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Today, artificial intelligence and deep neural networks have been successfully used in many applications that have fun-
damentally changed people’s lives in many areas. However, very limited research has been done in the meteorology area,
where meteorological forecasts still rely on simulations via extensive computing resources. In this paper, we propose an
approach to using the neural network to forecast the future temperature according to the past temperature values. Specifically,
we design a convolutional recurrent neural network (CRNN) model that is composed of convolution neural network (CNN)
portion and recurrent neural network (RNN) portion. )e model can learn the time correlation and space correlation of
temperature changes from historical data through neural networks. To evaluate the proposed CRNN model, we use the daily
temperature data of mainland China from 1952 to 2018 as training data. )e results show that our model can predict future
temperature with an error around 0.907°C.

1. Introduction

With the rapid development of artificial intelligence in recent
years, people have gained great convenience in their daily life.
Image recognition, speech translation, smart recommenda-
tion, self-driving cars, and many more neural network
technologies have achieved great success in their applications.
However, there are still many applications that can bring great
benefits to people lacking of corresponding artificial intelli-
gence models. )e meteorological forecasting application is
an example that we are going to investigate in this paper.

A more accurate temperature forecasting is important in
many aspects of the society. For most people, the predicted
temperature helps them choose how to dress. So, in many
other industries and sectors, temperature forecasting plays a
key role to help people in their work. However, the current
forecasting method is still based on meteorological simu-
lations that require huge computation resources and a long
time to get the accurate results.

To predict future temperature, this paper develops a new
convolutional recurrent neural network (CRNN) model
[1, 2], which can effectively forecast the future temperature
according to the time series of the temperature data. )e
CRNN model developed in this paper is a multilevel neural
network consisting of a convolutional neural network
(CNN) portion and a recurrent neural network (RNN)
portion. )e CNN portion is used to process the spatial
correlation in each temperature data map, and the RNN
portion is used to process the time correlation in the con-
sequent temperature data map.)rough the above structure,
our model can learn the time and space correlation
according to past temperature data, and one dense layer is
added to generate the predicted temperature values. )e
training data we used are the daily average temperature data
from the China Meteorological Administration. )e data
include daily average temperature observed from about 800
temperature stations in the mainland of China from 1952 to
2018. Our experiments show that our model can successfully
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predict the future temperature, and the average error is
about 1.25°C.

)e contribution of this paper is that we developed a
reliable temperature forecasting deep learning model.
)rough the model, we can forecast the future temperature
according to the past temperature values. Compared to tra-
ditional meteorological temperature prediction methods, our
model can be used in different geographical environments
and is especially useful in those environments where people
are not fully aware of their meteorological models. )is is
because ourmodel can learn the time and space correlation by
itself according to the historical data. )erefore, our model
can help people get the meteorological model of a geo-
graphical environment more easily in addition to conducting
the temperature forecasting. )is is a reinforcement learning
process where the newly learned meteorological model will
help improving the CRNNmodel to obtain better forecasting
result.

)e rest of this paper is organized as follows. In Section
2, a brief review of related work will be given, including
existing temperature forecasting methods and introduction
of CRNN. )en, our CRNN structure will be described in
Section 3. )e procedure of experiments will be shown in
Section 4. In Section 5, the results of our experiments and
evaluation will be given. Finally, a conclusion of our work
and a discussion about some possible future research di-
rections will be given.

2. Related Work

2.1. Temperature Forecasting. Temperature forecasting is a
portion of weather forecasting; other portions include the
probability of precipitation forecasting, barometric pres-
sure forecasting, wind power forecasting, etc. One point
needs to be noted; temperature forecasting models need to
be adapted to different applicable environments, for ex-
ample, some models are used to forecasting indoor tem-
perature [3, 4], some models are used for large-scale
temperature forecasting [5, 6], and somemodels are used in
specific environment [7, 8]. With the rapid development of
machine learning, more and more machine learning
methods have been applied to weather forecasting, such as
support vector machine (SVM) [9, 10], genetic algorithms
[11], and neural networks [12–14]. Different methods have
their own more suitable application environments.

In large-scale temperature forecasting area, there are
some widely used deep learning approaches, such as op-
erational consensus forecasts (OCFs) [15], back-
propagation neural networks (BPNNs) [16],and stacked
denosing autoencoders (SDAEs) [5]. Compared to original
neural networks (NNs), these approaches all achieved
better performance. However, the above approaches still
have some weaknesses. OCF uses multiple models and
integrates them for forecasting. But this method relies on
critical manual selection. Original BPNN has also achieved
a good result, but it leads to a high computation com-
plexity. SDAE introduces an unsupervised pretraining
architecture to initialize model weights, and it improves
performance successfully [17]. However, this method

improves the risk of learning the identity function, which
may lead training to useless.

In this paper, our model is used to forecast the large-scale
temperature of the mainland of China, and our model will
more concentrate on the spatial correlation and time cor-
relation of temperature, so our model is also established
according to those demands. )e detailed introduction of
our model is given in Section 3. And the forecasting result
shown in Section 5 can prove our model works well in large-
scale temperature forecasting area.

2.2. Convolutional Recurrent Neural Networks.
Convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) are two widely used neural net-
work structures. CNNs are the special neural network
architectures that are especially suitable for processing two-
dimensional data. Convolutional neural network archi-
tectures are usually built with the following layers: con-
volution layer, activation function layer, pooling layer, fully
connected layer, and loss layer [18]. RNNs are developed
specifically for processing sequential data with correlations
among data samples. )ey have the nice capability of
processing sequential data and can be designed to model
both long- and short-term data correlations. By combining
the CNN and RNN, the CRNN not only utilizes the rep-
resentation power of CNN but also employs the context
modeling ability of RNN. )e CNN layers can learn good
middle-level features and help the RNN layer to learn
effective spatial dependencies between image region fea-
tures. Meanwhile, the context information encoded by
RNN can lead to better image representation and transmit
more accurate supervisions to CNN layers during back-
propagation (BP) [19].

In a single two-dimensional data, the distribution of
features always relies on each other, and CRNN can work
very well in this task. Because CNN can extract the em-
bedded features and process its space correlation and
RNN can process their time correlation, CRNN has been
used in single-image distribution learning tasks [19].
Another task, i.e., learning the spatial dependency of the
image, is more complicated. For example, if images are
highly occluded, the recovery of the original image in-
cluding the occluded portion is very difficult. Some re-
searchers are still working in this area. But if the occluded
images are image series with some inherent context in-
formation, this problem can be processed with the CRNN
model. In the paper [20], the CRNN structure works very
well and gets good performance. CRNN structure has also
been applied to the text recognition problems, where CNN
can be used to recognize a single character while RNN can
be used to extract text dependency according to the
context. Especially, if the edge feature of the text is strong,
then a max-feature-map (MFM) layer can be added into
the CRNNmodel to enhance the contrast [21]. CRNN also
shows pretty good performance in music classification
tasks, where CNN can be used to extract local feature and
RNN can be used to extract temporal summarization of
the extracted features [22].
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3. CRNN Model for Forecasting
Future Temperature

3.1. Introduction of Training Data. To introduce how our
model works, we need to introduce our training data first.
)e training data are from “surface climate daily value
dataset of China.” )is dataset is collected by the Nation
Meteorological Information Center of China. )e training
data include daily average temperature observed from about
800 temperature stations in the mainland of China from
1952 to 2018.)e latitude and longitude of every observation
station are involved. To better learn the spatial correlation of
temperature values, we generate the temperature data map
to fit them to our CRNNmodel and use convolution to learn
its space correlation. )e size of the generated temperature
data map is 36× 62, each row represents one degree in
latitude, and each column represents one degree in longi-
tude. To better demonstrate our experimental results, we
have visualized the temperature data map according to the
“Color Code for Products of Weather Forecast and Service”
of China Meteorological Administration [23]. )e corre-
sponding relationship between color and temperature is
shown in Figure 1.

)e example of visualized temperature data map is
shown in Figure 2. We will also use this kind of visualized
method to show our final forecasting result in Section 5.

3.2. CRNN Forecasting Model. In this section, we overview
the structure of the proposed CRNN model, which is il-
lustrated in Figure 3.

As shown clearly in Figure 3, our training data are
temperature data map with time-series length 4; the tem-
perature data are daily average data observed from about 800
temperature stations in the mainland of China from 1952 to
2018. )en, we apply a CNN to process each temperature
data map. )e CNN portion includes convolution layer,
activation function layer, pooling layer batch normalization
layer, and flatten layer. After the CNN portion, there is an
RNN portion with LSTM structure, which mainly consists of
LSTM layer, dropout layer, and batch normalization layer. In
the final, a dense layer is applied and the output of the whole
model is a temperature data map series with length 4.
)e result will be compared with the label, which is a
real temperature data map with series length 4 as well.
After training, this CRNN model can be used to predict
the future temperature according to past temperature data.

)e imported training data of each individual CNN unit
are the temperature data map, which is a two-dimensional
map; the value of each pixel is temperature.

3.3. Mapping in CRNN Model. As shown in Figure 3, our
input data are time-series temperature data map xi,twith size
T×H×W, where i denotes the index number of images
sequence and t denotes the time step label in time-series
images sequence. H means the height of each data map, and
W means the width of each data map. Input data are sent
into our CNN portion and the output of CNN portion is a
tensor zi,t, which equals to

zi,t � f xi,t; wx􏼈 􏼉􏼐 􏼑, (1)

where wx denotes the weighting coefficients in our CNN
portion. )ree CNN layers extract the space correlation in
each temperature data map. Our CNN model can learn
spatial dependency in each temperature data map individ-
ually. )e CNN portion can map our input data xi,t to tensor
zi,t, and zi,t is the input of the RNN portion.

In our RNN portion, the LSTM layer is the core structure
to learn time dependence in time-series temperature data
map sequence, and the LSTM layer maps the tensor zi,t to a
representation series hi,t which equals to

hi,t � f hi,t−1, zi,t; wz􏼈 􏼉􏼐 􏼑, (2)

where wz denotes the weighting coefficients in the LSTM
layer. )en, the output of the LSTM layer Hi is sent to a
dense layer. )rough this dense layer, the prediction tem-
perature values are generated. )e size of generated data
map sequence is equal to our input time-series data map
sequence which is T×H×W. )e output of the dense layer
equals to

􏽢yi � f Hi; wh􏼈 􏼉( 􏼁. (3)

Until now, our model can generate forecasting future
temperature data map according to the past time-series
temperature data map.

3.4. Data Processing in CRNN Model. In order to under-
stand our CRNN model better, it is helpful to describe the
procedure of data processing in detail, including the di-
mensions and values of important parameters and tensors.
)e values of the CRNN parameters are also selected
carefully with many repeated experiments.

As shown in Figure 4, the input tensor is the past
temperature data map series. )e dimension of the input
tensor is 4× 36× 62, which means the input data are a series
of temperature data map with series length 4 and the size of
data map is 36 rows and 62 columns.

)en, one convolution layer is added; because the kernel
size of the first convolution layer is 3× 3 and the number of
filters is 64, the output of the first convolution layer is a
tensor of dimension 4× 34× 60× 64. )e next activation
function layer and batch normalization layer will not change
the size of tensor. But the dimension of tensor is changed
after one pooling layer, and the chosen pooling size is (2,2),
so the dimension of data tensor becomes 4×17× 30× 64.
Until now, one convolution process finished. )en, two
similar convolution processes are used in our model; the
only difference is the number of convolution filters in these
two convolution layers which are 128 and 256. By the same
convolution process as described in the previous paragraph,
the dimension of our data tensor becomes 4× 2× 6× 256.

)en, a flatten layer is used in order to connect the CNN
with the RNN. As the layer name suggests, the function of
this layer is to flatten each 4× 2× 6× 256 data tensor into a
two-dimensional data array with size 4× (2× 6× 256)�

4× 3072.)is finishes the CNN portion of the CRNNmodel.
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Figure 1: Temperature (in Celsius) and the corresponding color label.

Figure 2: Visualized temperature map.
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Figure 3: Illustration of CRNN model.
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Note that the CNN portion processes each temperature
data map individually. Next, we apply RNN to learn the
information embedded in the time series. )e first layer of
the RNN portion is an LSTM layer. )e LSTM layer has 4
time steps, which consists of 4 LSTM cells. We set the di-
mensions of both the LSTM states and outputs to be 1024.
)erefore, the output of the LSTM layer is a data array with
dimension 4×1024.

To generate the predicted temperature data map, we
use a dense layer to generate output data tensors with the
same dimension as the target data map. Specifically, the
dimension is 4 × 2232. Note that 2232 equals to 36 × 62,
the size of a temperature data map. We apply a reshape

step at the end to obtain 4 predicted data maps with size
32 × 62. )is will be compared to the label time-series
temperature data map for loss function calculation during
training.

4. Experiment

4.1. Data Collection and Data Preprocessing. )e training
data used in this paper are the daily average temperature data
provided by the China Meteorological Administration. )e
data label includes date, observation station number, ob-
servation station latitude, observation station longitude, and
daily average temperature.

To extract the embedding space correlation and time
correlation better, we put those temperature values into a
two-dimensional data map according to the latitude and
longitude of those observation stations. )e value of each
pixel is the temperature. )e final size of the data map is
36× 62, each row represents one degree in latitude, and each
column represents one degree in longitude. )e visualized
version of the data map is shown in Figure 2.

)en, those data maps are ordered according to the time
series, and the series length is 4. Because the daily tem-
perature data are from January 1, 1952, to December 31,
2018, 24472 days in total, the number of data map series is
24469. )en, those data map series are separated by the ratio
of eight to two. Eighty percent of data map series are used as
training data and validation data. And twenty percent of data
map series are used as testing data. All data map series are
separated randomly.

)e temperature values in the data map are normalized.
)e data are normalized according to the equation below:

X′ �
X − Xmin( 􏼁

Xmax − Xmin( 􏼁
. (4)

4.2. Tuning of CRNN Model. To get the best forecasting
result, we need to tune our model to decide the hyper-
parameter values. We use k-fold cross validation to test the
best hyperparameter values. )e value of k is 10 in our
experiments. )e tuning result of some hyperparameters
includes sequence length of temperature data map series and
batch size, and the optimizer will be compared with the
learning curve. And the learning curve with different
hyperparameters will be shown in the following figures. And
all hyperparameter values used in our CRNN model will be
shown in the following table.

In Figure 5, we show the different learning curves when
the input series length is different. We can see the perfor-
mance is similar after the system has converged. And we
finally choose to use the series length 4 to train our model
because it will lead to the lowest validation loss.

)en, the difference caused by different batch sizes is
shown in Figure 6. We can see we will get the best per-
formance when using batch size 32.

)e best number of LSTM neurons is also needed to be
tested; according to the experiment result shown in Figure 7,
we use 1024 neurons in LSTM layer.

Past temperature data map series (4 × 36 × 62)

Convolution layer (4 × 34 × 60 × 64)

Pooling layer (4 × 17 × 30 × 64)

Convolution layer (4 × 15 × 28 × 128)

Pooling layer (4 × 7 × 14 × 128)

Convolution layer (4 × 5 × 12 × 256)

Pooling layer (4 × 2 × 6 × 256)

Flatten layer (4 × 3072)

Long short-term memory layer (4 × 1024)

Predicted data map series (4 × 36 × 62)

Dense layer (4 × 2232)

Figure 4: Data processing.
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And we also test different optimizers; except stochastic
gradient descent (SGD), all other optimizers get similar
results which are shown in Figure 8. Finally, we use Nesterov
adaptive moment estimation (Nadam) optimization algo-
rithm in ourmodel training.)e initial learning rate is 0.002,
and the learning rate will be reduced every ten epochs if the
model cannot get better performance.

Some hyperparameters which lead to smaller difference
are shown in Table 1.

5. Result and Evaluation

Compared to the approaches demonstrated in Section 2, our
CRNN has better performance; the criteria of comparison

are mean average error (MAE) and root mean squared error
(RMSE). )e comparison result is shown in Table 2. )e
equations of MAE and RMSE are shown below:
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Figure 5: Learning curve with different lengths of temperature data
map series.
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Figure 6: Learning curve with different batch sizes.
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Figure 8: Learning curve with different optimizers.

Table 1: Some parameter values in CRNN model.

Hyperparameters Values
Convolutional kernel size (3, 3)
Pooling size (2, 2)
Number of convolutional filters 64,128,256
Recurrent dropout values in LSTM 0.2
Dropout values in LSTM 0.2
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)e performance of our CRNN for temperature pre-
diction is listed in Table 3. )e result is evaluated according
to five criteria: mean average error (MAE), root mean
squared error (RMSE), and the accuracy when prediction
error is smaller than 1, 2, and 3°C.

All results are calculated between the forecasting data
map and the real data map. Some examples of the visualized
real data map and visualized forecasting data map are shown
in Figure 9. As can be seen, our CRNN model can suc-
cessfully predict the temperature.

6. Conclusion and Future Work

In this paper, we have developed a deep learning model that
uses the convolutional recurrent neural network (CRNN)
for temperature prediction in large-scale space. Specifically,
we train the CRNN model with the daily average temper-
ature data map set and demonstrate that this model can
successfully predict the future temperature according to its
past temperature data values. )e predicted result of the
developed CRNN is better than other benchmark methods.

)ere are two points that can be addressed to further
improve this work. First, the shape of the mainland of China
is an irregular figure, but our input temperature data map is
a two-dimensional image. )is means that we lack the
temperature data in the pixels that are located outside the
shape of China. It will bring bad influence to learn the spatial
dependency in the pixels which are located near the
boundary of China and cause prediction difference in those

Table 3: Performance of CRNN model.

Criterions Values
Mean average error 0.907
Root mean squared error 1.697
Accuracy when prediction error is smaller than 1°C 0.689
Accuracy when prediction error is smaller than 2°C 0.830
Accuracy when prediction error is smaller than 3°C 0.914

Table 2: Performance comparison with different approaches.

Approaches MAE RMSE
Operational consensus forecasts 1.253 2.174
Original backpropagation neural networks 0.934 1.952
Stacked denoising autoencoder 0.951 1.863
Convolutional recurrent neural networks 0.907 1.697

Predicted temperature map

Predicted temperature map

Predicted temperature map

Predicted temperature map

Real temperature map

Real temperature map

Real temperature map

Real temperature map

Figure 9: Visualized comparison figures between forecasting temperature data map and real temperature data map.
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pixels. Second, the values in temperature data maps are not
fully accurate. More than 800 observation stations are still
not enough to observe the temperature of every spot in
China. Some lacking temperature is set according to the
temperature value of the closest observation station. In
actual temperature distribution, there are many factors
influencing the temperature values, such as altitude, baro-
metric pressure, humidity, and even density of population.
We need to introduce a more complex meteorology-related
algorithm into our CRNN model to get more accurate
prediction values in the future.
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