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/e trajectory tracking task of a magnetic levitation system connected to a beam mechanism is solved by means of a nested
saturation control with a feedforward term. /e flatness property of the system allows to use the nested saturation control
technique and the feedforward control to stabilize the output tracking error around the equilibrium. /e closed-loop error
dynamics is proven to be locally exponentially stable. Numerical simulations prove the effectiveness of the proposal.

1. Introduction

Underactuated systems are currently an active research area
in automatic control design. On the one hand, their amount
of advantages such as lighter structures, economic designs,
the possibility of compensating a failure on a fully actuated
system, among others, has allowed their use in many ap-
plications such as mobile robotics, marine systems, aero-
space robotic systems, cranes, flexible robots, and fault
compensation systems [1–4]. On the other hand, the control
problems of regulation and trajectory tracking of under-
actuated systems lead to complex solutions which cannot be
solved by classical schemes [5]; some of the complexities are
due to the difficulties to find general properties concerning
their capacity of being linearizable, relations between de-
grees of freedom and independent control actuators [6],
passivity [7, 8], ill-defined relative degrees [9], and so on.
Most of the solutions for this class of systems deal with the
regulation problem, where energy-based schemes are the
most popular. /e trajectory planning tasks and their
tracking demand more complex strategies. /is is due to the
fact that not all joint trajectories are attainable for this class
of systems [10]. To overcome this problem, the capacity of
finding a set of variables that can parameterize the system

trajectories (differentially flatness [11–13]) allows to estab-
lish a trajectory planning and a subsequent controller
synthesis.

In particular, magnetic levitation systems have been
extensively analysed and used in the design of frictionless
bearings [14], vibration isolation [15], manipulation and
micromanipulation systems [16, 17], drug and people
transporting [18, 19], energy harvesting [20–22], etc., where
noncontact motion control or avoiding the use of lubrication
systems is desirable [23–25]. /e control of this class of
systems has been tackled from a wide variety of nonlinear
approaches [26, 27]. /e magnetic levitation in a beam
balance configuration has been approached by feedback
linearization [28]. In [29], the regulation problem of a beam
balance system is solved though a Lyapunov-based control
considering restrictions in states and input. Hu et al. [30]
developed a saturated linear feedback to solve the same
problem achieving a larger attraction region with respect to
linear techniques. Passivity-based control is also imple-
mented though the interconnection and damping assign-
ment [31]. In [32], a sliding mode controller is used for the
regulation problem using two magnetic actuators in an
agonist-antagonist configuration. /e problem of trajectory
tracking for a ball levitation system controlled by magnetic
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bearings has been solved by a flatness-based control [33–35],
where path planning is used to avoid the input constraints in
the control design although the natural saturations are not
part of the control design in contrast with other schemes.
/e idea of using the saturations as a part of the control
design in combination with the advantages of a flatness-
based control seems to be a good alternative to solve the
problem of trajectory tracking enhancing the control re-
sponse in case the control saturation may arise. /e nested
saturation function approach was introduced by A. Teel in
[36] to solve the stabilization of a chain of integrator of
arbitrary order, and it can also be used for trajectory tracking
for a class of trajectories restricted. Other works that solve
this problem are presented in [37–39]. Besides, this tech-
nique has been used for stabilization of a class of under-
actuated systems [40–43].

In this sense, this article deals with the problem of
trajectory tracking of a beam balance levitation system by
means of a nested saturation function approach in combi-
nation with the flatness property of the system./e proposal
consists in using the flatness of the system to transform the
system in an integrator chain, and then, a controller based
on a nested saturated function and a feedforward term is
used to force the output trajectories to converge towards the
reference trajectory./e closed-loop solution is proven to be
locally exponentially stable by means of the second method
of Lyapunov.

/e remainder of the article is given as follows: the
dynamical model of the magnetic levitation system, the
flatness property, and the problem formulation are given in
Section 2. /e control proposal and its stability proof are
provided in Section 3. Some numerical simulations which
show the behaviour of the proposal are presented in Section
4, and finally, some concluding remarks are stated.

2. System Model

Consider the magnetic levitation system, shown in Figure 1,
where a beam can rotate freely, and its movement is affected
by the gravity effects and the control input derived from a
magnetic force generated on a controlled electromagnet coil.
/e dynamical model is given as follows:

_x1(t) � x2(t),

_x2(t) �
Ce

J

x3(t)

l sin x1(t)( 
 

2

−
mgr cos x1(t)( 

J
,

_x3(t) �
u(t)

L
−

Rx3(t)

L
,

(1)

where x1(t) is the angular position of the pendulum, x2(t) is
its corresponding angular velocity, and x3(t) is the current
of the inductor. Ce represents the electromagnetic force
proportionality constant. J is the inertia moment of the
beam, l is the distance between the pivot and the center of the
permanent magnet, m denotes the mass of the beam, g is the
gravity constant, and r is the radial distance of the center of
mass of the beam to the rotational center. L and R are the

inductance and resistance parameters of the electromagnetic
subsystem. Finally, u(t) is the control input, applied on the
electromagnetic system. It is assumed that the output var-
iable is the position of the beam x1(t).

Last system admits a canonical controllable form by
means of the following change of coordinates [44]:

F1(t) � x1(t),

F2(t) � x2(t),

F3(t) � α1
x3(t)

sin x1(t)( 
 

2

− α2 cos x1(t)( ,

(2)

where α1 � (Ce/Jl2) and α2 � (mgr/J).
We have the following inverse transform:

x1(t) � F1(t)

x2(t) � F2(t)

x3(t) �

�������������������������������
1
α1

F3(t) + α2 cos F1(t)( ( sin2 F1(t)( 



.

(3)

/e dynamics of (1) in terms of coordinate transfor-
mation (2) is given as follows:

_F1(t) � F2(t),

_F2(t) � F3(t),

_F3(t) � −2 F3(t) + α2 cos F1(t)( ( r F1(t), F2(t)( 

+ α2 sin F1(t)( F2(t)

+
2 ��α1
√

L

������������������
F3(t) + α1 cos F1(t)( 

sin2 F1(t)( 



u(t),

(4)

where

r F1(t), F2(t)(  �
R

L
+ F2(t)cot F1(t)(  . (5)
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Figure 1: Magnetic levitation system.
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/is system can be controllable except when F1(t) � 0 or
in the set F3(t) + α1 cos(F1(t)) � 0.

2.1. Problem Formulation. /e following problem formu-
lation is established: given a smooth admissible reference
trajectory of the beam angle, denoted as x∗1(t), devise an
output feedback control law u(t) such that the trajectory
tracking error remains after a settling time on a vicinity of
the origin of the phase variable plane, as small as allowed by
the system nonlinearities and the control gains to be
designed.

3. Nested Function Control Design

From (4), it can be shown that the system is differentially flat
[11, 12] with flat output F1(t) � x1(t). /at is, system (4) has
the form

F
(3)
(1)(t) � h F1(t), _F1(t), €F1(t)  + p F1(t), €F1(t) u(t),

(6)

with

h F1(t), _F1(t), €F1(t)  � −2 €F1(t) + α2 cos F1(t)(   ×

R

L
+ _F1(t)cot F1(t)(   + α2 sin F1(t)(  _F1(t)

p F1(t), €F1(t)  �
2 ��α1
√

L

������������������
€F1(t) + α1 cos F1(t)( 

sin2 F1(t)( 



.

(7)

/e following linearizing control input

u(t) �
1

p F1(t), €F1(t) 
−h F1(t), _F1(t), €F1(t)  + v(t) ,

(8)

yields the following linear controllable in the Brunovsky
canonical form

F
(3)
(1)(t) � v(t). (9)

Let us define the flat output error as
eF1(t) :� F1(t) − F∗1(t), where F∗1(t) � x∗1(t). In order to
express the dynamics in terms of the tracking error coor-
dinates, the following feedforward input term is introduced
in the last expression:

v(t) � F
∗(3)
1 (t) + v(t). (10)

/us, using (8) and (10) in (4), the following expression
is obtained:

e
(3)
F1 (t) � v(t). (11)

Last system admits the following canonical
representation:

_eF1(t) � eF2(t),

_eF2(t) � eF3(t),

_eF3(t) � v(t).

(12)

Let us introduce the following linear transformation
[36, 45]:

q1(t)

q2(t)

q3(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 2 1

0 1 1

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eF1(t)

eF2(t)

eF3(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

Last transformation leads system (12) to
_q1(t) � q2(t) + q3(t) + v(t),

_q2(t) � q3(t) + v(t),

_q3(t) � v(t).

(14)

/erefore, as system (12) is expressed with a chain of
integrator, we suggested a controller based on nested sat-
uration function. /is technique, proposed in [36], has been
used for controlling a wide class of the underactuated system
[40–42, 46]. /us, our stability problem will be solved as
follows. First, a linear transformation is used to directly
propose a trajectory tracking controller; then, it is shown
that the proposed controller guarantees the boundedness of
all states, and after a finite time, it is possible to ensure that
all states converge to zero [43].

Let us define the following saturation function:

Definition 1. /e linear saturation function σm(s): R⟶ R

is defined as

σm(s) �
s, if |s|≤m,

m · sign(s), if |s|>m.
 (15)

Finally, the trajectory tracking controller can be pro-
posed as

v(t) � −q3(t) − Kσα
q2(t) + σβ q1(t)( 

K
 , (16)

where K is a positive constant, α> 0 and β> 0 are fixed
parameters, and σm is a linear saturation function.

3.1. Boundedness ofAll States. We show in three simple steps
that the closed-loop solution of the proposed closed-loop
systems (14) and (16) ensures that all the states are bounded.
Moreover, the bound of each state directly depends on the
designed parameters of the controller.

Step 1. We define a positive definite function

V3 q3, t(  �
q23(t)

2
. (17)

/en, differentiating (17) and using the third differential
equation of (14), we have the time derivative of V3(q3, t)

given by
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_V3 q3, t(  � −q
2
3(t) − q3(t)Kσα

q2(t) + σβ q1(t)( 

K
 .

(18)

It is clear that _V3(q3, t)< 0 when |q3(t)|≥ αK; therefore,
there is a finite time T1 > 0 such that

q3(t)


< αK, ∀t>T1, (19)

where K> 0.

Step 2. Now, we proceed to analyze the behaviour of the
state q2(t). Hence, we introduce a positive definite function
V2(q2, t) � q22(t)/2. Differentiating V2(q2, t), we obtain after
substituting (16) into second differential equation of (14)

_V2 q2, t(  � −q2(t)Kσα
q2(t) + σβ q1(t)( 

K
 , (20)

where α and β are selected such that α> 2β. Evidently, if
|q2(t)|> β, then _V2(q2, t)< 0, and there is finite T2 >T1 after
which

q2(t)


< β, ∀t>T2, (21)

when this condition is satisfied, and the control v(t) turns
out to be

v(t) � −q3(t) − q2(t) − σβ q1(t)( . (22)

Step 3. Substituting (22) into first differential equation of
(14), we obtain

_q1(t) � −σβ q1(t)( . (23)

Now, we define an auxiliary positive definite function
V1(q1, t) � q21(t)/2. By differentiating V1(q1, t) along the
trajectories of (23), we obtain

_V1 q1, t(  � −q1(t)σβ q1(t)( , (24)

where β must be chosen such that β> 0. If |q1(t)|> 0, then
_V1(q1, t)< 0, and hence, there is finite T3 >T2 after which

q1(t)


< 0, ∀t>T3. (25)

Consequently, q1 is also bounded. So, all previous
constraints on parameters α and β can be summarized as

α> 2β,

β> 0.
(26)

Manipulating the last inequalities, we can select the
control parameters as follows:

α � 2λ,

β � λ,
(27)

where λ> 0.

3.2. Convergence ofAll States to Zero. We shall prove that the
closed-loop system given by (14) and (16) is asymptotically

stable and locally exponentially stable, provided that the
controller parameters satisfy (26).

We must note that, after t>T3, the control law is no
longer saturated, that is,

v(t) � −q3(t) − q2(t) − q1(t), (28)

and the closed-loop system can be expressed as
_q1(t) � −q1(t),

_q2(t) � −q2(t) − q3(t),

_q3(t) � −q3(t) − q2(t) − q1(t).

(29)

Let us define the following Lyapunov function:

V(q, t) �
1
2

q(t)
⊺
q(t), (30)

with q(t): � q1(t) q2(t) q3(t) 
⊺. Now, differentiating

V(q, t) along the trajectories of (29), we obtain
_V(q, t) � −q(t)

⊺
Mq(t), (31)

where

M �

1 1/2 1/2

1/2 1 1/2

1/2 1/2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (32)

Note that λmin M{ } � 1/2, and therefore, M is positive
definite/erefore, _V(q, t) is negative definite, and the vector
state q locally exponentially converges to zero after t>T3.

From the above discussion, we have the following.

Proposition 1. Consider the magnetic levitation system as
described (1) in a closed loop with controller (8). 8en, the
closed-loop system is asymptotically stable and locally ex-
ponentially stable provided that the control parameters α and
β satisfy the inequalities.

4. Numerical Simulations

To test the performance of the controller, we carried out
some numerical simulations using MATLAB program, and
the results were obtained based on the numerical method of
Runge–Kutta of fourth order with the fixed step of 0.001 s.
/e physical parameters of the system are
Ce � 9.9081×−6(Nm2/A2), J � 0.01 (kgm2), l � 0.2 (m),m �

0.6 (kg), g � 9.81 (m/s2), r � 0.009 (m), L � 0.2703 (H), and
R � 4.5 (Ω), and the controller parameter values were set as
α � 3, β � 1.5, and K � 1.

/e first experiment shows the behaviour of the system,
for a rest-to-rest trajectory, and in this case, we use a ref-
erence trajectory-type Bezier polynomial (x∗1(t)). /e initial
conditions were set as x1(0) � −0.1(rad), x2(0) � 0(rad/s),
and x3(0) � 0.5(A). In Figure 2, the output tracking re-
sponse is shown, and we can see that the controller effec-
tively brings the system from initial position
(x1(0) � −0.1(rad)) to the final rest position (x∗1(tf) � 0.4)

after 7 seconds. /e behaviour for the states x2(t) and x3(t)

is shown in Figure 3. Finally, Figure 4 depicts the control
input.
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/e second experiment was designed under the same
setup, but in this case, we use a reference sinusoidal tra-
jectory (x∗1(t) � 0.4 + 0.1 sin(πt/4)). /e result of the

experiment is presented in Figure 5. From this figure, we can
see that the controller was capable of performing the task of
tracking a sinusoidal trajectory. In Figure 6, the behaviour
for the states x2(t) and x3(t) is shown. Finally, Figure 7
presents the control input.

In Figure 8, the output tracking response for a sinu-
soidal trajectory with different initial conditions is shown.
In this case, x1(0) � [−0.5, 0.5](rad), and we can see that
the controller was capable of performing the task of
tracking a sinusoidal trajectory adequately. Some tests
were carried out in order to verify the sensitivity of the
control scheme with respect to the initial conditions, in
which a set of different initial conditions in an admissible
operation range was used. /e results indicate that the
response is not affected by the initial conditions, and there
is a lack of overshooting effects which are typical in high-
gain schemes.

4.1. A Comparison Test. In order to assess the behaviour of
the control proposal, a comparison test was made against a
robust control strategy, consisting in a sliding mode con-
troller (see [47]). /e sliding mode controller was set to be
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Figure 6: State behaviour in a sinusoidal trajectory.
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u(t) �
1

p F1(t), €F1(t) 
−h F1(t), _F1(t), €F1(t)  + vsm(t) ,

vsm(t) � F
∗(3)
1 − λ2eF3 − λ1eF2 − Wsign(σ),

σ � eF3 + λ2eF2 + λ1eF1,

with : λ2, λ1 ∈ R
+
.

(33)

/e control parameters used in the test were W � 20,
λ2 � 24, and λ1 � 36. Figure 9 shows the tracking results,
where the sliding mode results (denoted by the subindex
sm) converged faster without any overshooting effects.
Figure 10 depicts the states x2 and x3, in which both
schemes had similar values (reachable for experimental
implementations). Figure 11 shows the advantages of the
proposal since the voltage input of the sliding mode showed
the high-frequency behaviour, which is a classic problem in
sliding mode control implementations which may demand
high control efforts. Notice that the proposal has a better
energy management, leading to similar results with a
smoother control input. /is can be noticed with the
obtained performance index  u2 which is shown in
Figure 12.

5. Conclusion

A nested saturation-based controller for the trajectory
tracking task on a beam levitation system was introduced
and proven to be effective. /e flatness property of the
magnetic levitation system permits to express the system as a
third-order integrator chain, allowing the use of nested
saturation functions to design a trajectory tracking
controller.

/e proposed scheme forces the system output to track
the reference trajectory even in the presence of the input
constraints and ensures that all states converge exponentially
to the desired trajectory./e stability analysis is based on the
second method of Lyapunov using a simple candidate
function. Some computer simulations showed the effec-
tiveness of the proposal in the tracking of a rest-to-rest and
sinusoidal trajectories.
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On the contrary, as a future research, some other
nonlinearities such as hysteresis in the magnetic actuator
[48] can be addressed. /is effect is important for the design
of maglev systems in superconductor-based transportation
system applications.
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