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Robust techniques critically improve bearing-only target localization when the relevant measurements are being corrupted by
impulsive noise. Resistance to isolated gross errors refers to the conventional least absolute residual (LAR) method, and its
estimate can be determined by linear programming when pseudolinear equations are set. (e LAR approach, however, cannot
reduce the bias attributed to the correlation between system matrices and noise vectors. In the present study, perturbations are
introduced into the elements of the system matrix and the data vector simultaneously, and the total optimization problem is
formulated based on least absolute deviations. Subsequently, an equivalent form of total least absolute residuals (TLAR) is
obtained, and an algorithm is developed to calculate the robust estimate by dual ascent algorithms. Moreover, the performance of
the proposed method is verified through the numerical simulations by using two types of localization geometries, i.e., random and
linear. As revealed from the results, the TLAR algorithm is capable of exhibiting significantly higher localization accuracy as
compared with the LAR method.

1. Introduction

Bearing-only target localization (BOTL) by exploiting spa-
tially distributed sensors can have extensive applications in
vehicle [1] or gunshot [2] positioning, animal habit moni-
toring [3], network localization [4], multiagent systems
[5, 6], recently massive arrays [7], etc. BOTL algorithms have
received broad studies under the measurement noise of
Gaussian [8–11]. For numerous applications, however, es-
pecially for military applications, the bearing sensors exhibit
vulnerability to external interference, enemy attack, or node
failure. (e bearing measurements may be subject to im-
pulsive noises [12–16], thereby dramatically reducing the
localization performance. How to maintain high positioning
performance under unreliable measurements should be
considered in this paper.

On the whole, the existing robust BOTL methods to
process outlier data can fall to the outlier detection [17] and
the M-estimate [18]. (e outlier detection method aims to
first detect suspected outlier data, separate them from the

original data set, and then exploit the remaining data to
complete the localization task. Picard and Weiss and Picard
[17] proposed a sparse representation method to detect the
outlier data of time-of-arrival, time-difference-of-arrival, and
direction-of-arrival, as solved by linear programming. Xiong
et al. [19] developed a robust expectation-maximization al-
gorithm for distance outlier detection. (ough the outlier
detectionmethod is intuitive and effective, it does not apply to
large data sets or complex application scenarios.

(e other important aspect refers to M-estimate, capable
of estimating robust positions without preprocessing data.
M-estimate primarily aims to comply with some other
criteria, instead of the least-squares criterion, which is more
robust to impulsive noise, as an attempt to improve esti-
mators to be less sensitive to model errors. (e robust
criteria consist of Huber [20], Bi-square [18], the negative
log-likelihood of the Cauchy distribution [21], Wilcoxon
[22], Chebyshev norm [23], Lp-norms (1≤p< 2) [24], etc.
Based on energy information for sensor networks, Liu et al.
[18] presented a distributed robust localization algorithm.
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Such algorithm employs Bi-square function as the cost
function of M-estimate. Panigrahi et al. [22] proposed a
distributed incremental least mean square algorithm based
on Wilcoxon norm for parameter estimation of sensor
networks. Wu et al. [25] proposed a robust structure total
least-squares algorithm for passive localization. (e algo-
rithm adopts the optimized Danish weight function to re-
duce the effect of outlier data on the localization
performance. Furthermore, the Lp-norms (1≤p< 2) are
useful for robust estimation since less weight is given to
isolated deviations. Under the application of the L1-norm,
such M-estimate is termed as the least absolute residuals
(LAR) [26] method. For outlier suppression, the L1-norm
appears to be markedly superior among the Lp-norms
(1≤p<∞) [27].

From a statistical perspective, the least-squares opti-
mization equals the maximum likelihood (ML) estimation
when the measurements are corrupted with independent
and identically distributed Gaussian noise. However, the
noise distribution is altered with the presence of outliers.(e
Laplace distribution refers to a probability distribution that
accommodates large residuals. (e ML estimator of this
distribution leads to the LAR solution [28]. (ough the ML
method is optimal for statistics, its cost function is nonlinear
and nonconvex with respect to the target location param-
eters.(e iterative numerical search is inevitable forML, and
the absolute norm should be considered in the respective
iteration. (e iterative algorithms tend to diverge when
poorly initialized and computationally expensive. To remedy
the defects of the ML method, [29] proposed a pseudolinear
estimator (PLE) by lumping the nonlinearities into the noise
term. However, the PLE is subjected to severe bias [30], and
the bias remains with the increase in the number of sensors
due to the correlations between system matrices and mea-
surement noises. Various algorithms have been proposed to
reduce the bias, including instrumental variable (IV) [31, 32]
and total least-squares (TLS) [33]. (e IV method [31] is
capable of reducing biases by setting an instrumental matrix
that is asymptotically uncorrelated with the noise vector.
Inconsistent with the IV method, the TLS algorithm [33]
attempts to reduce biases by minimizing the errors in the
systemmatrix and the measurement vector. However, the IV
and TLS estimators fail to improve the bias performance if
the measuring angles have gross errors.

In brief, robust pseudolinear algorithms for BOTL aim to
reduce biases attributed to both large residuals and the
correlation between system matrix and noise vector. (e
least absolute residuals (LAR) minimization can be adopted
to reduce the bias attributed to outlier data. However, LAR
faces a major problem of the correlation bias that remains
with the increase in the number of sensors. In the present
study, these two types of bias are reduced by conducting total
least absolute residuals (TLAR) optimization [34]. We first
formulate the problem of BOTL subject to outlier data.

Moreover, the pseudolinear measurement model for BOTL
is reviewed, and the bias of PLE is analyzed. Subsequently,
the TLAR algorithm is developed for BOTL with signifi-
cantly reduced bias and root mean square error as compared
with the LAR method.

(e main contributions of the proposed method can be
summarized as follows:

(i) Development of a new bias reduced estimator based
on TLAR for BOTL under bearing gross errors

(ii) Development of an algorithm for TLAR optimiza-
tion using dual ascent algorithms

(iii) Demonstration of the performance improvement
achieved by the TLAR estimator with respect to the
LAR method

(e rest of this paper is organized as follows. In Section
2, the measurement model is described. In Section 3, the
pseudolinear equations from the BOTL problem are
reviewed, the two types of bias for the PLE method are
analyzed, and a LAR solution is presented when bearing
measurements are subjected to large deviations. In Section 4,
the TLAR approach is presented, and an algorithm is de-
veloped for TLAR based on dual ascent algorithms in
Section 5. In Section 6, numerical examples illustrating the
performance of PLE, TLS, LAR, and TLAR are presented.
Lastly, conclusions are drawn in Section 7.

2. Model Description

A group of sensors are formed by Kn normal sensors and
Ka abnormal sensors with Knsignificantly larger than Ka.
(e total number of sensors reaches K � Kn + Ka. Each
node is capable of measuring a bearing in the sensor be-
tween the positive horizontal direction and the straight line
from the target to the node. It is noteworthy that the
normal sensors conduct the effective measurements, while
the abnormal sensors collect the wrong observations as
impacted by object occlusion, interference or network
attack, etc. It is assumed that whether the bearing mea-
surements have outliers cannot be distinguished. (us,
robust localization methods should be designed to prevent
the location performance degradation attributed to outlier
data. (e problem of robust BOTL is to estimate an un-
known target position in R2 as accurately as possible by all
K bearing measurements.

(e localization geometry is illustrated in Figure 1,
where p � [px, py]T denotes the target position vector, sk �

[sx,k, sy,k]T represents the sensor location vector for the kth
measurement, θk is the true bearing at sensor k, and the angle
θk is positive to the counterclockwise direction,
k � 1, 2, . . . , K. (e relationship between the bearing angle,
target position, and sensor location is expressed as the
following nonlinear equation:
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θk � tan− 1py − sy,k

px − sx,k

, (1)

where tan− 1 denotes the four-quadrant arctangent and
θk ∈ ( 0, 2π ].

In fact, the observed bearings have errors, and the kth
measurement can be described as

θk � θk + nk, (2)

where nk � δ · bk + ek denotes the measurement error; ek

represents the independent and identically distributed (i.i.d.)
zero mean Gaussian noise with variance σ2; bk represents a
bias term; and δ is a binary random variable defined as
follows:

δ � 1, if θk is outlier,

δ � 0, otherwise.

⎧⎨

⎩ (3)

Since the prior knowledge of δ is unknown, which
measurement is reliable and which is not cannot be dis-
tinguished in advance. Accordingly, it is necessary to de-
velop a robust localization algorithm when both reliable and
unreliable measurements are used.

3. The Least Absolute Residuals Method

To develop a robust localization method for BOTL, we first
review the PLE method by converting nonlinear bearing
measurements to pseudolinear equations. We then derive
the least absolute residual (LAR) algorithm for BOTL. Lastly,
two types of bias for PLE are analyzed.

3.1. Pseudolinear Equation. (e measurement equation in
(2) is nonlinear with respect to the unknown target location
which makes BOTL a nontrivial task. A natural option as we
will illustrate in the following would be to model a pseu-
dolinear equation by lumping the nonlinearities into the

noise term. For this end, an orthogonal vector sum is first
established between the measured angle vector and the true
angle vector from Figure 1 given by

uk � p − sk � uk + εk, (4)

where uk denotes the true angle vector betweensk and p; uk

represents the measured angle vector starting from sk and
generates the noisy bearing θk according to the horizontal
direction; and εk indicates the error vector. By defining αk �

[cos θk, sin θk]T and βk � [sin θk, − cos θk]T as two orthogonal
unit trigonometric vectors, uk and εk are written in terms of
αk and βk:

uk � uk

����
����2 cos nkαk,

εk � uk

����
����2 sin nkβk.

(5)

Using the fact that uT
kβk � 0, multiplying (4) withβT

k

yields

ξk � βT
kp − βT

k sk, (6)

where ξk � ‖uk‖2 sin nk is a nonlinear transformed mea-
surement error. Collecting the pseudolinear equation errors
as a vector ξ � [ξ1, ξ2, . . . , ξK]T, we obtain

ξ � Ap − h, (7)

whereA � [β1, β2, . . . , βK]T and h � [βT
1 s1, β

T
2 s2, . . . , βT

KsK]T

are the measurement matrix and vector, respectively. (e
PLE requires that p be estimated by minimizing ξ with
respect to p in the least-squares sense. (e position estimate
can be obtained by solving

min
p

‖ξ‖2,

s.t ξ � Ap − h.

(8)

(e solution to (8) is given by

Normal sensor

Abnormal sensor

Target

p

sk

uk
θ~kθk

u~k

εk

Figure 1: Illustration of BOTL geometry. (e circle in black color is normal sensor and the circle in white color is abnormal sensor.

Complexity 3



p � ATA 
− 1
ATh. (9)

It is termed as pseudolinear estimator (PLE).

3.2. Bias Analysis. (e bias of p obtained from (9) is defined
by

η � E p  − p � − E ATA 
− 1
ATξ . (10)

(ebias of p includes two parts.(efirst part is attributed to
the correlation between A and ξ. (e second part is formed by
large residuals. LetAn andhn be the pseudomeasurementmatrix
and vector obtained from normal sensors. Without considering
the abnormal measurements, the PLE solution becomes

pn � AT
nAn 

− 1
AT

nhn. (11)

If the number of normal sensors is significantly bigger
than that of abnormal sensors, the first type of bias can be
approximated as

η1 � E pn  − p � − E AT
nAn 

− 1
AT

n ξn , (12)

where ξn denotes the pseudomeasurement noise with its kth
entry given by ξn,k � ‖uk‖2 sin ek. Based on the Slutsky
theorem [33], the first type of bias can be asymptotically
computed by

η1 ≈ − E
AT

nAn

Kn

 

− 1

E
AT

n ξn

Kn

 . (13)

As Kn goes to infinity, (13) becomes an equality. For finite
Kn, η1 obtained by (13) is a good approximation to (12) [35].
After η1 is calculated, the second type of bias is η2 � η − η1.
An example of PLE bias is depicted in Figure 2(b), Section 6.
(e second type of bias appears to dominate if the standard
deviation of ek is small enough.(us, the performance of PLE
will degrade dramatically under impulsive noise since L2-
norm optimization can be severely affected by pseudolinear
errors with large residuals. To ensure such items have less
influence, we could instead minimize a cost function that
gives less weight to large deviations.

3.3. Least Absolute Residual. A common choice to alleviate
the effect of gross errors is the absolute value metric denoted
by χ(ξ) � ‖ξ‖1, where ‖ · ‖1represents L1-norm. As such, the
LAR optimization can be achieved by

min
p

χ(ξ),

s.t. ξ � Ap − h.

(14)

(e derivative of function χ(ξ) is bounded for all ξ by the
value ±1, demonstrating that the cost function χ(ξ) is robust

for all deviations. For the PLE criterion, the derivative is not
bounded, and it increases linearly with ξ.

In the literature, numerous algorithms have been de-
veloped to solve the minimization problem of χ(ξ) (e.g.,
iteratively reweighted least-squares (IRWLS) [36], expec-
tation-maximization (EM) procedure [37], and linear pro-
gramming [38]). A weight matrix is defined as

W(i)
� diag

1
ξ(i)
1




,

1
ξ(i)
2




, . . . ,

1
ξ(i)

K





⎛⎝ ⎞⎠. (15)

(e WLS algorithm is explicitly given by

p(i+1)
� ATW(i)A 

− 1
ATW(i)h. (16)

(e problem of (16) is that the weights become ex-
traordinarily large for ξk ≈ 0 or numerically indeterminate
for ξk � 0. Benefiting from convex optimization, LAR
problem can be relaxed to identify the minimum bound of
the absolute value:

min
p,v

1Tv,

s.t. − v ≤Ap − h≤ v,

(17)

where v denotes the upper bound of ξ; 1 is a column vector of
ones. To be specific, two nonnegative vectors are denoted,
i.e., r � 0.5(v + Ap − h) and t � 0.5(v − Ap + h). (e
equivalent form of (17) is

min
p,v

1Tr + 1Tt,

s.t. Ap − h � r − t, r≥ 0, t≥ 0.

(18)

Note that (23) refers to a standard linear programming
problem, which can be solved by using the existing CVX
software [39]. When the pseudolinear errors follow i.i.d.
Laplacian distribution with zero mean, (14) is equivalent to
the ML estimator. However, the LAR method implicitly
assumes that only h is subjected to errors.(is is not the case
since the system matrix A is corrupted with measurement
noises as well. (e correlation between A and ξ causes the
LAR estimator to be inconsistent.(ough the LAR estimator
has bias, it gives a reasonable estimate and provides an initial
guess for other robust estimators.

4. Total LAR Optimization

(eLAR algorithm expressed in (10) implicitly indicates that
only h has errors and the gross errors are reduced by using
the weights all restricted in h. In fact, matrixA is also subject
to measurement errors. When both A and h are disturbed
with noise, the LAR solution of (9) will inevitably cause large
bias as Aand ξ are statistically dependent. To increase the
accuracy of the LAR estimator, the idea of total least absolute

4 Complexity



residual (TLAR) can be exploited to reduce the errors in both
A and h.

(e concept of TLAR is that the disturbance vector Δh
is adopted to correct the data vector h, while the distur-
bance matrix ΔA is employed to disturb the data matrix A.
In other words, we use the following equations in the TLAR
problem:

(A + ΔA)p � h + Δh,

(M + Σ)x � 0,
(19)

where M � [A, h] denotes a K × 3 augmented matrix; Σ �

[ΔA,Δh] represents a K × 3 perturbation matrix; ΔA is a
perturbation matrix of A; Δh is a perturbation vector of h;
x � τ · [px, py, − 1]Tis a 3 × 1 vector; and τ is a scaling factor.
Notably, both A and h are corrupted with noise. Next, the
error statistics for A and h are examined. (e error matrix Σ
is defined as

Σ �

ρ11 ρ12 ρ13
⋮ ⋮ ⋮

ρK1 ρK2 ρK3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)

where the entries of Σ are given by the difference betweenM
and the noiseless augmented matrix

ρk1 � sin θk − sin θk � sin θk − μk cos ek + υk sin ek,

ρk2 � − cos θk + cos θk � − cos θk − υk cos ek − μk sin ek,

ρk3 � sin θk, − cos θk sk − βT
k sk � ek1, ek2 sk,

(21)

where μk � sin θk cos(a · bk) + cos θk sin(a · bk),
υk � sin θk sin(a · bk) − cos θk cos(a · bk). If ek is sufficiently
small, it yields sin ek ≈ ek, cos ek ≈ 1. (us, ρk1 and ρk2
become

ρk1 ≈ sin θk − μk + υkek,

ρk2 ≈ − cos θk − υk − μkek.
(22)

(e mean and second-order moments of the error items
are written as

E ρk1  ≈ sin θk − μk,

E ρk2  ≈ − cos θk − υk,

E ρk3  ≈ sin θk − μk, − cos θk − υk sk.

(23)

E ρ2k1  ≈ sin θk − μk( 
2

+ σ2kυ
2
k,

E ρ2k2  ≈ cos θk + υk( 
2

+ σ2kμ
2
k,

(24)

E ρ2k3  ≈ sin θk − μk, − cos θk − υk sk( 
2

+ σ2k υk, − μk sk( 
2
.

(25)

Note that from (23), the mean value of errors in M is
nonzero as impacted by the outlier data. In addition, (24)
and (25) are nonzero even if bk equals zero. It is therefore
suggested that the error terms in the identical row of Σ are
correlated with each other. To more effectively reduce the
bias of LAR, TLAR metric is adopted to minimize the
disturbance matrix and vector simultaneously, and the
TLAR problem for BOTL is formulated as
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Figure 2: Performance comparison of PLE, LAR, TLS, and TLAR estimates with various outliers. (a) RMSE results of various estimators. (b)
Bias results of various estimators.
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min
Σ,x

‖Σ‖1,

s.t. (M + Σ)x � 0.
(26)

If the L1-norm in (26) is replaced by the Frobenius
matrix norm, (26) becomes the well-known TLS problem.
Both TLAR and TLS fall to the domain of “total approxi-
mation problem,” known as the total least pth problem for
p≥ 1. To solve the TLAR problem effectively, an equivalent
form of (26) is explored. (e following result holds.

Theorem 1. Suppose that (M + Σ)x � 0, where M � [A, h]

denotes the augment matrix with A and h defined in (7), Σ �

[ΔA,Δh] is the error matrix with ΔA and Δh defined in (19),
and x is a 3 × 1 vector. Subsequently, the estimation of p from
the minimization of ‖Σ‖1 can be achieved by

min
x

‖Mx‖1,

s.t. ‖x‖∞ � 1.
(27)

Proof. From (M + Σ)x � 0, it yields ‖Mx‖1 � ‖Σx‖1. Let us
denote Σ � [ρ1, ρ2, ρ3] and x � [x1, x2, x3]

T. (en, ‖Σx‖1 can
be computed as

‖Σx‖1 � 
3

i�1
ρixi


 � 

3

i�1
ρi


 · xi


 . (28)

Note that |xi|≤ ‖x‖∞, for i � 1, 2, 3. Accordingly, it yields
‖ x‖1 ≤ 

3
i�1 |ρi| · ‖x‖∞ � ‖Σ‖1‖x‖∞. If the infinite norm of x

satisfies ‖x‖∞ � 1, the above inequality becomes ‖ x‖1 ≤ ‖Σ‖1.
Lastly, we get the conclusion that the minimization of ‖Σ‖1
subject to (M + Σ)x � 0 can be obtained from (27).

(eorem 1 presents a practicable solution for BOTL
since p � − x(1: 2)/x3. However, (27) is not a convex
problem since the feasible region does not fall to ‖x‖∞ � 1.
(us, the global minimum is not ensured. Indeed, its local
minima can be computed by adopting the Lagrange mul-
tiplier formulation of (27).

5. Algorithm Development

In the present section, an algorithm is derived to solve (27).
Since the optimization of (27) is not convex, a stationary
point satisfying the first-order necessary conditions is cal-
culated. First, (27) is transformed into an unconstrained
minimization problem by leveraging the Lagrange multiplier
method. (e Lagrange objective function is defined as

L(x, λ) � ‖Mx‖1 + λ ‖x‖∞ − 1( . (29)

And the dual problem of (27) is given by

max
λ

G(λ),

s.t. G(λ) � inf
x

L(x, λ), λ≥ 0,
(30)

where λ denotes the Lagrange multiplier. Set λ∗ as the
optimal value of (30). By substituting λ∗ into (29), the
minimization of L(x, λ∗) generates the primal optimal point
x∗. Such dual problem can be solved by a dual ascent (DS)
algorithm [40] as expressed below.

(1) λj is assumed as the optimal solution of the dual
problem (30) at the jth step.

(2) (e primal optimal point xj+1 can be determined
from λj by minimizing L(x, λj):

xj+1 � argmin
x

L x, λj . (31)

(3) (e dual variable is updated by

λj+1 � λj + cj xj+1

�����

�����∞
− 1 , (32)

where cj > 0 is a step size. (e λ-update is realized by
using gradient ascent.With proper choice of cj,G(λ)

increases for each step, i.e., G(λj+1)>G(λj).
(4) Next, we investigate the problem of minimizing

L(x, λj). Based on Taylor’s series expansion of L(x +

αq, λj) around x up to the first order, it yields

L x, λj  − L x + αq, λj  ≈ − α∇L x, λj 
T
q. (33)

(5) Note that ∇L(x, λj)
Tq � ‖∇L(x, λj)‖2‖q‖2 cos β,

where β is the angle between ∇L(x, λj) and q. (us,
the steepest decent direction is q � − ∇L(x, λj). Let
z‖Mx‖1denote the subdifferential of ‖Mx‖1, where

z‖Mx‖1 � g|‖g‖∞ ≤ 1, gTMx � 1 . (34)

(6) g is a K × 1 subgradient vector and its kth element is
given by

gk �

1, if (Mx)k > 0,

− 1, if (Mx)k < 0,

− [1, 1] if (Mx)k � 0.

⎧⎪⎪⎨

⎪⎪⎩
(35)

(7) (e subdifferential of ‖x‖∞ at ‖x‖∞ , denoted by
z‖x‖∞, is defined by
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z‖x‖∞ �
conv sgn xi( oi: xi


 � ‖x‖∞ , x ≠ 0,

y: ‖y‖1 ≤ 1 , x � 0.

⎧⎨

⎩ (36)

where conv denotes the convex hull and oi is a vector
whose ith element is 1 and all other elements are 0.
Based on (34) and (36), ∇L(x, λj) is written as

∇L x, λj  � z‖Mx‖1 + λjz‖x‖∞ (37)

6. Experimental Results

In the present section, numerical examples are studied to
compare the localization performance of the proposed
TLAR algorithm with PLE, TLS, and LAR under abnormal
sensor and nonabnormal sensor. In addition, two typical

localization geometries are applied in the simulations. (e
first one is randomly distributed sensors, and the other one is
linearly distributed sensors. In the respective scenario, four
cases are considered. To be specific, (1) the number of ab-
normal sensors varies and the total number of sensors is
fixed, (2) both the numbers of normal and abnormal sensors
vary, (3) the numbers of normal and abnormal sensors are
fixed, and (4) all sensors are normal. (e bearing data
achieved from abnormal sensors exhibit uniform distribu-
tion U[− π, π]. For normal sensors, the bearing measurement
errors are assumed as i.i.d. zero mean Gaussian with
standard deviation σ. Simulation comparisons are drawn
based on Mc� 1000 Monte-Carlo simulation runs. (is
study employs bias and root mean square error (RMSE) for
localization performance comparison, which are written as

BIAS �

������������������������������������������

px −
1

Mc


Mc

m�1
px(m)⎛⎝ ⎞⎠

2

+ py −
1

Mc


Mc

m�1
py(m)⎛⎝ ⎞⎠

2



,

RMSE �

����������������������������������

1
Mc



Mc

m�1
px − px(m)( 

2
+ py − py(m) 

2
 




,

(38)

where px(m) and py(m) denote the estimates of target
location parameters for the mth Monte-Carlo run of the
simulation.

6.1.RandomlyDistributedSensors. In this section, all sensors
are randomly placed in a 100×100m2 region centered at (50,
50) m (Figure 2(a)). (e unknown target is placed at (100,
100)m. In the first example, the number of abnormal sensors
is elevated from 2 to 6, and that of normal sensors decreases
from 18 to 14. (e total number of sensors is fixed at 20. σ is
set to 3π/180 (3°). Figure 2(a) presents the RMSE results with
the increase in the number of abnormal sensors. (e LAR
and TLAR methods are capable of reducing the outliers, as
indicated in the two plots of Figure 2(a), the blue line with
“+” and the red line with “square.” (e RMSE of LAR is
0.618m above that of TLAR when the number of outliers is
set to 2. Such value increases to 1.551m when the number of
outliers is kept at 6. (e estimation bias is presented in
Figure 2(b). As the number of outliers is elevated, the value
of bias turns more significant.

In the next example, the number of outliers is fixed at 3.
(e sensors have a total number of twenty. σ ranges from
π/180 to 5π/180 (1° to 5°). (e number of abnormal sensors
(red circles) is set to three, and the rest are normal sensors
(blue circles), as illustrated in Figure 3(a). (e simulated
biases of PLE are plotted in Figure 3(b). Under small σ, the
first type of bias attributed to the correlation between A and
ξ keeps at low level, and the second type of bias formed by
large residuals dominates the theoretical bias of PLE. With

the increase in the measurement noise variance, the effect of
the second type of bias turns out to be less significant.
Figures 4(a) and 4(b) illustrate the RMSE and bias curves of
various methods in the presence of abnormal sensors. (e
PLE method and the TLS estimator fail to give accurate
target location estimates since they are not robust to outlier
data. (e blue line with “+” in Figure 4(a) represents the
RMSE value determined by using the LAR method, and the
red line with “square” represents the RMSE curve for the
TLAR algorithm. (ey are well separated and the gap be-
tween these two lines increases as σ becomes large, sug-
gesting the reduction of the first type of bias. Furthermore,
this phenomenon is verified in Figure 4(b), where the bias of
TLAR is significantly lower than that of the LAR method.

Specific to the third example, the number of sensors is
elevated from ten to thirty, five at a time, in which one is
abnormal, and the other four are normal. σ is set to 3π/180
(3°). Figures 5(a) and 5(b) draw a comparison of the RMSE
and bias of various methods. With the increase in the
number of sensors, the RMSE and bias are reduced gradually
since the numbers of abnormal and normal sensors increase
simultaneously and are proportional. It is again proved that
the TLAR method exhibits the optimal RMSE and bias
performance.

Subsequently, the RMSE and bias performance are de-
termined according to different bearing noise standard
deviations when all sensors are normal sensors, as presented
in Figures 6(a) and 6(b). In this scenario, the TLS method
exhibits the optimal RMSE performance.(e RMSE curve of
TLAR is slightly higher than that of TLS since the bearing
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measurement errors overall comply with the Gaussian
distribution. In such scenario, the L2-norm criterion is
optimal. Unlike the RMSE performance, the bias of TLAR is
comparable with that of TLS and much lower than that of
LAR or PLE. When all sensors are normal, the LAR and
TLAR methods are capable of achieving effective results,

compared with PLE and TLS, thereby demonstrating the
robustness of the proposed algorithm.

6.2. Linearly Distributed Sensors. In the present section, all
sensors are linearly distributed with the equal spacing from
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Figure 3: (a) Locations of sensors and target. (b) (eoretical bias of PLE.
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Figure 4: Performance comparison of PLE, LAR, TLS, and TLAR estimates with fixed outliers. (a) RMSE results of various estimators. (b)
Bias results of various estimators.
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(5, 26) m to (155, − 34) m (Figure 7(a)). (e target is placed
at (200, 40) m. In the first example, the number of ab-
normal sensors ranges from 2 to 6, and that of sensors is set
to 31. σ is set at 3π/180 (3°). Figures 8(a) and 8(b) illustrate
the RMSE and bias performance when the number of

abnormal sensors is altered. It is therefore demonstrated
that the TLAR algorithm exhibits better RMSE and bias
performance than the LAR method. As the number of
outliers is elevated, the performance is more significantly
improved.
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Figure 5: Performance comparison of PLE, LAR, TLS, and TLAR estimates with different number of sensors. (a) RMSE results of various
estimators. (b) Bias results of various estimators.
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In the next example, all sensors are working properly
except for the 8th to 10th sensors. Consistent with Section
6.1, the theoretical bias of PLE is plotted in Figure 7(b). (e
results comply with those presented in Figure 3(b).

(e RMSE and bias results for such example are given
in Figures 9(a) and 9(b), respectively. (e RMSE value of
TLAR is lower than that of the LAR method for the case of
linearly distributed sensors, even though only a 0.502m

reduction for σ � 1° and a 4.56m reduction for σ � 5°. With
the increase in the bearing measurement noise variance, the
effect of large residuals turns out to be less significant. (e
amount of bias reduction is 5.04m for σ � 5° if TLAR is
used.

Specific to the third example, the RMSE and bias results
are shown in Figures 10(a) and 10(b) when the number of
sensors ranges from 16 to 31, five at a time, one of which is
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Figure 7: (a) Locations of the target, normal sensors, and abnormal sensors. (b) (eoretical bias of PLE.
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Figure 8: Performance comparison of PLE, LAR, TLS, and TLAR estimates with various outliers. (a) RMSE results of various estimators. (b)
Bias results of various estimators.
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abnormal, and the other four are normal. σ is set to 3π/180
(3°). Figures 10(a) and 10(b) verify that the solution of TLAR
has better RMSE and bias performance than that of PLE,
TLS, and LAR. Based on more than 21 sensors, the RMSE
and bias of LAR suddenly decrease. (is is not unexpected
since the sensor observation angles are more significantly
discriminated.

In addition, the RMSE and bias curves of PLE, LAR, TLS,
and TLAR without abnormal sensors are plotted. Figure 11(a)
gives the RMSE results as the bearing standard deviation
increases, and Figure 11(b) compares the bias of various
solutions. As clearly demonstrated by the RMSE and bias
results, TLAR outperforms LAR.(e amounts of reduction in
terms of RMSE and bias are 1.85m and 2.845m, respectively.
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Figure 9: Performance comparison of PLE, LAR, TLS, and TLAR estimates with fixed outliers. (a) RMSE results of various estimators. (b)
Bias results of various estimators.
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Figure 10: Performance comparison of PLE, LAR, TLS, and TLAR estimates with different number of sensors. (a) RMSE results of various
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7. Conclusions

(e present study presents a TLAR algorithm to solve the
BOTL problem in the presence of outlier data. (ough the
conventional LAR is robust to significant deviations, it has
bias formed by the correlation between the system matrix
and the noise vector and such bias remains with the increase
in the number of sensors. To increase the accuracy of the
LAR estimator, the TLAR is proposed by adding minimal
perturbations to both system matrix and data vector in least
absolute residuals sense, so the perturbed matrix is con-
sistent. As revealed from the experimental results, the TLAR
algorithm outperforms the LAR method. When the bearing
noise power becomes more significant, the performance of
RMSE and bias reduction is more obviously improved.
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