatigue [18].
Some researchers have focused on the multistate k-out-of-n
system with identical and nonidentical components, and a
novel recursive algorithm to assess the reliability and the
optimal design to improve the reliability were developed by
them [19–24]. For a mission-based system, where missions
are executed successfully with random durations, periodic
and random inspection policy with postponed replacement
is introduced [25]. An age-based preventive replacement
policy is performed for components and a recursive method
is developed to obtain its availability measure [26]. Although
most of the models for reliability analysis have assumed that
degradation will induce a decrease in system reliability, they
have not considered the sudden abrupt failure from a normal
working state.

Furthermore, maintenance actions are not always able to
restore a system back to its “as-good-as-new” condition. If
that were the case, the system might be used for an infinite
period of time or for an unlimited number of missions. It is
well known that this is something almost impossible to
achieve in actual situations. Once a system fails stochasti-
cally, either in a perfect or degraded working state, a proper
maintenance action will bring the system back to the state
that existed just before the failure. As mentioned above, CM
can be adopted when systems fall into the failure state, and
PM can improve the performance when systems are in
degraded states. Perfect PMwill bring the system to as-good-
as-new conditions; however, most PMs are imperfect due to
limited maintenance resources such as time, budget,
maintenance tools, technical level of maintenance engineers,
and working environment [27]. An imperfect PM model is
depicted as one in which, upon failure, the system will be
replaced with probability p and be minimally repaired with
probability q � 1 − p [28]. Such a model was given and the
extended great deluge optimization method was illustrated
to give the best solution [29]. Similarly, under imperfect PM,
an optimal selective maintenance strategy was resolved by a
genetic algorithm [30, 31]. A systematic replacement model
with minimal repair based on the cumulative repair-cost
limit and an optimal PM policy based on a cumulative
damage model for the used system were proposed and
analyzed, respectively [32, 33]. For the system with two
competing failure modes, degradation-based and shock-
based failure, a condition-based maintenance model is

proposed [34]. When shocks arrive according to a nonho-
mogeneous Poisson process, it can significantly weaken the
safety of system operating in an uncertain dynamic envi-
ronment [35].

After the concept of imperfect maintenance had been
introduced in the literature, the application of imperfect PM
for multistate degraded systems has drawn the attention of
many researchers. Because the scheduled PMs can be either
imperfect or perfect, the optimal PM policies and repair
decisions have been studied in order to significantly improve
the maintenance efficiency of MSS modeled by the non-
homogenous continuous time Markov process [36]. +e
difference from the MSS model previously mentioned is that
the model proposed in this study is not only based on the
homogenous Markov chain but also on features such as
Poisson failure and customer demand, which are all in-
corporated into this model. Here, a multistate degraded
system with stochastic failure and imperfect PM has been
modeled. Under the satisfaction of customer demand, this
kind of system can fail stochastically in any state between
perfect functioning and complete failure. When a system
degrades to an unacceptable state, PM can be chosen to
restore the system to one state. Based on the Markov chain
theory and imperfect maintenance theory, the corre-
sponding differential equations have been built up. Some
reliability measures have also been developed and can be
obtained by solving the model.

+e rest of this article is composed of five sections.
Section 2 formulates the MSS and stochastic model based on
Markov chain theory. In Section 3, some reliability indices
based on this model are deduced. +e detailed method of
modeling MSS is given in Section 4. Several illustrative
examples are shown in Section 5. Section 6 discusses and
concludes that the proposed model for reliability analysis is
valid for practical application.

2. System Description and Modeling

2.1. System Description. +e degraded system considered
herein can be of k + 1 performance levels including k − 1
degraded states. Initially, the system will be in perfect
functioning denoted by state 1. As time progresses, it can fall
into one of the two states: failure state k + 1 (because of an
abrupt failure), and the first deterioration state 2 (which is at
a lower performance level or production rate). +is type of
failure, which occurs randomly and suddenly, is often
named as Poisson failure, which is ubiquitous in many
working environments [28, 32, 33, 37–39]. Upon a Poisson
failure occurring at the failure rate λ1 from state 1, the
minimal repair will be implemented immediately at the
repair rate μ1, which will restore the system back to state 1. If
the system falls into the degraded state 2 from initial state 1
at the failure rate α1, it will proceed in the same manner. In
other words, the system will transit from state 2 to the
second degraded state 3 at the failure rate α2 or to the re-
pairable Poisson failure state k + 2 at the failure rate λ2. +e
other states are mimics of the transition state as can be seen
in Figure 1. When it reaches the last degraded state k, it will
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only fall into the complete failure state 2k at the failure rate
λk.

+e deterioration states can be observed through some
system parameters provided by some online supervised
systems, and the time for inspection is also neglected. All the
states of the system can be categorized into four types. State 1
is the perfect state with the perfect performance G1. State 2 to
state kare the degraded states with corresponding perfor-
mance or production rate ranging from G2 to Gk

(G2 >G3 > · · · >Gi > · · · >Gk). State k + 1 to state 2k − 1 are
repairable states of corresponding maintenance rate that can
restore back to the corresponding state, which increase the
Poisson failure. At the same time, the repairable states are of
zero production rate Gk+1 � Gk+2 � · · · � G2k−1 � 0. +e last
state 2k is of complete failure with no repair and zero
performance level G2k � 0. For the purpose of clarity, the
backgrounds of different states are shown in distinctive
shades and patterns.

To satisfy customer demand w, the system performance
will be restored to a better state, resorting the PM before the
last state k. +ere are several PM actions that can be chosen,
from minor to major maintenance. +e system will be
restored to the previous deteriorated state by minor
maintenance, while the major maintenance will take the
system back to the initial as-good-as-new condition. We
can suppose that the state i is the state that satisfies cus-
tomer demand at the lowest performance level. It can be
expressed by

Gi ≥w,

Gi+1 <w,

1< i< k.

⎧⎪⎪⎨

⎪⎪⎩
(1)

When an inspection finds that a system falls into the last
acceptable state, a PM should be implemented to restore the
system to one of the previous higher performance level at the
maintenance rate. +e maintenance rates are different
corresponding to different states, as shown in Figure 1.
Furthermore, we can assume that only one transition from
state i to state j, 1≤ j≤ i − 1, will occur. For example, the
transition rate β3 denotes the state transition from i to 3 after
a minor maintenance is chosen.

2.2. StochasticModeling. Asmentioned previously, the order
of the performance level of system states can be expressed as
follows:

G1 >G2 > · · · Gk > 0,

Gk+1 � Gk+2 � · · · G2k � 0.
􏼨 (2)

+ese performance levels are represented by the set
G � G1, G2, · · · , Gk, Gk+1, · · · , G2k􏼈 􏼉. At any time t≥ 0, the
system performance level is a random variable G(t) which
takes its value from the setG. When the system operates after
a time interval [0, T], the performance level can be treated as
a stochastic process. At an instant time t, the probabilities
associated with the respective state are expressed as the set
P(t) � P1(t), P2(t), . . . , Pi(t), . . . , P2k(t)􏼈 􏼉, where

Pi(t) � Pr G(t) � Gi􏼈 􏼉,

􏽐
i

Pi(t) � 1,

i � 1, 2, . . . , 2k.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Usually, the customer demand W(t) can also be seen as a
discrete stochastic variable taking a value from the set
W � w1, w2, . . . , wn􏼈 􏼉. For a specific system, we can assume
that the customer demand takes a constant value w. +e
acceptability of the system performance level is usually
dependent on the relation between the system performance
levelGi and customer demandw. If we assume that the state i

is the last acceptable state, the deterioration states after it will
mean nothing. According to equation (5), those states be-
tween state i + 1 and state k will be out of consideration and
can be aggregated into one single failed state i + 1 with
performance level Gi+1 � 0. Consequently, these repairable
states after state k + i can also be omitted. +us, Figure 1 can
be simplified further, as shown in Figure 2.

To assess the effect caused by a PM, a binary variable can
be defined as

δi,j �
1, if a PM is implemented from state i to state j,

0, otherwise,
􏼨

(4)

where 1≤ j≤ i − 1. Because only one PM can be performed
such that

1

2 i k

I:perfect 
functionality

II:degraded 
states

III:repairable 
states

IV:complete 
failure

3

β1

α1

μ1λ1

βi – 1

i – 1 i + 1
αi – 1

λi – 1 λi + 1λi

αi

μi

αi + 1

μi + 1μi – 1

αk – 2

λk – 1 λk

αk – 1

μk – 1

k – 1

2k – 1

2k

k + ik + 1 k + 2 k + 3 k + i
– 1

k + i
+ 1

αi – 2

β2

α3

λ3 μ3μ2

α2

λ2

β3

…

…

…

…

…

Figure 1: State transition diagram of the system.
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􏽘

i−1

1
δi,j � 1. (5)

If we assume that all the transition rates (including the
Poisson failure rate, repairable rate, degraded rate, and PM

rate) are all constant values and exponentially distributed,
then the transition process can be depicted by the Markov
process. According to Figure 2 and the assumptions men-
tioned above, the Chapman–Kolmogorov equations corre-
sponding to the Markov model are written as

dP1(t)

dt
� − α1 + λ1( 􏼁P1(t) + μ1Pk+1(t) + β1δi,1Pi(t),

dPj(t)

dt
� − αj + λj􏼐 􏼑Pj(t) + μjPk+j(t) + βjδi,jPi(t), for j � 2, 3, . . . , i − 1,

dPi(t)

dt
� − αi + λi + βjδi,j􏼐 􏼑Pi(t) + μiPk+i(t) + αi−1Pi−1(t), for j corresponding to δi,j � 1,

dPk+j(t)

dt
� λjPj(t) − μjPk+j(t), for j � 1, 2, . . . , i,

dPi+1(t)

dt
� αiPi(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

with the following initial conditions:
P1(0) � 1,

Pj(0) � 0, j � 2, 3, . . . , i + 1,

Pk+j(0) � 0, j � 1, 2, . . . , i.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

+ese state probabilities can be obtained by solving the
differential equations given by equations (6) and (7).
According to these state probabilities, reliability indices can
be calculated further.

3. Reliability Indices

3.1. Reliability, Availability, and Production Rate. +e reli-
ability function R(t) is the probability of the event that there
will be successful operation of the repairable degraded
system without any interruption until the time t. +e time t

is usually the time to the first failure, which is a random

variable T defined as the time from the beginning of the
system life up to the instant that the degraded system reaches
the first degraded or unacceptable state. Under this con-
dition, the initial performance level of the degraded system
can satisfy the customer demand w, and the reliability
function will be given by

R(t) � Pr T≥ t | G(t)≥w{ }. (8)

To determine R(t) in Figure 2, the repairable states and
the unacceptable state should be grouped into one absorbing
state denoted by state 0. In addition, all the repairs that make
the degraded system transit from state 0 to any degraded
state are removed. +e failure rate from the last acceptable
state i to state 0 is equal to the sum of αi and λi. Based on the
analysis mentioned above, the Markov model can be built, as
shown in Figure 3.

According to Figure 3, the differential equations will take
the form
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Figure 2: Simplified state transition diagram.
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dPj(t)

dt
� −λjPj(t) + βjδi,jPi(t), for j � 1, 2, . . . , i − 1,

dPi(t)

dt
� − αi + λi + βjδi,j􏼐 􏼑Pi(t) + αi−1Pi−1(t), for j corresponding to δi,j � 1,

dP0(t)

dt
� 􏽘

i−1

j�1
λjPj(t) + λi + αi( 􏼁Pi(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where the initial probability is
P1(0) � 1,

P0(0) � 0,

Pj(0) � 0, for j � 2, 3, . . . , i − 1, i.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

+ese state probabilities can be solved and used to
calculate the reliability function. Whenever the degraded
system enters into the absorbing state 0, it will never leave it.
+e state probability P0(t) can be easily used to calculate the
reliability function because it characterizes the R(t), which
will be written as

R(t) � 1 − P0(t) � 􏽘
i

j�1
Pj(t). (11)

It is to be noted that as time progresses to infinity, the
final state probabilities of the degraded system are P0(t) � 0
and others are all equal to zero, because the degraded system
always enters the final absorbing state 0.

+e instantaneous availability function A(t) is the
probability that the degraded system will be found in the
operational state at time t. For the system described in
Figure 2, these states of working efficiency are the perfect and
the degraded states. +at is to say, A(t) is the sum of the
probability that the degraded system is in state 1 and one of
the other acceptable degraded states at time t. Combining
the results of foregoing equations (6) and (7),

A(t) � Pr G(t)≥w{ } � 􏽘
i

j�1
Pj(t). (12)

At the same time, the production rate can also be ob-
tained by the probability distribution of each state. +e
instantaneous production rate function ρ(t) at time t is a de

facto output performance expectation, viz., E(G(t)). +e
value can be given by

ρ(t) � E(G(t)) � 􏽘
i

j�1
GjPj(t). (13)

3.2. Other Indices. Assuming that the life time of a degraded
system is the time to reach the designated state i due to
degradation, the unavailability of the system due to Poisson
failure can be calculated as

D(t) � 􏽘
i

j�1
Pk+j(t). (14)

Hence, the probability that the degraded system fails
completely at the state i can be defined as

F(t) � 1 − A(t) − D(t). (15)

During time t, the expected operational time spent in
each state is as follows:

Ej(t) � 􏽚
t

0
Pj(x)dx, (16)

where j � 1, 2, . . . , i, k + 1, k + 2, . . . , k + i.
Further, the expected operational time (EOT) and the

expected down time (EDT) during time t are given by

EOT(t) � 􏽚
t

0
􏽘

i

1
Pj(x)dx,

EDT(t) � t − EOT(t).

⎧⎪⎪⎨

⎪⎪⎩
(17)

Furthermore, the mean life time (MLT) is the expected
life time of the system:
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Figure 3: State transition diagram for determination of R(t).
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MLT � 􏽚
∞

0
(1 − F(t))dt � 􏽚

∞

0
(A(t) + D(t))dt. (18)

+e mean operational life time (MOLT) is the expected
operational life time of the system, which is given by

MOLT � 􏽚
∞

0
A(t)dt. (19)

+e mean time to first failure (MTTFF) of the degraded
system is the expected time to the first failure which can be
obtained by

MTTFF � 􏽚
∞

0
R(t)dt. (20)

4. Method for Modeling

Based on the abovementioned analysis, the method for
modeling an MSS with Poison failure under customer de-
mand can be summarized as follows:

S1. According to the practical production system, its
Markov model can be sketched by drawing the state
transition diagram, as shown in Figure 1
S2. Considering the customer demand on the perfor-
mance level of this system, the Markov model shown in
Figure 1 will be simplified to Figure 2
S3. State probability of the system can be obtained by
solving equations (6) and (7)
S4. Relevant indices can be calculated according to
equations (12) to (19)
S5. In order to obtain the reliability function of the
system, the model shown in Figure 2 needs to be altered
to Figure 3
S6. Solving equations (9) and (10), the probability at
each state can be obtained
S7. +e reliability function and MTTFF can be calcu-
lated easily by using equations (11) and (20)

After the abovementioned steps are fulfilled, the reli-
ability evaluation based on theMSS model will be performed
according to the relevant equations.

5. Application Examples

5.1. Example without PM. Given a degraded system shown
in Figure 4 where the parameters are signed, reliability
indices can be obtained according to the model equations (6)
and (7) to illustrate an example without PM using this
model.

+e differential equations are built up according to
Figure 4, and the results of some indices can be found. +e
expected times spent in each state are E1 � 1000,
E2 � E4 � 500, and E5 � 2500. +e relations of A(t), D(t),
and F(t) are depicted as follows.

From the abovementioned curves during the time in-
terval [0, 200], it can be observed that the system availability
A(t) decreases with time. However, the unavailability D(t)

increases with time. +e probability curve of F(t) is near to

zero, indicating that complete failure at state i is nearly
impossible. At the time t � 100, the values of the three
indices are shown in Figure 5.

+e results of the EOT and EDT listed in Table 1 are
based on 5 chosen time intervals.

According to equations (18) and (19), MLT � 4500 and
MOLT � 1500. Obviously, MLT is greater than MOLT.
However, MOLT is higher than EOT(t) which increases
with time t.

In order to obtain the reliability function for this ex-
ample, equations (9) and (10) of the model will be adopted.
After solving the equations, the reliability function can be
found using equation (11). +e curve of R(t) is shown in
Figure 6.

Combining equation (20), we obtain MTTFF � 92.7 and
R(MTTFF) � 0.3692, and the point B shown in Figure 6. If
the probability value needs to be greater than or equal to 0.6,
t≤ 48.3 would be adequate as the point A implies.

5.2. Example with PM. A more practical example with PM
actions can also be illustrated using the model. For the
feeding water system in the power plant, its performance
level can be measured usually by the weight of water pumped
to the boiler. According to the different needs of generating
power in one district, the production rate of feeding water
system can be ranged from 2000, 1500, or 700 to 0 tons/hour.
In other words, there are some different states corre-
sponding to those production rates. State 1 is the perfect
functioning of the 2000 performance level. State 2 and 3 are
the degraded states whose performance levels are 1500 and
700, respectively. State 4 is the unacceptable state whose
performance level is below the requirement. +e other states
are the Poison failures. With regard to this degraded feeding
water system which has 7 states, some PM actions may be
required to be adopted. +e state transition diagram of this
system is given in Figure 7.

Two PM actions can be chosen at state 3: one is the
imperfect PM with the transition rate β2 and the other is the
perfect PM with the transition rate β1. +e values of all
transition rates are listed in Table 2 where their meanings
correspond to Figure 7. +e production rate at each state are
1000, 750, and 600 for states 1, 2, and 3, respectively. +e
other states can be seen as the failure state whose production
rate is zero. Furthermore, the customer demand for this
system can be assumed by w≥ 600. +erefore, when the

1

4

2

5

μ1 = 0.02

μ2 = 0.01

α1 = 0.001

α2 = 0.002
3λ1 = 0.01

λ2 = 0.05

Figure 4: State transition diagram of the example without PM.
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system degrades to state 3, one PM action should be taken to
meet the customer demand.

Using equations (6) and (7) from the model, the
probabilities of each state can be obtained. +en, the
availability function A(t) will be evaluated by equation (12).
To compare the effectiveness of the PM actions, three types
of actions are adopted. +e first is to do nothing, that is,
without PM. +e second is imperfect PM with the transition
rate β2, and the last is perfect PM with the transition rate β1.

+e results of the three PM actions on A(t) are depicted in
Figure 8 within the interval t ∈ [0, 200].

From Figure 8, it can be observed that the availability
rate decreases with time. When PM actions are imple-
mented, availability rate is improved. Perfect PM has higher
characteristics of improving than imperfect PM. +e
availability rates of three types of PM actions at time t � 100
are shown by points A, B, and C, respectively.

Similarly, the production rate will be calculated
according to equation (13). +e results of production rate
ρ(t) are shown in Figure 9. At time t � 100, the production
rates are shown as points A, B, and C for the three types of
PM actions, respectively. Although the production rate
decreases with time, the findings show that the PM will
improve the production rate of this system.

In order to calculate the reliability function, equations
(9) and (10) from the model are used. Combining the three
types of PM actions, the changing trends of R(t) are depicted
in Figure 10.

In this figure, the changing trends of R(t) decrease with
time. PM actions have the property of making the reliability
higher. For example, the reliability of three PM actions at
time t � 100 are the points A, B, and C for the three types of
actions, respectively, as shown in Figure 10.

Furthermore, the MTTFF of the system will be calcu-
lated. According to equation (20), this index under three
types of PM actions can be obtained as
MTTFFDoNothing � 52.5862, MTTFFImperfect PM � 55.3733,
and MTTFFPerfect PM � 76.1119. Obviously, the PM actions
prolong the mean time to first failure significantly.

6. Discussion and Conclusion

In this study, reliability modeling for a degraded MSS was
considered. Its practical implication includes two aspects.
First, it takes into account a sudden and random failure called
Poison failure, which may occur with certain failure rate at
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Figure 5: +e curves of A(t), D(t), and F(t).

Table 1: Results of EOT(t) and EDT(t).

t 40 80 120 160 200
EOT(t) 34.2058 62.3437 88.2709 113.1894 137.4682
EDT(t) 5.7942 17.6563 31.7291 46.8106 62.5318
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Figure 6: +e curve of R(t) for the example without PM.
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Figure 7: State transition diagram of the example with PM.

Table 2: Performance distribution of components.

Transition rate
State

1 2 3 5 6 7
α 0.03 0.05 0.07 — — —
λ 0.005 0.228 0.01 — — —
μ — — — 0.01 0.02 0.04
β 0.02 0.08 — — — —
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each degraded state, and maintenance action can restore the
system back to the state just before the Poison failure at
certain maintenance rate. Second, it includes the customer
demand on the performance level. When the performance
level of the MSS degrades to a level below the customer’s
specified demand, the model will be simplified to meet the
customer’s performance limit. Moreover, some PM actions
can be adopted to restore the system back to a better state at
certain transition rate in order to improve the reliability of the
degraded MSS. +e proposed method is not only convenient
to model the degraded MSS under a customer’s specific re-
liability demand but also suitable to calculate those reliability
indices for the qualification of PM actions.

+e proposed model can be applied in many practical
situations because it can respond to a situation based on the

needs to assure a customer’s reliability demands. Further-
more, some PM actions can be qualified and expressions of
reliability indices can be easily derived and compared by
maintenance engineers for making decision. A limitation of
this study is that the transition rates among states are
considered constant. A model that treats the transition rates
as a type of distribution rather than as constants will be part
of our future work to strengthen the proposed model.
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