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Trajectory planning is the foundation of locomotion control for quadruped robots.+is paper proposes a bionic foot-end trajectorywhich
can adapt to many kinds of terrains and gaits based on the idea of trajectory planning combining Cartesian space with joint space.
Trajectory points are picked for inverse kinematics solution, and then quintic polynomials are used to plan joint space trajectories. In order
to ensure that the foot-end trajectory generated by the joint trajectory planning is closer to the original Cartesian trajectory, the dis-
tributions of the interpolation point are analyzed from the spatial domain to temporal domain. An evaluation function was established to
assess the closeness degree between the actual trajectory and the original curve. Subsequently, the particle swarm optimization (PSO)
algorithm and genetic algorithm (GA) for the points selection are used to obtain a more precise trajectory. Simulation and physical
prototype experiments were included to support the correctness and effectiveness of the algorithms and the conclusions.

1. Introduction

Trajectory planning is the first step of quadruped robots
towards complex environments [1, 2]. At present, the tra-
jectory planning is mainly divided into two categories:
Cartesian space trajectory planning and joint space trajec-
tory planning [3, 4]. +e former focuses on the macro area,
while the latter pays attention to the micro area. +e Car-
tesian space trajectory planning involves the actual motion
trajectory of actuator in three-dimensional space, while the
joint space trajectory planning studies the connection
problem of joint angles in the process of motion [5]. Hence,
for foot-end trajectory planning of quadruped robots,
combining the above two methods can lay a superior
foundation for its flexible movement in real time.

For the purpose of making the foot-end perform more
flexible in Cartesian space, Sakakibara et al. proposed a com-
pound cycloidmethod and planned a smooth foot trajectory for
their walking robot [6]. Based on their method, Wang et al.
derived a zero-impact trajectory and the cycle control strategy
for one-leg gait [7]. On the other hand, Chevallereau et al.
proposed a ballistic trajectory [8], which followed the principle
of alternation of muscle movements. Vundavilli et al.

constructed a foot-end trajectory based on a cubic polynomial
and planned an optimal gait for dynamic balance of biped
robots [9]. In order to make the foot-end trajectory more bi-
ological, Kim et al. proposed an elliptical trajectory to simulate
the backswing and retraction characteristics of animals when
they departed or touched the ground [10]. Semini et al. added
the foot speed in the flattened part of the semi-ellipse to co-
ordinate the forward speed of the trunk during the trot motion
[11]. Rong et al. used a compound trajectory consisting of cubic
curves with straight lines on their Scalf robot [12] and dem-
onstrated a foot-end trajectory consisting of five-degree poly-
nomials with four-degree polynomials in Scalf afterward [13].
For more flexibility, the researchers of MIT used the Bézier
curve in its MIT Cheetah [14], which utilized twelve position
control points for the foot-end trajectory and connected them
with eleven-degree Bernstein polynomial curve. +e works of
the these scholars have provided rich theoretical foundations
for the research of the foot-end trajectory of the legged robots
and have developed the trajectory in the direction of high
smoothness, high bionics, and strong adaptability. However,
the trajectory planning in Cartesian space requires repeated
inverse kinematics calculations during movement. As the
complexity of the foot-end trajectory increases, it will cost a
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large computational load on the controller. Consequently, in
the process of movement, if the accuracy of the trajectory is
guaranteed, the numbers of trajectory transition points will
increase subsequently, but the real-time performance of the
locomotion will be reduced. +erefore, joint space trajectory
planning can alleviate the contradiction between motion ac-
curacy and real-time in the Cartesian space trajectory planning
to some extent.

Joint space trajectory planning is a way for locomotion via
sampling the designed trajectory and extracting few trajectory
intermediate points to execute inverse kinematics solution.
And then some smooth curves are used to connect the in-
termediate points of the joint angles inversely solved by ki-
nematics [15]. For getting the smooth connections between
the intermediate points, Liu et al. proposed a method for
generating joint trajectories based on X-splines and quartic
polynomials [16]. In the Robotics Toolbox, Corke utilized a
fifth-degree polynomial to perform point-to-point joint space
trajectory planning and obtained a smooth curve between two
points [17]. Dehghani et al. also used this method to control
the action of the five-link biped, ensuring continuous angular
velocity and angular acceleration during locomotion [18]. In
order to make the robot’s locomotion process more stable,
Gasparetto et al. endeavored to optimize the joint motion
time and jerkiness to ensure that the trajectory has sufficient
smoothness [19]. Liu et al. used a combination of Cartesian
space multi-order spline function and joint space multi-order
B-spline function to ensure continuous jerk while improving
the smoothness of trajectory tracking control [20]. Zhong
et al. performed 8-degree polynomial trajectory planning in
joint space on the basis of 8-degree polynomial trajectory
planning for the center of mass to form a corresponding
relationship [21]. In order to avoid the dynamic singularity
during the movement, Wang et al. parameterized the joint
trajectory into a fifth-order Bézier curve and combined the
particle swarm optimization (PSO) to optimize the curve
control points [22]. +e researches of the above scholars laid
the foundation for joint space trajectory planning, which
made it perform better in practical applications. Accordingly,
combining the trajectory planning methods of Cartesian
space with joint space may lead to better trajectory planning
actual effects. However, regarding how to coordinate the
Cartesian trajectory and the joint trajectory, especially with
regard to the choice of middle points, there is less research
work done. Secondly, the errors between the actual foot-end
curve generated by the joint trajectory motion and the
designed Cartesian trajectory need to be further reduced.

In this paper, a bionic foot-end trajectory was designed
for the physical quadruped robot platform namedMQ robot
as shown in Figure 1. +e trajectory imitates the actual
animal movement laws and divides the foot-end trajectory
into three segments: backswing, advance, and retraction. In
order to meet the real-time requirements in actual use, joint
space trajectory planning was further performed. Eleven

points were picked up from the Cartesian trajectory for
inverse kinematics solution, and fifth-degree polynomials
were used for piecewise interpolation. In order to explore the
effect of different points on the generated actual foot-end
trajectory, the intermediate points were taken at equal in-
tervals distribution and equal arc length distributions for
comparing and analyzing. Furthermore, according to the
characteristics of parameter function, the isochronous
points and Chebyshev nodes were taken into the modes of
distributions in the temporal domain [23]. Based on the
analysis results of the above modes, the PSO algorithm and
genetic algorithm (GA) are adopted to generate a better
distribution of trajectory points, which use the errors be-
tween the actual trajectory and the design trajectory as the
fitness values by establishing the models of both trajectories.
Further, simulation and prototype experiments were carried
on to verify the validity of the analysis and optimization
results. +e innovations of this paper are as follows: (i) the
foot trajectory of the quadruped robots was divided into
three segments based on biological observation. (ii) Carte-
sian space trajectory planning and joint space trajectory
planning were combined in order to obtain a better practical
application effect. (iii) +e distribution of the interpolation
points was analyzed and optimized to make the actual
trajectory closer to the original design trajectory.

2. Bionic Trajectory Planning of
Quadruped Robots

2.1. Cartesian Space Trajectory Planning. In the process of
animal movements, the backswing and retraction of the feet
are universal, which could ensure the continuity of its
movement process [24]. As shown in Figure 2, according to
the characteristics during the actual movement of animals,
this paper utilizes a bionic foot-end trajectory for the
quadruped robots. +rough the trajectory decomposition,
the foot-end trajectory of Cartesian space is decomposed
into parameter functions of the forward direction X and the
lifting direction Y with the parameter t (time), and then
piecewise quintic polynomial curves are used for interpo-
lation. Among them, the piecewise curves in the X direction
have correspondingly added backswing and retraction
segments based on the forward segments proposed in [6, 7],
and the piecewise curve in the Y direction maintains the
characteristics of symmetry. As deduced from quintic
polynomials, the trajectory can be gotten by equations (1)
and (2). Taking advantage of the quintic polynomial curve
which needs six parameters to complete itself, the trajectory
should give six initial elements to deduce its form, so that the
endpoint position, speed, and acceleration of each curve are
independently adjustable to meet the requirements of dif-
ferent terrains and ensure the locomotion process
smoothness without impact theoretically:
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As shown in equation (1), the definitions of the indirect
parameters SS1, TS1, SS2, TS2, SS3, TS3 (obtained by calculation
of direct parameters) are as follows:
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where the indirect parameters HH1, TH1, HH2, TH2, are
defined as follows:
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HH1 � hw − h0,

TH1 � tw − t0,

HH2 � hd − hw,

TH2 � td − tw.

(3)

For the direct parameters (boundary conditions) in
equations (1) and (2), the sizes of time ti and positions si, hi
are adjustable according to the environmental terrains, and
the speeds vsi, vhi and accelerations asi, ahi are adjusted
according to the robot’s forward speed. In this paper, for

studying the joint space trajectory planning of the foot-end
trajectory when crawling on the ground, the values of the
above direct parameters are set as shown in Table 1.

In Table 1, the positions can be adjusted according to the
needs of terrains and step length. s0 and h0 are the starting
points of the motion, which coincide with the origin of the
coordinate system by default. In actual use, translation can
be performed according to the difference in the set coor-
dinate system. +e foot-end trajectory after translation is
shown in Figure 3. +e speed values at t1, t2, and tw are 0 by
default, so they do not appear in equations (1) and (2). +e
speed values at t0 and td refer to the speed in [7] for zero

Body

HFE joint

HAA joint

KFE joint HFE motor KFE motor

HAA motor

Figure 1: Experimental prototype of MQ quadruped robot.
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Figure 2: +e backswing and retraction of feet during animal movements [24–27].
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impact, and the velocity curves of the submotion in two
directions are shown in Figure 4. +e values of as1, as2, and
asw are optimized to obtain smooth acceleration curves as
shown in Figure 5.

In Figure 3, the starting point in the X direction is shifted
to the right by 15(mm) to facilitate the representation of the
foot-end trajectory. In the same way, different translation
can be performed on the starting points for different co-
ordinate systems.

2.2. Kinematics Analysis. In order to carry on the joint space
trajectory planning in the next discussion, the single-leg
structure of the experimental prototype needs to be simplified,

and then the kinematics analysis can be performed. As shown
in Figure 6, the single-leg structure of the prototype is extracted
and compared with the general platform. It is worth men-
tioning that many researchers had studied the kinematics
solution of the general platform [28–30]. On these bases, the
relationship between the single-leg drive angle of the prototype
and the general platform is shown in the following:where 􏽢θ1,
􏽢θ2 , and 􏽢θ3 are the driving joint angles of the actual prototype.
Respectively, θ1, θ2, and θ3 are the joint angles of the general
platform.+e other parameters involved are the dimensions of
the legs of quadruped robot, as shown in Table 2.
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2.3. Joint Space Trajectory Planning. Due to the limited
computation of the controller [31], in order to alleviate the
contradiction between the accuracy of foot-end trajectory and

Table 1: Boundary conditions of the bionic trajectory.

Parameters Forward direction X Lifting direction Y
Time (s) t 0 � 0 t 1 � 0.25 t 2 � 0.75 t d � 1 t 0 � 0 tw � 0.5 t d � 1
Position (mm) s 0 � 0 s 1 � −15 s 2 � 85 s d � 70 h 0 � 0 hw � 61.8 h d � 0
Velocity (mm/s) vs0 � 0 0 0 vs d � 0 vh0 � 0 0 vh d � 0
Acceleration (mm/s2) a s0 � 0 a s1 � 1760 a s2 � −1760 a sd � 0 a h0 � 0 a hw � −1648 a hd � 0
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Figure 3: Foot-end bionic trajectory in Cartesian space.
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the real-time of locomotion, the joint space trajectory planning
is carried out for the foot-end trajectory. +e movement
process of the entire trajectory is divided into a small number of
n segments which leads to n+1 points being selected as in-
terpolation points. +erefore, it can reduce the computational
burden of the controller to a large extent.

+e selections of different interpolation function have an
essential influence on the effect of joint space trajectory
planning. A good interpolation function can reduce the
amount of calculations and improve the accuracy of the
movement. At present, there are two kinds of interpolation
methods commonly used: high-order interpolation and
piecewise low-order interpolation. +e high-order interpola-
tion has a large amount of computation, and it is easy to
produce the Runge phenomenon which will lead to the lack of
accuracy in the beginning and end stages of motion [32].
Segmented low-order interpolation can avoid the occurrence of
Runge phenomenon, but due to the order limit, the motion
characteristics of each interpolation point cannot be adjusted
independently. +erefore, counterpoising the advantages and
disadvantages of the two methods, the joint space trajectory
planning is carried out by the method of piecewise quintic

polynomial interpolation. It can ensure that the angle, angular
velocity, and angular acceleration of each interpolation point
are independently controllable, and can correspond with the
trajectory planning of Cartesian space in Section 2.1. So it is
beneficial to further improving the trajectory accuracy.

Since the motion characteristics of quintic polynomials at
each interpolation point can be adjusted independently, the
boundary conditions of function curve at both endpoints are
set as follows:

θ t0( 􏼁 � θ0,
_θ t0( 􏼁 � ω0,

€θ t0( 􏼁 � α0,

θ tf􏼐 􏼑 � θf,

_θ tf􏼐 􏼑 � ωf,

€θ tf􏼐 􏼑 � αf.

(7)

Taking time t as the independent variable, the function
expression of angle θ(t) is illustrated as
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Figure 6: Simplification and transformation between the single-leg structure of the prototype and the general platform.

Table 2: Properties of the prototype leg.

Parameter Description Value (mm)
a1 Length of a1 50
a2 (2l1) Length of a2 or 2l1 84
a3 Length of a3 50
a4 (a6) Length of a4 or a6 34
a5 (l2) Length of a5 or l2 170
l3 Length of l3 245
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where the indirect parameters Δθ, Δt in (8) are defined as
follows:

Δθ � θf − θ0,

Δt � tf − t0.
(9)

It can be seen from equation (8) that the interpolation
function needs to put in the boundary conditions θ0, θf, ω0,
ωf, α0, αf and then to solve the six unknown parameters in the
θ(t) expression according to these six known parameters.
Accordingly, the unique solution of the equation is obtained.
+erefore, the reasonable setting of the boundary conditions
θ, ω, α is the primary to solve this case. In order to ensure
that the function curve is smooth without fluctuation, the
boundary conditions are solved using the method of dif-
ference quotient and then set as their average value. After
calculating the difference quotient of the known angular
values θk−1, θk, and θk+1 in order, the average value of the
adjacent is taken as the angular velocity ωk, which is
expressed as

ωk �
θk − θk−1( 􏼁/Δtk−1 + θk+1 − θk( 􏼁/Δtk

2
, (10)

where Δtk is the time interval between the time tk corre-
sponding to the interpolation point k and the time tk+1
corresponding to the next interpolation point k+1, and Δtk−1
is the same definition as Δtk. Similarly, the solution process
of the angular acceleration αk is shown in the following
equation:

αk �
ωk − ωk−1( 􏼁/Δtk−1 + ωk+1 − ωk( 􏼁/Δtk

2
. (11)

For the start and end points of the whole trajectory, ω
and α, the boundary parameters, can be specified according
to the motion state and forward speed. For the crawling gait,
the start and end boundary conditions of ω and α are set as
ω0 � 0, ωn � 0, α0 � 0, αn � 0. According to the above deri-
vation method, the solution process of boundary conditions
at each interpolation point is shown in Figure 7.

3. SelectionandAnalysisof InterpolationPoints

Different interpolation functions can result in different
trajectory planning effects; accordingly, selecting different
interpolation points can also lead to different trajectory
accuracy [33]. However, there are few discussions with the
effects caused by different interpolation points distributions.

In order to reduce the number of intermediate points in
joint space trajectory planning and have better trajectory
reducibility, the selection of interpolation points is par-
ticularly important. Appropriate interpolation points can
reduce the number of points and increase the proximity to
the original trajectory [34]. Based on the above bionic
trajectory, the whole trajectory is divided into 10 segments
from the spatial domain and the temporal domain, so that
the trajectory is symmetrical and the principle of fewer
interpolation points is also guaranteed. Accordingly, 11
corresponding trajectory points are obtained. +en, the
inverse kinematics solution is used to obtain the inter-
polation points of joint trajectory.

3.1. Trajectory Division in Spatial Domain. According to the
designed Cartesian trajectory, the equidistant and equal arc
length are as the method to partition trajectory, and then the
corresponding joint trajectory interpolation points are
solved by inverse kinematics for analysis. Firstly, the forward
direction X of the trajectory is divided into 10 equal parts,
and 11 corresponding trajectory points are obtained by turns
as shown in Figure 8(a), and then the corresponding joint
trajectory interpolation points are obtained by kinematic
inverse solution. In the same way, the trajectory points are
obtained after dividing the trajectory by equal arc length, as
shown in Figure 8(b), and then the inverse kinematics so-
lution is carried out for them to acquire the interpolation
points.

In Figure 8, the coordinates of 11 trajectory points
obtained by uniform X are shown in Table 3, and the co-
ordinates of 11 trajectory points obtained by uniform arc are
shown in Table 4. In Figure 8(a), between points 1, 2, and 3,
since X decreases first and then increases, there is inter-
section between two adjacent intervals. Similarly, there is
also intersection between points 9, 10, and 11. Hence, the
beginning and end of the trajectory do not appear to be
equidistant. However, the change trend and length of
equidistant can be obtained from Table 3.

Put the trajectory points in Tables 3 and 4 into equations
(4)–(6) for inverse kinematics solution, getting the corre-
sponding joint trajectory interpolation points, and then put
the obtained interpolation points into equations (10) and
(11), getting the boundary angular velocity and acceleration
of each point. +en put them into equation (8) for the joint

Point

θ:

ω:

α:

0 1 2 3

θ0 θ1 θ2 θ3

ω0 ω1 ω2

α0 α1

n – 2 n – 1 n

θn–2 θn–1 θn

ωn–2 ωn–1 ωn

αn–1 αn

Figure 7: Solution process of interpolation point boundary
condition.
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space trajectory planning. Finally, the overall joint angle
curves are shown in Figure 9.

In Figure 9, the black solid line is the original joint
trajectory corresponding to the original design Cartesian
trajectory, HFE joint is the hip flexion/extension joint, and
KFE joint is the knee flexion/extension joint [35]. By
comparing the joint trajectories obtained from the two
trajectory points’ distribution in Figure 9, it can be seen that

the joint trajectories generated by the two methods are
basically close to the original joint trajectory, and the trend is
the same. However, there are some errors in details, espe-
cially in the beginning and end areas of the trajectories. It
can be seen from the local magnifying figure at the right
bottom that the joint trajectory obtained by uniform arc
division is closer to the original joint trajectory than that by
uniform X division. On the other hand, it can be found from
Figure 8 that the distribution of trajectory points by uniform
arc is more dense in the starting and ending areas. So, there
is a guessing that enhancing the points density in the starting
and ending areas may help to increase the accuracy. Ac-
cordingly, distribution of the trajectory points needs to be
further adjusted.

3.2. Trajectory Division in Temporal Domain. Owing to the
bionic trajectory is a set of parameter equations about
time t, it can directly divide the time to get the coordinate
values of X and Y at the same time values, and then the
corresponding trajectory points can be obtained and the
trajectory can be divided. Referring to the current com-
mon methods of parametric function interpolation, the
choosing of interpolation points in segmented spline
interpolation is usually by the methods of uniform pa-
rameterization, chord length, centripetal model, etc. [36].
On the other hand, in the interpolation of higher-order
polynomial functions, in order to avoid Runge phe-
nomenon, Chebyshev points are often used as interpo-
lation points [23]. +erefore, referring to the above
methods, the time t is divided into two modes: uniform
time and Chebyshev nodes. Accordingly, the corre-
sponding coordinate values are solved, and then the in-
verse kinematics is used to obtain the interpolation points
and the joint space trajectory planning is performed, so
that the coordinate values corresponding to the iso-
chronous points are shown in Table 5, and its distribution
in the trajectory is shown in Figure 10(a).
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Figure 8: Spatial domain trajectory divisions. (a) Uniform X. (b) Uniform arc.

Table 3: Corresponding trajectory points of uniform X.

Point number Time (s) X position (mm) Y position (mm)
1 0 15 0
2 0.1999 2 14.8542
3 0.3596 11 47.1906
4 0.4144 24 56.0035
5 0.4589 37 60.4216
6 0.5000 50 61.8000
7 0.5411 63 60.4216
8 0.5856 76 56.0035
9 0.6404 89 47.1906
10 0.8001 98 14.8542
11 1 85 0

Table 4: Corresponding trajectory points of uniform arc.

Point number Time (s) X position (mm) Y position (mm)
1 0 15 0
2 0.1980 2.1459 14.5252
3 0.2940 1.7623 33.7796
4 0.3710 13.3457 49.2685
5 0.4380 30.6892 58.7008
6 0.5000 50 61.8000
7 0.5620 69.3108 58.7008
8 0.6290 86.6543 49.2685
9 0.7060 98.2377 33.7796
10 0.8020 97.8541 14.5252
11 1 85 0
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Chebyshev points are generated by Chebyshev polyno-
mials, which are divided into Chebyshev polynomial of the
first class and Chebyshev polynomials of the second class.
Chebyshev points can be obtained by finding the zero point
or the extreme point of Chebyshev polynomials. Among
them, Chebyshev polynomial of the first class can be ob-
tained by [37]

T0(x) � 1,

T1(x) � x,

Tn+1(x) � 2xTn(x) − Tn−1(x),

(12)

where n� 0, 1, 2, . . ., N. Equation (12) has n+ 1 extreme
points (including endpoints) in [−1, 1], which can be ob-
tained by

xk � cos
kπ
n

􏼠 􏼡, (13)

where k� 0, 1, 2, . . ., n. Taking n� 10, eleven Chebyshev
points can be obtained to divide time, thereby generating 11

corresponding trajectory points as shown in Table 6, and the
schematic diagram of trajectory points distributions is as
shown in Figure 10(b).

In Figure 10, it can be found that the distribution of the
trajectory points generated by the two modes is more dense
in the beginning and end segments, while the distribution of
the trajectory points in the middle segment is sparse. Among
them, the distribution based on Chebyshev nodes is the most
obvious. +e joint trajectory effects of two modes are shown
in Figure 11.

By comparing Figure 9 with Figure 11, it can be seen that
the effect of joint trajectory generated based on temporal
domain division is better than the joint trajectory divided by
spatial domain on the whole and is closer to the original joint
trajectory. Compared with the two partition methods in
Figure 11, it can be found that the trajectory generated by the
uniform time distribution is closer to the original joint
trajectory.

4. Interpolation Points Optimization

4.1.OptimizationProcessAnalysis. On the basis of the above
analysis, in order to explore the optimal distribution of
trajectory points, the intelligent optimization algorithms
are used to optimize the positions to obtain the best tra-
jectory reducibility. Among many intelligent optimization
algorithms [38–40], the PSO [41] and GA [42] are chosen
due to their fast convergence and robustness. +e primary
purpose of optimization is to make the generated trajectory
closer to the original design trajectory. +erefore, taking
the errors between the original Cartesian trajectory and the
actual trajectory as the optimization goal, the fitness
function of the PSO algorithm is constructed as shown in
equation (14), and the fitness function of GA as shown in
equation (15):
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Figure 9: Joint trajectory effect based on spatial divisions. (a) HFE joint trajectory. (b) KFE joint trajectory.

Table 5: Corresponding trajectory points of uniform time.

Point number Time (s) X position (mm) Y position (mm)
1 0 15 0
2 0.1 11.5056 2.5247
3 0.2 1.9952 14.8716
4 0.3 2.2816 35.0628
5 0.4 20.1888 54.0017
6 0.5 50 61.8000
7 0.6 79.8112 54.0017
8 0.7 97.7184 35.0628
9 0.8 98.0048 14.8716
10 0.9 88.4944 2.5247
11 1 85 0
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where 􏽢xi and 􏽢yi are the Cartesian space coordinate values
obtained from the positive kinematics solution of the joint
trajectory, xi and yi are the original Cartesian trajectory
coordinate values corresponding to 􏽢xi and 􏽢yi, T is the total
motion time, and n is number of sampling points.

Let time t be the independent variable, the random
points’ distributions as the initial positions. By continuously
updating the trajectory points’ positions and assessing the
fitness, the distributions of trajectory points are gradually
optimized until the convergence conditions are met. +is
process can be represented by the flowchart as shown in
Figure 12 below. Among them, (a) is the PSO flowchart and
(b) is the GA flowchart.

In the process as shown in Figure 12, in order to obtain
the current individual’s fitness, the positive kinematics
calculation needs to be performed after the joint space
trajectory planning to obtain the actual foot-end motion

trajectory. And then the error analysis based on equations
(14) and (15) is executed to return the fitness value by
comparing with the original Cartesian trajectory. In this
process, there are multiple kinematic solving steps, so the
combination of PSO or GA function with Simulink is used
for optimization. As shown in Figure 13, the fitness cal-
culation system is established through Simulink, and the
PSO or GA function is responsible for calling the Simulink
model to calculate the fitness, and then the current indi-
vidual positions are adjusted to further optimize based on
the returned fitness value obtained by the Simulink model.

In Figure 13, “Points_in” is used to call the multidi-
mensional individual positions which are the global vari-
ables in the workspace generated by the PSO function, and
then they are put into “Interpolation_model” to calculate the
boundary conditions of each interpolation point. Further-
more, the corresponding piecewise quintic polynomial in-
terpolation function is generated to perform joint space
trajectory planning. +e “Forward-kinematics” are used to
obtain the actual foot-end trajectory by forward kinematics
solving of the generated joint trajectory. +e actual foot-end
trajectory and the original trajectory generated in “Tra-
jectory_function” are put into “Error_analysis” to analyze the
error between them by equations (14) and (15) and obtain
the fitness. Finally, the fitness is returned to the PSO or GA
function through “Out_fitness” for next iteration.

4.2. Optimization Results Analysis. +rough the above PSO
and GA method, the final obtained distributions of the
trajectory points are shown in Tables 7 and 8. From these two
tables, we can find that the distributions obtained by the two
methods are relatively close, and both are further optimized
on the basis of the isochronous distributions.

In order to more comprehensively evaluate the closeness
between the actual trajectory and the design trajectory, the
integrated absolute error (IAE) and integrated square error
(ISDE) [43] are used as the performance indexes. +ey are
shown as follows:
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Figure 10: Temporal domain trajectory divisions. (a) Uniform time. (b) Chebyshev nodes.

Table 6: Corresponding trajectory points of Chebyshev nodes.

Point number Time (s) X position (mm) Y position (mm)
1 0 15 0
2 0.0245 14.9209 0.0455
3 0.0955 11.8685 2.2273
4 0.2061 1.5635 15.9486
5 0.3455 8.3703 44.4837
6 0.5 50 61.8000
7 0.6545 91.6297 44.4837
8 0.7939 98.4365 15.9486
9 0.9045 88.1315 2.2273
10 0.9755 85.0791 0.0455
11 1 85 0
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IAE � 􏽚 |e(t)|dt, (16)

ISDE � 􏽚(e(t) − e(0))
2dt, (17)

where e(t)�

������������������

(􏽢xi − xi)
2 + (􏽢yi − yi)

22
􏽱

and e(0) represents the
average error. +e distributions of relevant trajectory
points in Section 2 are compared, and the different per-
formance index values of these distribution modes are
shown in Table 9.

According to the analysis of the data in Table 9, the errors
of the trajectory generated by dividing time are overall fewer
than those generated by dividing space, which further
verifies the relevant conclusions in Section 2. When com-
paring the index values of the optimized points and the
uniform time, it can be found that the results are close. +e
optimal distributions improve by 1.8% to 2.0% of IAE and
13.1% to 17.8% of ISDE compared with the uniform time
distributions. +erefore, in the case of less precision re-
quirements, the use of isochronous distribution of trajectory
points has been able to achieve better trajectory reduction
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Figure 11: Joint trajectory effect based on temporal divisions. (a) HFE joint trajectory. (b) KFE joint trajectory.
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Table 7: Corresponding trajectory points obtained by PSO.

Point number Time (s) X position (mm) Y position (mm)
1 0 15 0
2 0.1024 11.3051 2.6924
3 0.2048 1.6519 15.7165
4 0.3013 2.4030 35.3404
5 0.4012 20.4961 54.1780
6 0.5027 50.8640 61.7940
7 0.6001 79.8367 53.9869
8 0.6981 97.5399 35.4684
9 0.7933 98.4766 16.0561
10 0.8969 88.7543 2.7425
11 1 85 0

Table 8: Corresponding trajectory points obtained by GA.

Point number Time (s) X position (mm) Y position (mm)
1 0 15 0
2 0.1055 11.0393 2.9184
3 0.2031 1.7704 15.4151
4 0.3005 2.3279 35.1696
5 0.3996 20.0868 53.9425
6 0.5006 50.1920 61.7997
7 0.5999 79.7857 54.0164
8 0.6979 97.5207 35.5111
9 0.7922 98.5489 16.2541
10 0.8922 89.1626 3.0930
11 1 85 0

Table 9: Performance index values of multiple distribution types.

Distribution mode of trajectory points IAE ISDE
Uniform X 1.3860 1.6320
Uniform arc 0.6194 0.6010
Uniform time 0.2560 0.0214
Chebyshev nodes 0.7830 0.3606
PSO 0.2514 0.0186
GA 0.2505 0.0176

12 Complexity



effect. Moreover, the computation is simple by this method.
In addition, if the accuracy needs to be further improved, the
PSO or GA method in here can be used to further optimize
the point distributions.

5. Simulation Analysis and
Prototype Experiment

Based on the above analysis conclusions, a virtual prototype
simulation and a prototype experiment are performed to
further verify the above optimization results.

By building a virtual prototype associated simulation
platform, the motion simulation of a virtual prototype is
performed. In this process, the input and output interfaces of
each platform are set up for driving and feedback. +e
motion time and the point distributions are inputted in
Simulink to plan the joint space trajectory, and the corre-
sponding joint angle output is got. +e joint angle output by
Simulink is used as the input of virtual prototype for joint
driving and locomotion. +e comparison between the actual
foot-end trajectory generated by several distribution modes
and the original Cartesian trajectory is shown in Figure 14.

In Figure 14, because the points obtained by PSO and
genetic algorithm are relatively close, this will cause
overlap. After considering the accuracy and convergence
speed of the two methods, the point distributions obtained

by PSO are analyzed owing to this method having a faster
convergence speed, and the accuracy is close to genetic
algorithm. +us, the simulation of the motion process and
the trajectory curve of the foot-end are obtained, which
are shown in Figure 15.

In Figure 15, the movement process of the foot-end in a
trajectory cycle is simulated. From the partially enlarged
figure of each picture and Figure 14, it can be seen that the
motion trajectory of the foot-end is consistent with the
designed trajectory curve. +en, the foot-end motion
characteristics are analyzed, the obtained speed curve of the
foot-end is shown in Figure 16(a), and the acceleration curve
is shown in Figure 16(b).

It can be seen that the foot-end velocity curve of the
virtual prototype generated by the joint trajectory plan-
ning is basically consistent with the designed velocity
curve, and there is a small fluctuation around the designed
speed curve and it is relatively smooth in general com-
paring Figure 16 with Figures 4 and 5. +e acceleration
curve of the foot-end is consistent with the designed
acceleration curve in the overall trend, but the details are
different. Although the acceleration curve of the foot is
continuous, the fluctuation range is obvious and the
smoothness is poor. It will cause the vibration and res-
onance of the machine during the actual movement
[44, 45]. How to optimize the boundary conditions of the
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Figure 14: Comparison of different trajectory restoration effects.
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Figure 16: Foot-end motion characteristics of virtual prototype. (a) Foot-end speed curve. (b) Foot-end acceleration curve.
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Figure 15: Virtual prototype motion process using the point distributions obtained by PSO algorithm. (a) Start. (b) 1/7 period. (c) 2/7
period. (d) 3/7 period. (e) 4/7 period. (f ) 5/7 period. (g) 6/7 period. (h) 1 period.
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interpolation points is the key to solve the above accel-
eration unsmoothness problem, and it is also the topic
that may need to be researched after this paper.

+e experimental platform of quadruped robot proto-
type is shown in Figure 17, and the interpolation points
obtained by PSO algorithm are used as the experimental
objects for single-leg motion experiment.

In Figure 17, the bus controller is used to control the motor
through Ethernet communication, and the laser tracker is used
to track the motion trajectory in real time. +e actual motion
process of the prototype is shown in Figure 18.

During the experiment, the movement was at a steady
performance and achieved a good practical effect. How-
ever, due to the gap in the keyway of the leg joint of the
prototype, some structural jitter occurs when it is mag-
nified to the foot-end. But, for industrial robots, the effects
may be better due to the well assembly accuracy. +e
sampling effect obtained by the laser tracker is shown in
Figure 19. Compared with the design trajectory in

Figure 3, it can be seen that the optimized interpolation
points can better restore the original trajectory in the
actual foot-end movement.

6. Conclusion

(1) +e Cartesian space trajectory planning combined
with the joint space trajectory planning is imple-
mented in the foot-end trajectory planning of
quadruped robots. And the piecewise quintic poly-
nomials for trajectory generation are used for the two
methods, which have good coordination and
consistency.

(2) +e position distribution of interpolation points
used in joint space trajectory is explored.+e original
trajectory is divided into four distribution types:
uniform X, uniform arc, uniform time, and Che-
byshev nodes. +rough analysis and comparison, it
was found that the trajectory restoration effect based
on temporal division was better than that based on
spatial division. Among the four methods, the tra-
jectory reduction degree based on uniform time
partition was the highest.

(3) On the basis of the above analysis, the PSO and GA
are used to optimize the distribution of interpolation
points, and the points distribution with higher re-
duction degree is obtained, which is greatly im-
proved compared with the above four methods.
+erefore, in the case that accuracy demand is not
particularly strict, the isochronous distribution
mode can be utilized since it already has high re-
duction degree and calculation convenience. In
addition, if the accuracy needs to be further im-
proved, the PSO or GA method in here can be used
to further optimize the point distributions.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 18: Movement process of foot-end of prototype. (a) Start. (b) 1/7 period. (c) 2/7 period. (d) 3/7 period. (e) 4/7 period. (f ) 5/7 period.
(g) 6/7 period. (h) 1 period.

Figure 19: Laser tracker sampling trajectory by prototype
experiment.
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