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'is paper proposes the new three-parameter type I half-logistic inverse Weibull (TIHLIW) distribution which generalizes the
inverse Weibull model. 'e density function of the TIHLIW can be expressed as a linear combination of the inverse Weibull
densities. Some mathematical quantities of the proposed TIHLIW model are derived. Four estimation methods, namely, the
maximum likelihood, least squares, weighted least squares, and Cramér–von Mises methods, are utilized to estimate the TIHLIW
parameters. Simulation results are presented to assess the performance of the proposed estimation methods. 'e importance of
the TIHLIW model is studied via a real data application.

1. Introduction

'e inverse Weibull (IW) distribution is also known as
reciprocal Weibull distribution (see [1, 2]). Keller et al. [3]
used the IW distribution to describe the degradation phe-
nomena of mechanical components such as crankshaft and
pistons of diesel engines. Further, the IW model has many
important applications in reliability engineering, infant
mortality, useful life, wear-out periods, life testing, and
service records (see [4]).

'e cumulative distribution function (CDF) of the IW
model is

GIW(x; α, β) � e
− αx− β

, x> 0, α, β> 0. (1)

Its associated probability density function (PDF) has the
following form:

gIW(x; α, β) � αβx
− β− 1

e
− αx− β

, x> 0, α, β> 0. (2)

'e statistical literature contains several extensions of
the IW model, see, for example, beta IW by Khan [5],
generalized IW by de Gusmão et al. [6], modified IW by

Khan and King [4], gamma IW by Pararai et al. [7],
Kumaraswamy generalized IW by Oluyede and Yang [8],
Kumaraswamy modified IW by Aryal and Elbatal [9],
Marshall-Olkin IW by Okasha et al. [10], and alpha power
IW by Basheer [11].

Many generalized classes of distributions have been
proposed for modeling real-life data in several applied fields
such as reliability, engineering, biological studies, eco-
nomics, medical sciences, environmental sciences, and fi-
nance. For example, Marshall and Olkin [12] proposed
Marshall-Olkin-G, Shaw and Buckley [13] defined trans-
muted-G, Cordeiro and de Castro [14] pioneered Kumar-
aswamy-G, Alizadeh et al. [15] proposed the extended odd
Weibull-G, and Cordeiro et al. [16] studied the odd Lomax-
G family.

Cordeiro et al. [17] proposed the type I half-logistic-G
(TIHL-G) class. 'e CDF of the TIHL-G family of distri-
butions is given (for x ∈ R) by

F(x; λ, δ) �
1 − [1 − G(x; δ)]

λ

1 +[1 − G(x; δ)]
λ, λ> 0, (3)
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where G(x; δ) refers to the baseline CDF with a parameter
vector δ. 'e CDF in (3) is a wider class which can be used to
generate more flexible extended distributions.

'e associated PDF of (3) has the form

f(x; λ, δ) �
2λg(x; δ)[1 − G(x; δ)]

λ− 1

1 +[1 − G(x; δ)]
λ

 
2 , (4)

where g(x; δ) is the baseline PDF. 'e hazard rate function
(HRF) of the TIHL-G family is

h(x, λ, δ) �
λg(x; δ)

[1 − G(x; δ)] 1 +[1 − G(x; δ)]
λ

 
. (5)

In this paper, we propose a new lifetime model called the
type I half-logistic inverse Weibull (TIHLIW) model. 'e
proposed model can be used, as a good alternative to some
existing distributions, in modeling several real data.

'e paper is outlined as follows. In Section 2, we define
the TIHLIW distribution and derive a useful representation
for its PDF. 'e mathematical properties of the TIHLIW
distribution are derived in Section 3. In Section 4, the
TIHLIW parameters are estimated via four methods,
namely, the maximum likelihood, least squares, weighted
least squares, and Cramér–von Mises estimators. 'ese
estimators are compared via some simulations in Section 5.
In Section 6, we illustrate the flexibility and potentiality of
the TIHLIW model using a real data set. Finally, some
concluding remarks are offered in Section 7.

2. The TIHLIW Distribution

'e CDF of the three-parameter TIHLIW distribution
follows, by replacing equation (1) in (3), as

F(x; λ, α, β) �
1 − 1 − e

− αx− β
 

λ

1 + 1 − e
− αx− β

 
λ. (6)

'e corresponding PDF of (4) reduces to

f(x; λ, α, β) �
2λαβ x

− β− 1
  e

− αx− β
  1 − e

− αx− β
 

λ− 1

1 + 1 − e
− αx− β

 
λ

 

2 .

(7)

'e HRF of the TIHLIW distribution takes the form

h(x; λ, α, β) �
λαβ x

− β− 1
  e

− αx− β
 

1 − e
− αx− β

  1 + 1 − e
− αx− β

 
λ

 

. (8)

Figure 1 provides some shapes of the PDF and HRF of
the TIHLIW distribution for some different values of the
parameters.

'e TIHLIW distribution is a very flexible model that
approaches to different distributions as special submodels:

(1) If α � 1, then the TIHLIWdistribution reduces to the
type I half-logistic Fréchet (TIHLFr) distribution

(2) If β � 1, TIHLIW distribution reduces to the type I
half-logistic inverse exponential (TIHLIE)
distribution

(3) If β � 2, we have the type I half-logistic inverse
Rayleigh (TIHLIR) distribution

2.1. Linear Representation. In this section, we express the
TIHLIW PDF as a mixture linear representation of IW
densities.

Consider the power series:

(1 + z)
− k

� 
∞

n�0

− k

n
 z

n
, |z|< 1 and k> 0. (9)

Expanding [1 + (1 − e− αx− β
)λ]− 2 using (9), we can write

(7) as

f(x; λ, α, β) � 2λαβ x
− β− 1

  e
− αx− β

  

∞

i�0

− 2

i
  1 − e

− αx− β
 

λ(i+1)− 1
.

(10)

Consider the power series:

(1 − z)
b− 1

� 
∞

j�0
(− 1)

j
b − 1

j
 z

j
, |z|< 1 and b> 0.

(11)

Using the power series (11) and after some algebra, the
TIHLIW PDF reduces to

f(x; λ, α, β) � 2λαβ x
− β− 1

  

∞

i,j�0
(− 1)

j − 2
i

 
λ(i + 1) − 1

j
  e

− α(j+1)x− β
 

� 
∞

j�0
φjg(x; α(j + 1), β),

(12)

where g(x; α(j + 1), β) refers to the IW PDF with param-
eters α(j + 1) and β, and

φj � 2λ
∞

i�0

(− 1)
j

(j + 1)

− 2

i

⎛⎝ ⎞⎠
λ(i + 1) − 1

j

⎛⎝ ⎞⎠. (13)
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Equation (12) means that the PDF of the TIHLIW is a
linear combination of the IW densities and can be used to
calculate some mathematical quantities of the TIHLIW
model from those of the IW distribution.

Consider the random variable (RV) Y ∼ IW(α, β) in (1).
For n< β, the nth ordinary and incomplete moments of Y are
given by

μn,Y
′ � α(n/β)Γ 1 −

n

β
 ,

φn,Y(t) � α(n/β)
c 1 −

n

β
, αt

β
 ,

(14)

respectively, where Γ(b) � 
∞
0 wb− 1e− wdw is the complete

gamma function and c(b, z) � 
z

0 wb− 1e− wdw is the lower
incomplete gamma function.

3. Some Properties

In this section, we studied some statistical properties of the
TIHLIW distribution, such as quantile function, ordinary
moments, moment generating function, incomplete mo-
ment, and mean deviation.

3.1. Quantile and Moment-Generating Functions. As RVX

has CDF of TIHLIW distribution, the quantile function (QF)
is defined by

Q(u) � inf x ∈ R: F(x)≥ u{ }, (15)

where (0< u< 1). 'is relation is used to find the QF of
TIHLIW distribution as follows:

Q(u) �
− 1
α
ln 1 −

1 − u

1 + u
 

λ
  

(− 1/β)

, u ∈ (0, 1). (16)

'e above equation can be used to generate TIHLIW
random variates. Here, we obtain the MGF of the IW dis-
tribution (1) by setting w � x− 1:

M(t; α, β) � αβ
∞

0
exp

t

w
 w

β− 1 exp − αw
β

 dw. (17)

By expanding exp(t/w) and calculating the integral, we
can write

M(t; α, β) � αβ
∞

0


∞

n�0

t
n

n!
w

β− n− 1
  exp − αw

β
 dw

� 
∞

n�0

α(n/β)
t
n

n!
Γ

β − n

β
 .

(18)

Using the Wright generalized hypergeometric function
[18],

pψq

α1, C1( , . . . , αp, Cp 

β1, D1( , . . . , βq, Dq 

; x
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 
∞

m�0


p

i�1Γ αi + Cim( 


q
i�1Γ βi + Dim( 

x
m

m!
.

(19)

'e MGF of the IW distribution has the form

M(t; α, β) � 1ψ0
1, − β− 1

 

−
; α(1/β)

t⎡⎣ ⎤⎦. (20)

Using equations (12) and (20), the MGF of the TIHLIW
distribution reduces to
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Figure 1: Plots of the PDF and HRF of the TIHLIW distribution for different values of parameters.
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M(t) � 
∞

j�0
φj1ψ0

1, − β− 1
 

−
; [α(j + 1)]

(1/β)
t⎡⎣ ⎤⎦. (21)

3.2. Moments. 'e sth ordinary moment of RVX is

μs
′ � E X

s
(  � 

∞

j�0
φj 
∞

0
x

s
g(x; α(j + 1)), βdx. (22)

For (s< β), we obtain

μs
′ � 

∞

j�0
φj[α(j + 1)]

(s/β)Γ 1 −
s

β
 . (23)

Setting (s � 1) in (23), we obtain the mean of X.
'e sth incomplete moment of the TIHLIW distribution

is defined by φs(t) � 
t

0 xsf(x)dx.
Using equation (12), we can write

φs(t) � 
∞

j�0
φj 

t

0
x

s
g(x; α(j + 1), β). (24)

Hence, we obtain the sth incomplete moment of the
TIHLIW distribution:

φs(t) � 

∞

j�0
φj[α(j + 1)]

(s/β)
c 1 −

s

β
, α(j + 1)t

β
 , s< β.

(25)

'e first incomplete moment which follows by setting
(s � 1) in the above equation is

φ1(t) � 
∞

j�0
φj [α(j + 1)]

(1/β)
c 1 −

1
β

, α(j + 1)t
β

 , β> 1.

(26)

3.3. Mean Residual Life and Mean Waiting Time. 'e mean
residual life (MRL) has useful applications in economics, life

insurance, biomedical sciences, demography, product
quality control, and product technology (see [19]). 'e MRL
refers to the expected additional life length for a unit that is
alive at age t, and it is defined by mX(t) � E(X − t | X> t),
t> 0.

'e MRL of X can be calculated by the formula:

mX(t) �
1 − φ1(t) 

S(t) − t
, (27)

where S(t) is the survival function of X.
By inserting (26) in (27), the MRL of the TIHLIW

distribution follows as

mX(t) �
1

S(t)


∞

j�0
φj[α(j + 1)]

(1/β)
c 1 −

1
β

, α(j + 1)t
β

  − t.

(28)

'e mean inactivity time (MIT) (mean waiting time) is
defined by MX(t) � E(t − X | X≤ t), t> 0, and it can be
calculated by the formula:

MX(t) � t −
φ1(t)

F(t)
 . (29)

By substituting (26) in (29), the MIT of the TIHLIW
distribution follows as

MX(t) � t −
1

F(t)


∞

j�0
φj[α(j + 1)]

(1/β)
c 1 −

1
β

, α(j + 1)t
β

  .

(30)

3.4. Order Statistics. Consider the random sample from the
TIHLIW (λ, α, β) denoted by (X1, . . . , Xn) and its associated
order statistics denoted by (X(1), . . . , X(n)). 'e PDF of the
rth order statistic is denoted by (X(r), 1≤ r≤ n) and can be
expressed as

f(r)(x) �
n!

(r − 1)!(n − r)!

2λαβ x
− β− 1

  e
− αx− β

  1 − e
− αx− β

 
λ− 1

1 + 1 − e
− αx− β

 
λ

 

2 ×
1 − 1 − e− αx− β

 
λ

1 + 1 − e− α x− β
( 

λ
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

r− 1
2 1 − e− αx− β
 

λ

1 + 1 − e− αx− β
( 

λ
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

n− r

. (31)

'e PDF of X(r) is defined also by the formula:

f(r)(x) �
f(x)

B(r, n − r + 1)


n− r

j�0
(− 1)

j
n − r

j

⎛⎝ ⎞⎠F
j+r− 1

(x).

(32)

Using the PDF and CDF of the TIHLIW distribution,
equation (32) reduces to
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f(x)F
j+r− 1

(x) �
2λαβ x

− β− 1
  e

− αx− β
  1 − e

− αx− β
 

λ− 1

1 + 1 − e
− αx− β

 
λ

 

j+r+1 1 − 1 − e
− αx− β

 
λ

 

j+r− 1

. (33)

Using expansion (9) and the power series,

(1 − z)
b− 1

� 
b− 1

j�0
(− 1)

j
b − 1

j
 z

j
, b positive integer.

(34)

We can write

f(x)F
j+r− 1

(x) � 2λαβ x
− β− 1

  e
− αx− β

  

∞

l�0


j+r− 1

i�0
(− 1)

i
− j − r − 1

l
  ×

j + r − 1

i
  1 − e

− αx− β
 

λ(l+i+1)− 1
. (35)

Applying the power series (11), equation (35) reduces to

f(x)F
j+r− 1

(x) � 2λαβ x
− β− 1

  

∞

l�0


j+r− 1

i�0
(− 1)

i
− j − r − 1

l
 

j + r − 1

i
  ×

λ(l + i + 1) − 1

k
 e

− α(k+1)x− β
(36)

By replacing (36) in equation (32), we obtain

f(r)(x) �
2λ

B(r, n − r + 1)


n− r

j�0


∞

l,k�0


j+r− 1

i�0
(− 1)

j+i+k
n − r

j

⎛⎝ ⎞⎠
− j − r − 1

l

⎛⎝ ⎞⎠ ×

j + r − 1

i

⎛⎝ ⎞⎠
λ(l + i + 1) − 1

k

⎛⎝ ⎞⎠αβx
− β− 1

e
− α(k+1)x− β

.

(37)

Hence, we can write

f(r)(x) � 

∞

k�0
bkg(x; α(k + 1), β), (38)

where g(x; α(k + 1), β) denotes the IW PDF with param-
eters β and α(k + 1), and

bk � 
n− r

j�0


∞

l�0


j+r− 1

i�0

2λ(− 1)
j+i+k

B(r, n − r + 1)(k + 1)

n − r

j

⎛⎝ ⎞⎠
− j − r − 1

l

⎛⎝ ⎞⎠
j + r − 1

i

⎛⎝ ⎞⎠
λ(l + i + 1) − 1

k

⎛⎝ ⎞⎠. (39)

Equation (38) reveals that the PDF of the TIHLIW order
statistics is a mixture of IW densities. Hence, the qth mo-
ment of X(r) has the form

E X
q

(r)  � 
∞

k�0
bk[α(k + 1)]

(q/β)Γ 1 −
q

β
 . (40)

4. Estimation Methods

'e estimation of the TIHLIW parameters is investigated
using four methods of estimation, namely, the maximum
likelihood estimators (MLEs), least squares estimators
(LSEs), weighted least squares estimators (WLSEs), and
Cramér–von Mises estimators (CVMEs).
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4.1. Maximum Likelihood. We determine the MLEs of the
TIHLIW parameters. Let (x1, x2, . . . , xn) be a random
sample of size n from TIHLIW (ϕ) where ϕ � (λ, α, β)T. 'e
log-likelihood function for ϕ has the form

ℓ � n log(2λαβ)

− (β + 1) 
n

i�1
log xi − α

n

i�1
x
β
i

+(λ − 1) 
n

i�1
log 1 − e

− αx
− β
i 

− 2
n

i�1
log 1 + 1 − e

− αx
− β
i  .

(41)

We can maximize the above log-likelihood equation by
solving the nonlinear likelihood equations which follow by
differentiating it.'e associated components of the score vector

Un(ϕ) �
zℓ
zλ

,
zℓ
zα

,
zℓ
zβ

 

T

, (42)

are given by

zℓ
zλ

�
n

λ
+ 

n

i�1
log 1 − e

− αx
− β
i ,

zℓ
zα

�
n

α
− 

n

i�1
x
β
i +(λ − 1) 

n

i�1

x
− β
i e

− αx
− β
i

1 − e
− αx

− β
i

− 2
n

i�1

x
− β
i e

− αx
− β
i

1 + 1 − e
− αx

− β
i 

.

(43)

And,

zℓ
zβ

�
n

β
− 

n

i�1
log xi(  − α

n

i�1
x
β
i log xi( 

+ 2
n

i�1

α log xi( x
− β
i e

− αx
− β
i

1 + 1 − e
− αx

− β
i 

+(λ − 1) 

n

i�1

α log xi( x
− β
i e

− αx
− β
i 

1 − e
− αx

− β
i

.

(44)

'e MLEs of ϕ can be constructed by solving the
nonlinear system Un(ϕ) � 0 that cannot be analytically
solved; hence, statistical programs are utilized to solve them
numerically via iterative techniques such as a New-
ton–Raphson algorithm.

4.2. Ordinary and Weighted Least Squares. 'e least square
and weighted least square methods are used to estimate the
parameters of beta distribution [20]. Let
x(1) <x(2) < · · · < x(n) be the order statistics of a sample
from the TIHLIW distribution, and then the LSEs and
WLSEs of α, λ, and β can be obtained by minimizing the
following function with respect to α, λ, and β:

S(α, λ, β) � 
n

i�1
Ai

1 − 1 − e
− αx

− β
(i) 

λ

1 + 1 − e
− αx

− β
(i) 

λ −
i

n + 1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

2

, (45)

where (Ai � 1) in the case of LSEs and (Ai � ((n + 1)2(n +

2))/(i(n − i + 1))) in the case of WLSEs.
Further, the LSEs andWLSEs of the TIHLIW parameters

are also obtained by solving the following nonlinear equa-
tions simultaneously with respect to α, λ, and β:

zS(α, λ, β)

zα
� 

n

i�1
Ai

1 − 1 − e
− αx

− β
(i) 

λ

1 + 1 − e
− αx

− β
(i) 

λ −
i

n + 1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

ϕ1i � 0,

zS(α, λ, β)

zλ
� 

n

i�1
Ai

1 − 1 − e
− αx

− β
(i) 

λ

1 + 1 − e
− αx

− β
(i) 

λ −
i

n + 1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

ϕ2i � 0,

zS(α, λ, β)

zβ
� 

n

i�1
Ai

1 − 1 − e
− αx

− β
(i) 

λ

1 + 1 − e
− αx

− β
(i) 

λ −
i

n + 1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

ϕ3i � 0,

(46)

where

ϕ1i �
− 2λx

− β
(i)e

− αx
− β
(i) 1 − e

− αx
− β
(i) 

λ− 1

1 + 1 − e
− αx

− β
(i) 

λ
 

2 , (47)

ϕ2i �
2 1 − e

− αx
− β
(i) 

2λ
log 1 − e

− αx
− β
(i) 

1 + 1 − e
− αx

− β
(i) 

λ
 

2 , (48)

ϕ3i �
2λαx

− β
(i)e

− αx
− β
(i) log x(i)  1 − e

− αx
− β
(i) 

λ− 1

1 + 1 − e
− αx

− β
(i) 

λ
 

2 . (49)

4.3. Cramér–von Mises. Based on the Cramér–von Mises
(CVM) method [21, 22], the CVMEs of the TIHLIW pa-
rameters can be constructed by minimizing

C(α, λ, β) �
1
12n

+ 
n

i�1

1 − 1 − e
− αx

− β
(i) 

λ

1 + 1 − e
− αx

− β
(i) 

λ −
2i − 1
2n

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

2

,

(50)

with respect to α, λ, and β. Further, the CVMEs can also be
obtained by solving the following nonlinear equations si-
multaneously with respect to α, λ, and β:
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zC(α, λ, β)

zα
� 

n

i�1

1 − 1 − e
− αx

− β
(i) 

λ

1 + 1 − e
− αx

− β
(i) 

λ −
2i − 1
2n

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

ϕ1i � 0,

zC(α, λ, β)

zλ
� 

n

i�1

1 − 1 − e
− αx

− β
(i) 

λ

1 + 1 − e
− αx

− β
(i) 

λ −
2i − 1
2n

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

ϕ2i � 0,

zC(α, λ, β)

zβ
� 

n

i�1

1 − 1 − e
− αx

− β
(i) 

λ

1 + 1 − e
− αx

− β
(i) 

λ −
2i − 1
2n

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

ϕ3i � 0,

(51)

where ϕ1i, ϕ2i, and ϕ3i are, respectively, defined in equations
(47)–(49).

5. Simulation Study

In this section, we conduct a simulation study to compare
the performance of the different estimators based on the
mean square error criterion. We compare the perfor-
mances of the MLEs, LSEs, WLSEs, and CVMEs based on
the mean square errors (MSEs) for different sample sizes.
Mathematica 9 is utilized to obtain simulation results from
10, 000 replications. 'e mean values of the MLEs, LSEs,
WLSEs, and CVMEs and their MSEs of the TIHLIW
parameters by considering sample sizes n � 50, 100, and
200, are given for different values of parameters α, λ, and β.
'e mean values of the MLEs, LSEs, WLSEs, and CVMEs
and MSEs of the TIHLIW parameters are listed in
Tables 1–3.

From Tables 1–3, we conclude the following:

(1) 'e MSE of α, λ, and β for all estimation methods
decreases as n increases.

(2) Table 1 shows that the MLEs have the lowest MSE in
most cases of α and λ. Also, the WLSEs have the least
MSE in most cases of β at α � 0.5, λ � 0.5, and
β � 0.5.

(3) Table 2 shows that CVMEs get the least MSE in most
situations of α and λ. Also, the WLSEs have the
lowest MSE in most cases of β at α � 0.5, λ � 1.5, and
β � 0.5.

(4) Table 3 shows that CVMEs have the lowest MSE in
most cases of α, λ, and β at α � 0.5, λ � 1.5, and
β � 1.5.

6. Data Analysis

In this section, we present an application to a real data set
to illustrate the performance and flexibility of the TIH-
LIW distribution. 'e data refer to relief times of a sample
of 20 patients who receive an analgesic [23]. 'ese data
have been analyzed by Afify et al. [24] and Cordeiro et al.
[25].

For these data, we compare the TIHLIW model with
some rival models, namely, the beta generalized inverse
Weibull geometric (BGIWGc) by Elbatal et al. [26], trans-
muted complementary Weibull geometric (TCWGc) by
Afify et al. [27], beta transmuted Weibull (BTW) by Afify
et al. [28], McDonald log-logistic (McLL) by Tahir et al. [29],
beta Weibull (BW) by Lee et al. [30], McDonald Weibull
(McW) by Cordeiro et al. [31], exponentiated transmuted
generalized Rayleigh (ETGR) by Afify et al. [32], and new
modified Weibull (NMW) [33] distributions. 'e PDFs of
these distributions are given (for x> 0) by

Table 1: 'e mean values and MSEs of the TIHLIW distribution.

Parameters MLEs LSEs WLSEs CVMEs
n � 50

α � 0.5 0.559
(0.244)

0.620
(0.223)

0.612
(0.201)

0.633
(0.240)

λ � 0.5 0.577
(0.269)

0.654
(0.280)

0.626
(0.189)

0.659
(0.299)

β � 0.5 0.646
(0.122)

0.540
(0.066)

0.540
(0.062)

0.567
(0.078)

n � 100

α � 0.5 0.522
(0.103)

0.588
(0.117)

0.578
(0.103)

0.574
(0.128)

λ � 0.5 0.521
(0.061)

0.593
(0.099)

0.575
(0.071)

0.58
(0.122)

β � 0.5 0.574
(0.048)

0.521
(0.042)

0.518
(0.033)

0.543
(0.045)

n � 200

α � 0.5 0.504
(0.055)

0.538
(0.072)

0.532
(0.059)

0.553
(0.072)

λ � 0.5 0.509
(0.029)

0.546
(0.049)

0.535
(0.034)

0.555
(0.051)

β � 0.5 0.539
(0.022)

0.522
(0.025)

0.516
(0.018)

0.515
(0.023)

Table 2: 'e mean values and MSEs of the TIHLIW distribution.

Parameters MLEs LSEs WLSEs CVMEs
n � 50

α � 0.5 0.552
(0.211)

0.474
(0.110)

0.499
(0.114)

0.466
(0.104)

λ � 1.5 1.877
(3.526)

1.056
(1.525)

0.985
(1.589)

1.492
(0.800)

β � 0.5 0.612
(0.094)

0.568
(0.033)

0.565
(0.039)

0.594
(0.042)

n � 100

α � 0.5 0.551
(0.119)

0.456
(0.062) 0.489 (0.07) 0.454

(0.053)

λ � 1.5 1.737
(1.128)

1.431
(0.453)

1.523
(0.515)

1.423
(0.403)

β � 0.5 0.542
(0.032)

0.558
(0.019)

0.544
(0.019)

0.563
(0.019)

n � 200

α � 0.5 0.516
(0.051) 0.433 (0.03) 0.459

(0.031)
0.437
(0.029)

λ � 1.5 1.578
(0.340)

1.351
(0.179)

1.419
(0.187)

1.368
(0.175)

β � 0.5 0.524
(0.013)

0.556
(0.012)

0.540
(0.010)

0.553
(0.011)
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BGIWGc: f(x) � ((1 − p)b/B(a, b))αθc(αx)− θ− 1

e− ca(αx)− θ
(1 − e− c(αx)− θ

)b− 1 × [1 − p(1 − e− c(αx)− θ
)]− a− b,

where p ∈ (0, 1), α, β, c, a> 0 and b> 0.
BTW: f(x) � (βαβ/B(a,b))xβ− 1[1 − λ+2λe− (αx)β ] [1 −{

e− (αx)β] [1+λe− (αx)β]}a− 1 × e− (αx)β 1 − [1 − e− (αx)β][1+

λe− (αx)β ]}b− 1, where α,β,a,b>0 and |λ|≤1.

TCWGc: f(x) � αβc(cy)β− 1e− (cy)β[α(1 − λ) − (α−

αλ − λ − 1)e− (cy)β ] × [α + (1 − α) e− (cy)β]− 3, where α, β,

c> 0 and |λ|≤ 1.

McLL: f(x) � (αc/(B(a/c, b)β))(x/β)aα− 1[1+

(x/β)α]− a− 1(1 − 1 − [1 + (x/β)α]− 1 
c
), where α, β,

a, b> 0 and c> 0.

Table 3: 'e mean values and MSEs of the TIHLIW distribution.

Parameters MLEs LSEs WLSEs CVMEs
n � 50
α � 0.5 0.602 (0.276) 0.544 (0.060) 0.545 (0.056) 0.563 (0.064)
λ � 1.5 2.126 (5.703) 1.656 (0.641) 1.652 (0.469) 1.704 (0.627)
β � 1.5 1.786 (0.764) 1.498 (0.106) 1.510 (0.116) 1.508 (0.095)
n � 100
α � 0.5 0.555 (0.128) 0.539 (0.021) 0.552 (0.026) 0.527 (0.017)
λ � 1.5 1.775 (1.598) 1.600 (0.128) 1.642 (0.161) 1.583 (0.096)
β � 1.5 1.618 (0.297) 1.452 (0.036) 1.447 (0.047) 1.493 (0.040)
n � 200
α � 0.5 0.516 (0.049) 0.524 (0.009) 0.540 (0.014) 0.530 (0.009)
λ � 1.5 1.583 (0.346) 1.562 (0.042) 1.608 (0.082) 1.577 (0.045)
β � 1.5 1.567 (0.113) 1.470 (0.017) 1.456 (0.025) 1.467 (0.016)

Table 4: Goodness-of-fit measures for relief times data.

Model − 2ℓ AIC CAIC HQIC AD CVM
TIHLIW 30.752 36.752 38.252 37.335 0.1746 0.0319
BGIWGc 31.662 43.662 50.124 44.828 0.2467 0.0434
BTW 33.051 43.051 74.337 44.023 0.3977 0.0689
TCWGc 33.607 41.609 44.274 42.385 0.4360 0.0725
McLL 33.854 43.855 48.140 44.826 0.4620 0.0790
McW 33.907 43.907 48.193 44.879 0.4693 0.0802
BW 34.396 42.396 45.063 43.174 0.5132 0.0873
ETGR 36.856 44.857 47.523 45.634 0.7929 0.1363
NMW 41.173 51.173 55.459 52.145 1.0678 0.1759

Table 5: MLEs and SEs for relief times data.

Model MLEs
TIHLIW 5.317 5.361 0.799
(α, β, λ) (2.583) (3.712) (0.789)
BGIWGc 19.18 20.59 1.434 9.848 39 · 10− 5 5.8015
(α, c, θ, p, a, b) (33.03) (43.24) (0.837) (2.001) (63.25) (4.346)
BTW 5.618 0.531 53.34 3.568 − 0.771
(α, β, a, b, λ) (9.353) (0.184) (111.4) (4.265) (3.894)
TCWGc 43.66 5.127 0.282 − 0.271
(α, β, c, λ) (45.45) (0.814) (0.042) (0.656)
McLL 0.881 2.070 19.22 32.03 1.926
(α, β, a, b, c) (0.109) (3.693) (22.34) (43.07) (5.165)
McW 2.773 0.380 79.10 17.89 3.006
(α, β, a, b, c) (6.380) (0.188) (119.1) (39.51) (13.96)
BW 0.831 0.612 29.94 11.63
(α, β, a, b) (0.954) (0.340) (40.41) (21.90)
ETGR 0.103 0.691 − 0.342 23.53
(α, β, λ, δ) (0.436) (0.086) (1.971) (105.3)
NMW 0.121 2.783 8.2 · 10− 5 0.0003 2.787
(α, β, c, δ, θ) (0.056) (20.37) (1.5 · 10− 3 ) (0.025) (0.428)
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McW: f(x) � (βcαβ/(B(a/c, b)))xβ− 1e− (αx)β[1 −

e− (αx)β]a− 1 1 − [1−{ e− (αx)β]c}b− 1, where α, β, a, b> 0 and
c> 0.
BW: f(x) � (βαβ/(B(a, b)))xβ− 1e− b(αx)β[1 −

e− (αx)β]a− 1, where α, β, a> 0 and b> 0.
ETGR: f(x) � 2αδβ2xe− (βx)2[1 − e− (βx)2]αδ− 1 × 1+{

λ − 2λ[1 − e− (βx)2]α} 1 + λ − λ[1 − e− (βx)2]α 
α− 1

, where
α, β, δ > 0 and |λ|≤ 1.
NMW: f(x) � [αθxθ− 1 + c(β + δx)xβ− 1eδx]

e− (αxθ+cxβeδx), where α, β, θ, c> 0 and δ > 0.

We consider some criteria including − 2ℓ (where ℓ is the
maximized log-likelihood), AIC (Akaike information cri-
terion), HQIC (Hannan–Quinn information criterion),
CAIC (corrected Akaike information Criterion), AD
(Anderson–Darling statistic), and CVM (Cramér–vonMises

statistic), where Table 4 lists the numerical values of − 2ℓ,
AIC, CAIC, HQIC, A∗, and W∗ for all fitted models, whereas
MLEs and their standard errors (SEs) (in parentheses) are
given in Table 5. From Table 4, the TIHLIW has the lowest
values for all goodness-of-fit measures, and hence it provides
close fits to relief times data than other fitted models.

'e fitted PDF, estimated CDF, estimated survival
function (SF), and PP plots of the TIHLIW distribution are
shown in Figures 2 and 3.

7. Conclusions

We proposed a three-parameter type I half-logistic inverse
Weibull (TIHLIW) distribution as a new extension of the
inverse Weibull model. 'e TIHLIW density is a linear
combination of the inverse Weibull densities. Some explicit
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Figure 3: 'e estimated SF and PP plot of the TIHLIW model.
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Figure 2: 'e fitted PDF and estimated CDF of the TIHLIW model.
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expressions for mathematical quantities of the TIHLIW
distribution are derived. We consider four methods of es-
timation, namely, the maximum likelihood, least squares,
weighted least squares, and Cramér–von Mises methods, to
estimate the TIHLIW parameters. 'e performance of these
proposed estimation methods is conducted via some sim-
ulations. A real data application proves that the TIHLIW
model provides consistently better fits compared to some
other rival models.
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