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,e issue of fixed-time trajectory tracking control for the autonomous surface vehicles (ASVs) system with model uncertainties
and external disturbances is investigated in this paper. Particularly, convergence time does not depend on initial conditions. ,e
major contributions include the following: (1) An integral sliding mode controller (ISMC) via integral sliding mode surface is first
proposed, which can ensure that the system states can follow the desired trajectory within a fixed time. (2) Unknown external
disturbances are absolutely estimated by means of designing a fixed-time disturbance observer (FTDO). By combining the FTDO
and ISMC techniques, a new control scheme (FTDO-ISMC) is developed, which can achieve both disturbance compensation and
chattering-free condition. (3) Aiming at reconstructing the unknown nonlinear dynamics and external disturbances, a fixed-time
unknown observer (FTUO) is proposed, thus providing the FTUO-ISMC scheme that finally achieves trajectory tracking of ASVs
with unknown parameters. Finally, simulation tests and detailed comparisons indicate the effectiveness of the proposed
control scheme.

1. Introduction

With marine engineering operations developing and pro-
gressing, autonomous surface vehicles (ASVs) are instru-
mental in river and oil pipeline inspection, hull inspection,
ocean survey, levee inspection, underwater archaeology, and
underwater wreck inspection [1–5]. ASVs are usually per-
ceived as a class of nonlinear dynamic systems equipped
with complex external disturbances and model uncertainties
[6]. It is an overwhelming matter to design a highly efficient
controller for the ASV system.

Trajectory tracking is a basic problem for ASVs; how-
ever, as the system dynamics of ASV are highly nonlinear
and there are unpredictable external disturbances in the
marine environment, designing an effective controller for
ASVs is a challenging issue. Many classical control algo-
rithms such as feedback linearization [7], backstepping
control [8], PID control [9], adaptive control [10], fuzzy
control [11], and neural networks control [12] have been
implemented to the trajectory tracking control of ASVs. ,e

system states generally realize either asymptotic convergence
or exponential convergence. In addition, many scholars have
proposed many compound control methods in combination
with above different control theories that apply to actual
control systems [13–18], especially ASV systems [5, 6, 9], etc.

,e finite-time control scheme profits from short di-
vergence span and strong robustness, which is applied to
various nonlinear control systems. In this respect, contin-
uous finite-time control schemes for robotic manipulators
have already been designed utilizing terminal sliding mode
control theory in [19], and a nonsingular terminal sliding
mode control scheme for a marine vehicle with complex
unknowns has been presented in [20]. Moreover, a finite-
time integral sliding controller in [21] has been designed to
realize the path following of the ASVs.

Although the finite-time tracking control problems are
achieved in the above references, the convergence time is to
depend on the original states. When the initial time tends to
infinity, the convergence time also tends to infinity. How-
ever, compared with the finite-time control schemes, the
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converge speed of the fixed-time control schemes is quite
insensitive to initial condition [22, 23]. Recently, many
fixed-time sliding mode control schemes have been pro-
posed. For nonlinear systems with matched uncertainties
and disturbances, a fixed-time nonsingular terminal sliding
mode controller has been proposed in [24]. In [25], for the
trajectory tracking control, a fixed-time nonsingular ter-
minal sliding mode controller for a warship-launched
submarine withmultiple disturbances has been presented. In
addition, a fixed-time sliding mode control for fault-tolerant
trajectory tracking of an ASV has been designed in [26].

As known, chattering is an inherent phenomenon in
sliding mode control. To reduce the chattering, a feasible
solution is that disturbance observer-based control (DOBC)
schemes are used to estimate external disturbances and
model uncertainties and the disturbance estimation values
are introduced into sliding mode control law. In order to
improve the convergence speed and robustness, some finite-
time disturbance observers were designed to estimate ex-
ternal disturbances and model uncertainties [27–32].

In this brief, the fixed-time trajectory tracking control
scheme for ASVs with external disturbances and model
uncertainties is explored. An integral sliding mode controller
(ISMC) is firstly intended by using ISM surface for the ASV
system without external disturbances, so that system states
can attain the expected value in fixed time. Next, a fixed-time
disturbance observer (FTDO) is designed to estimate the
external disturbances and a new control scheme (FTDO-
ISMC) is constructed to enable that the system states can
accurately track the expected trajectory within fixed time even
if there exist unexpected external disturbances. Furthermore,
to guarantee good tracking performance against both dis-
turbances and unknown system dynamics, a corresponding
fixed-time unknown observer based on ISMC (FTUO-ISMC)
control scheme is proposed. As a consequence, simulation
results imply that the proposed control schemes can guar-
antee the system states to track the desired trajectory in a fixed
time in spite of the ASV system subject to unknown dis-
turbances andmodel uncertainties and the convergence speed
is regardless of the origin states of the ASV system.

,e remainder of this paper is structured as follows: In
Section 2, some definitions and lemmas related to the tra-
jectory tracking problem are formulated. ,e problem of the
paper is described in Section 3. Section 4 describes the design
of fixed-time controller and its stability analysis. Simulation
results and discussion are mentioned in Section 5. And,
Section 6 summarizes the main conclusions of this paper.

2. Preliminaries

Lemma 1 (see [33]). Consider the following double-inte-
grator system:

_x1 � x2,

_x2 � u,

x(0) � x0,

(1)

with the control law

u(t) � − k1 x1􏼂 􏼃
ϱ1 + k1′ x1􏼂 􏼃 + k2″ x1􏼂 􏼃

ϱ1′􏼐 􏼑

− k2 x2􏼂 􏼃
ϱ2 + k2′ x2􏼂 􏼃 + k2″ x2􏼂 􏼃

ϱ2′􏼐 􏼑,
(2)

where parameters ki > 0, ki
′ > 0, k′

′
i > 0 (i � 1, 2), and ϱi, ϱi′,

(i � 1, 2) are chosen by

ϱ1 �
ϱ

2 − ϱ
,

ϱ2 � ϱ,

ϱ1′ �
4 − 3ϱ
2 − ϱ

,

ϱ2′ �
4 − 3ϱ
3 − 2ϱ

,

(3)

with ϱ ∈ (0, 1) and [x]α � |x|αsign(x), α≥ 0. Next, the state
of the double-integrator system is fixed-time stability with
convergence time tf.

Lemma 2 (see [34]). Consider the following nonlinear
system:

_x(t) � f(x, t),

f(0, t) � 0,

x(0) � x0,

(4)

where x ∈ Rn and f: R+ × Rn⟶ Rn is a nonlinear func-
tion. For the above system, suppose that there is a continuous
radially unbounded function V: Rn⟶ R+U 0{ } which
satisfies

(1) V(x) � 0, when x � 0
(2) _V(x)≤ − αVp(x) − βVq(x) for some α, β, p, q> 0,

with 0<p< 1 and q> 1

/e considered nonlinear system is globally fixed-time
stable within the settling time T satisfying

T≤Tmax ≔
1

α(1 − p)
+

1
β(q − 1)

. (5)

3. System Modeling and Problem Formulation

,e kinematics and dynamics of the ASV system regarded as
rigid body with three degrees of freedom (3-DOF) are
represented by [6]

_η � R(φ)υ, (6)

M _υ � − C(υ)υ − D(υ)υ − g(η) + τ + MR
T
dl(t), (7)

where η � [x, y,φ]T is the location (x, y) and course angle
(φ) of ASVs in an earth-fixed inertial frame, υ � [u, ], r]T is
the linear velocities (u, ]) and angular rate (r) in the body-
fixed frame, τ � [Fu, F], Fr]

T stands for the actual control
thrust, and dl(t) denotes unsuspected external disturbances
owing to complex surface environment including wind,
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waves, and ocean current. ,e rotation matrix R(φ) is de-
fined by

R(φ) �

cosφ − sinφ 0

sinφ cosφ 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

being provided with the following characters: RT(φ)

R(φ) � I, _R(φ) � R(φ)S(r), ∀φ⊆[0, 2π], and RT(φ)S(r)

R(φ) � R(φ)S(r)RT(φ) � S(r), where

S(r) �

0 − r 0

r 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

is the inertia matrix M � MT > 0 and

M �

m − X _u 0 0

0 m − Y _] mxg − Y _r

0 mxg − N _] Iz − N _r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

where m is the mass of the system, Iz is the inertia matrix
concerned with the yaw angle, Y _r � N _], and X∗, Y∗, andZ∗
denote the corresponding hydrodynamic derivatives.
Coriolis and centripetal matrix C(υ) � − C(υ)T have the
following form:

C(v) �

0 0 c13(v)

0 0 c23(v)

− c13(v) − c23(v) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (11)

and the damping matrix D(v) is described by

D(v) �

d11(v) 0 0

0 d22(v) d23(v)

0 d32(v) d33(v)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (12)

where c13(v) � − m(xgr + ]) + X _u] + Y _rr, c23(v) � mu−

X _uu, and d11(v) � − Xu − X|u|u|u| − Xuuuu2, d22(v) �

− Y] − Y|]|]|]|, d23(v) � − Yr − Y|]|r|]| − Y|r|r|r|, d32(v) �

− N] − N|]|]|]| − N|r|]|r|, and d33(v) � − Nr − N|]|r|]|−

N|r|r|r|. And g(η) is the gravity and buoyancy forces and
moments, which is usually used as a constant in ASV.

Consider the desired trajectory as follows:

_ηd � R φd( 􏼁υd, (13)

M _υd � − C υd( 􏼁υd − D υd( 􏼁υd + τd, (14)

where ηd � [xd, yd,φd]T and υd � [ud, ]d, rd]T denote its
desired position and velocity vectors, and the model con-
tains no unknown nonlinear dynamics including external
disturbances and model uncertainties.

Assumption 1. For disturbance vector dl(t), it is given that
constants κi satisfies | _dli(t)|≤ κi, where κi is an unknown
nonnegative bounded constant.

,e control purpose, in this paper, is to design fixed-time
trajectory tracking control schemes so that the practical

position and velocity (6)-(7) can precisely pursuit the ex-
pected ones (13)-(14), respectively.

4. Controller Design and Stability Analysis

4.1. Coordinate Transformation. Consider coordinate
transformations as follows:

σ � Rυ,

σ ∈ σ, σd􏼈 􏼉,

υ ∈ υ, υd􏼈 􏼉,

R ∈ R, Rd􏼈 􏼉,

(15)

where σ � [σ1, σ2, σ3]
T, σd � [σd1, σd2, σd3]

T, R � R(φ), and
Rd � R(φd).

By combining (6)-(7) and (15), we can obtain

_η � σ,

_σ � RM
− 1τ + Θ(η, σ) + dl(t),

(16)

where

Θ(η, σ) � S(σ)σ − RM
− 1

C R
Tσ􏼐 􏼑 + D R

Tσ􏼐 􏼑􏼐 􏼑R
T

σ − RM
− 1

g(η).
(17)

Similarly, together with (13), (14), and (15), we obtain

_ηd � σd,

_σd � RdM
− 1τd + Θd ηd, σd( 􏼁,

(18)

where

Θd ηd, σd( 􏼁 � S σd( 􏼁σd − RdM
− 1

C R
T
dσd􏼐 􏼑􏼐

+ D R
T
dσd􏼐 􏼑􏼑R

T
dσd.

(19)

Define the position and velocity error ηe � [ηe1,

ηe2, ηe3]
T and σe � [σe1, σe2, σe3]

T. ,en, we have

_ηe � σe,

_σe � RM
− 1τ − RdM

− 1τd + dl(t) + Θe η, σ, ηd, σd( 􏼁,
(20)

where

Θe η, σ, ηd, σd( 􏼁 � Θ(η, σ) − Θd ηd, σd( 􏼁. (21)

4.2.Designof the ISMCwithoutExternalDisturbances. In this
section, an ISMC is firstly proposed for tracking error
systems (20) and (21) without external disturbances, and the
fixed-time stability is verified.

,e ISM manifold is designed as follows:

s σe(t)( 􏼁 � σe(t) + 􏽚
t

t0

un σe(θ)( 􏼁dθ, (22)

where
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un � k1 ηe􏼂 􏼃
ϱ1 + k1′ ηe􏼂 􏼃 + k1″ ηe􏼂 􏼃

ϱ1′ + k2 σe􏼂 􏼃
ϱ2 + k2′ σe􏼂 􏼃 + k2″ σe􏼂 􏼃

ϱ2′.

(23)

and parameters are provided in Lemma 1.
,e ISMC can be designed as

τISMC � MR
− 1

RdM
− 1τd − Θe − un − ξ1[s]

α
− ξ2[s]

β
􏼐 􏼑,

(24)

where 0< α< 1, β> 1, ξ1 > 0, and ξ2 > 0.

Theorem 1 (ISMC). Consider tracking error systems (20)-
(21) without external disturbances, and an ISMC is designed
by (24). Systems (6) and (7) can converge to desired trajec-
tories (13) and (14) within a fixed time, i.e., η ≡ ηd and υ ≡ υd,
when t>Tf1.

Proof. ,ere are two processes in the whole verification: the
reaching and the sliding phases:

(i) Step 1: taking the derivative of ISM surfaces (22) and
(23) along error systems (20) and (21) without ex-
ternal disturbances dl(t) and combining with the
control law (24), we can obtain

_s � _σe + un � − ξ1[s]
α

− ξ2[s]
β
. (25)

Take the candidate Lyapunov function as follows:

V(s) �
1
2
s
2
. (26)

Differentiating it along the dynamics (25), we obtain

_V(s) � s _s � s − ξ1[s]
α

− ξ2[s]
β

􏼐 􏼑 � − ξ1|s|
α+1

− ξ2|s|
β+1

� − 2α+1/2ξ1V
α+1/2

− 2β+1/2ξ2V
β+1

.

(27)

According to Lemma 2, it is claimed that the ISM
control law will let the system states reach the ISM
surface s � 0 within a fixed time.

(ii) Step 2: at that moment, error system (20) will reduce
to the following system:

_ηe � σe,

_σe � − un ηe, σe( 􏼁.
(28)

By applying Lemma 1, we have that system (28) is
globally fixed-time stable. Eventually, errors ηe and σe are
converging to zero within a fixed time tf, so this completes
the proof. Under the ISMC scheme, the convergence time of
the ASV system is Tf1 � T0 + tf, where T0 � 1/2(α− 1)/2

ξ1(1 − α) + 1/2(β− 1)/2ξ2(β − 1).

Remark 1. External disturbances are not considered in
ISMC excogitation, but they are actually exist in the actual

environment. ,erefore, controller design for the ASV
system with external disturbances is essential.

4.3. Design of FTDO-ISMC. To achieve accurate tracking
performance, in this section, a FTDO is built to estimate the
external disturbances. Inspired by [35–37], a FTDO algo-
rithm is established as

χ0 � σ − χ,

_χ � RM
− 1τ − RdM

− 1τd + Θe η, σ, ηd, σd( 􏼁 + 􏽢dl(t) + ψi,

ψi � λ1i χ0i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1/2sign χ0i( 􏼁 + λ2i χ0i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
cisign χ0i( 􏼁,

_􏽢dl(t) � βisign χ0i( 􏼁, i � 1, 2, 3,

(29)

where χ0 � [χ01, χ02, χ03]
T is an auxiliary variable, ψ � [ψ1,

ψ2,ψ3]
T, 􏽢dl(t) � [􏽢dl1(t), 􏽢dl2(t), 􏽢dl3(t)]T denotes the esti-

mation of dl(t), λ1i and λ2i are constants greater than zero,
βi > κi, and ci > 1.

,e error dynamic of the observer is described as

_χ0i � χ1i − λ1i χ0i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1/2sign χ0i( 􏼁 − λ2i χ0i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
cisign χ0i( 􏼁,

χ1i

.
� − βisign χ0i( 􏼁 + _dli(t),

(30)

where χ1i � dli(t) − 􏽢dli(t) is the estimation error of external
disturbance. It can be derived from [36, 37] that observer
error system (18) is fixed-time stable according to As-
sumption 1, i.e., when t> t1, χ0i � χ1i � 0. And the t1 satisfies
t1 ≤ (1/λ2(c − 1)εc− 1 + 2ε1/2/λ1)(1 + 1/m((1/M) − (h(λ1)/
λ1))) with ε> 0, M � α − κ, m � α + κ, and h(λ1) �

1/λ1 + (2exp(1)/mλ1)
1/3.

Theorem 2 (FTDO-ISMC). Consider tracking error systems
(20)-(21) with external disturbances satisfying Assumption 1;
then, a FTDO-ISMC is designed as

τFTDO− ISMC � MR
− 1

RdM
− 1τd − Θe − un − 􏽢dl(t) − ξ1[s]

α
− ξ2[s]

β
􏼐 􏼑,

(31)

with 􏽢dl estimated by FTDO (30). Systems (6) and (7) can
converge to desired trajectories (13) and (14) within a fixed
time, i.e., 􏽢dl(t) ≡ dl(t), η ≡ ηd, and υ ≡ υd, when t>Tf2.

Proof. ,e derivative of ISM surface (13) is rewritten as

_s � χ1 − ξ1[s]
α

− ξ2[s]
β
. (32)

And derivative Lyapunov function V based on (32)
obtains

_V � sχ1 − ξ1|s|
α+1

− ξ2|s|
β+1

. (33)

When the time t> t1, 􏽢dl(t) equals dl(t), that is to say that
the disturbance estimation error χ1i converges to zero within
a fixed time. (33) is rewritten as

_V � − ξ1|s|
α+1

− ξ2|s|
β+1

. (34)
Based on Lemma 2, (34) is described by

_V � − 2α+1/2ξ1Vα+1/2 − 2β+1/2ξ2Vβ+1/2 and we obtain that the
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ISM manifold s � 0 will be arrived within a fixed time
T1 � 1/2(α− 1)/2ξ1(1 − α) + 1/2(β− 1)/2ξ2(β − 1). ,e system is
still the same as (28) while s � 0. In other words, the tracking
error system states ηe and υe are still sufficient to ensure
convergence along the sliding surface in a fixed time tf.
Under the FTDO-ISMC scheme, the convergence time of the
ASV system is Tf2 ≤ t1 + T1 + tf. ,is concludes the proof.

Remark 2. Note that we do not testify that the proposed
controller (31) can ensure the boundedness of errors ηe and
σe in the time quantum [0, t1] since the analysis of the
dynamics of tracking error system is a difficult subject due to
the complex nonlinear terms. In view of this reason, we have
done a large number of simulations for ASV systems (6)-(7)
under observer (29) and control laws (31), in which any
divergence phenomenon is not observed. Practically, for the
purpose of guaranteeing the boundedness of error system
states in engineering, a bounded control rule can be applied
in [0, t1]. ,erefore, it can assume that all states will not be
divergent in fixed time in advance of the observer error
dynamics converging.

Remark 3. Notice that it is difficult for Θe to obtain the real
value because C(v) and D(v) are unknown because of
existing uncertainties in ASV uncertainties. ,e FTDO only
estimates the external disturbances and the influence of
nonlinear terms is not considered, which will be solved in
this context.

4.4. Design of FTUO-ISMC. In this section, the unknown
nonlinear term consisting of C(υ), D(υ), and g(η) together
with the external disturbances dl(t) are regarded as the
lumped disturbances. ,erefore, rewriting tracking error
systems (20) and (21) yields

_ηe � σe,

_σe � RM
− 1τ − RdM

− 1τd − Θd + S(σ)σ +Φ,
(35)

where

Φ � − RM
− 1

C R
Tσ􏼐 􏼑 + D R

Tσ􏼐 􏼑􏼐 􏼑R
Tσ − RM

− 1
g(η) + dl(t),

(36)

is an unknown nonlinearity regarded as the lumped dis-
turbances. According to [29], an assumption is presented as
follows.

Assumption 2. ,ere exists a bounded constant h0 such that
| _Φ|≤ h0.

A FTUO is presented as

e0 � σ − e,

_e � RM
− 1τ − RdM

− 1τd − Θd ηd, σd( 􏼁 + S(σ)σ + 􏽢Φ + ψi,

ψi � λ1i e0i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1/2sign e0i( 􏼁 + λ2i e0i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
cisign e0i( 􏼁,

􏽢Φ
.

i � βisign e0i( 􏼁, i � 1, 2, 3,

(37)

where e0 � [e01, e02, e03]
T is an auxiliary variable,

ψ � [ψ1,ψ2,ψ3]
T, 􏽢Φ � [ 􏽢Φ1, 􏽢Φ2, 􏽢Φ3]

T is the estimation of the
unknown lumped disturbances Φ, λ1i and λ2i are positive
constants, βi > h0, and ci > 1.

,e error dynamic of the observer is described as

_e0i � e1i − λ1i e0i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1/2sign e0i( 􏼁 − λ2i e0i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
cisign e0i( 􏼁,

_e1i � − βisign e0i( 􏼁 + _Φi(t),
(38)

where the lumped disturbance estimation error is described
as e1i � Φi − 􏽢Φi. With the help of Assumption 2, observer
error system (38) is found to be fixed-time stable according
to [36, 37], i.e., when t> t2, e0i � e1i � 0. And, the t2 ≤
((1/λ2(c − 1)εc− 1) + (2ε1/2/λ1))(1 + (1/m(1/M − h(λ1)/
λ1))) with M � α − h0 andm � α + h0 is different from the
FTDO.

Theorem 3 (FTUO-ISMC). Considering tracking error
systems (35)-(36) with the unknown lumped disturbances
satisfying Assumption 2, a FTUO-ISMC is designed as

τFTUO− ISMC � MR
− 1

RdM
− 1τd + Θd − S(σ)σ􏼐 􏼑, (39)

with 􏽢Φ estimated by FTUO (40). Systems (6) and (7) can
converge to desired ones (13) and (14) within a fixed time, i.e.,
􏽢Φ ≡ Φ, η ≡ ηd, and υ ≡ υd, when t>Tf3.

Proof. ,e derivative of ISM surface (22) is redescribed as
follows:

_s � e1 − ξ1[s]
α

− ξ2[s]
β
. (40)

And the derivation of Lyapunov function (25) will be
changed as

_V � se1 − ξ1|s|
α+1

− ξ2|s|
β+1

. (41)

When the time t> t2, 􏽢Φ equalsΦ; to put it differently, the
unknown lumped disturbance estimation error e1 converges
to zero in a fixed time, which makes equation (41) become
(27) such that system states arrive at s � 0 within a fixed time
T2 � (1/2(α− 1)/2)ξ1(1 − α) + (1/2(β− 1)/2)ξ2(β − 1) based on
Lemma 2. ,e tracking error system is the same as (28) after
reaching the sliding surface, and it converges to origin along
the sliding surface in a fixed time based on Lemma 1. Under
the FTUO-ISMC scheme, the convergence time of the ASV
system is Tf3 ≤ t2 + T2 + tf. ,e proof is absolutely
accomplished.

Remark 4. Although the states of tracking error systems
(35)-(36) under control law (40) are not proved to be
bounded within [0, t2] analogous to Remark 2, sufficient
simulation results have been shown that any state does not
diverge in [0, t2]. Hence, we still suppose that the states of
(35) are bounded within the time period [0, t2].

Remark 5. ,e ISMC scheme is designed based on inte-
grated sliding mode surface for ASV systems without ex-
ternal disturbances. ,e FTDO-ISMC scheme is designed
when there are external disturbances in the ASV system.,e
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FTUO-ISMC scheme is designed considering the model
uncertainties and external disturbances of the ASV system.
,e similarity lies in that ISMC, FTDO-ISMC, and FTUO-
ISMC schemes are all based on the state feedback to design
the integral sliding mode controllers.

5. Simulation

For the sake of illustrating the efficiency and superiority of
the developed ISMC, FTDO-ISMC, and FTUO-ISMC points
at trajectory following of an ASV, simulation machine
adopted the surface vehicle CyberShip II [38] whose main
parameters can be found in [27].

In this section, simulation proposed three control laws
verifying that the system states can track the trajectory given
by (13) and (14) within a fixed time, where desired control
input τd is conducted by τd � [5, 2 cos2(0.1πt),

sin2(0.1πt)]T. ,e origin condition is given by η(0) �

[2, 1, π/2]T, υ(0) � [0, 0, 0]T, ηd(0) � [1, 2, π/4]T, and
υd(0) � [0, 0, 0]T.

5.1. Simulation on the ISMC. ,e ISMC scheme is simulated
without considering external disturbances, and the pa-
rameters of this scheme are chosen as follows: ϱ � 0.7,
ki � ki
′ � k′
′
i � 5, ξ1 � ξ2 � 3, α � 0.5, and β � 2. It is clearly

expressed from Figures 1–3 that the desired system state is
fully tracked by the system states within a fixed time.

In Figures 4 and 5, curves of tracking error are shown
under two sets of initial conditions. ,e case one is as above
and the case two is η(0) � [1, 1, π/3]T, υ(0) � [1, 0, 0]T,
ηd(0) � [1, 0, π/2]T, and υd(0) � [0, 1, 0]T. ,e convergence
time can be demonstrated to be similar in distinct initial
states. ,e control input of ISMC is shown in Figure 6.

5.2. Simulation on the FTDO-ISMC. In general, the external
disturbances always exist in the ASV dynamics. ,e un-
known external disturbances dl(t) are chosen as

dl(t) �

9sin 0.1πt −
π
5

􏼒 􏼓

6sin 0.3πt +
π
6

􏼒 􏼓

3sin 0.2πt +
π
3

􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

And the parameters of the proposed FTDO and cor-
responding controller τFTDO− ISMC are chosen as follows:

λ1i � λ2i � 6, β1 � 9, β2 � 6, β3 � 3; c1 � c2 � 0.3,
c3 � 0.8; ϱ � 0.7, ki � ki

′ � k′
′
i � 5, ξ1 � ξ2 � 4, α � 0.5, and

β � 2.
Accordingly, simulation results of FTDO-ISMC scheme

are illustrated in Figures 7–13. From Figures 7–12, compared
to the performance with ISMC, the FTDO-ISMC scheme
can also accurately control for tracking control of the ASV
system among brief time in the presence of external dis-
turbances. As can be seen from Figure 12, the FTDO can
accurately estimate the external disturbances. ,e control
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input of the ASV system under FTDO-ISMC scheme is
shown in Figure 13. ,erefore, it can be concluded that the
FTDO-ISMC scheme can achieve good tracking perfor-
mance while external disturbances are existing.

5.3. Simulation on the FTUO-ISMC. ,e unknown lumped
disturbances composed of the external disturbances and the
model uncertainties of the ASV system are estimated to-
gether by the FTUO.,e parameters of the proposed FTUO
and corresponding controller τFTUO− ISMC are chosen as
follows: λ1i � λ2i � 6, β1 � 9, β2 � 7, and β3 � 4; c1 � c2 �

0.3 and c3 � 0.6; ϱ � 0.3, ki � ki
′ � k′
′
i � 5, ξ1 � 4, ξ2 � 4,

α � 0.1, and β � 2.
,e simulation results of the ASV system under FTUO-

ISMC are all provided in Figures 14–17. It could be described
from Figures 14–16 that the vehicle can follow the expected

trajectory accurately with the fixed time while the unknown
lumped disturbances are presenting. In Figure 17, curves of
unknown lumped disturbances and estimations are pre-
sented. From this figure, we can see that the proposed FTUO
can effectively estimate the lumped disturbances. As a
conclusion, the tracking performance of the FTUO-ISMC is
satisfied for the ASV system with external disturbances and
parameter uncertainties.

6. Conclusion

In this paper, the problem of fixed-time trajectory tracking
control has been investigated for ASVs with external dis-
turbances and model uncertainties. By introducing integral
sliding mode surface, an ISMC scheme has been proposed for
ASVs, which can achieve position and velocity tracking in
fixed time. ,en, a fixed-time disturbance observer (FTDO)
has been designed to estimate the external disturbances. ,e
control scheme (FTDO-ISMC) proposed by combining the
ISM surface and the output of FTDO can accurately track the
desired trajectory for ASVs with the external disturbances. A
fixed-time unknown observer (FTUO) has been developed to
calculate the unknown lumped disturbances, and a control
law in the light of fixed-time unknown observer (FTUO-
ISMC) has been proposed to achieve accurate disturbances
attenuation and trajectory tracking for the ASVs. Results on
simulation have been used to illustrate the superiority and
efficiency of the control schemes proposed.
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