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Changes in land use/cover are among the most prominent impacts that humans have on the environment. Therefore, exploring
land use/cover change is of great significance to urban planning and sustainable development. In this study, we preprocessed
multiperiod land use and socioeconomic data, combined with spatial zoning, multilayer perception (MLP) artificial neural
network, and Markov chain (MC), to construct a cellular automaton model of spatial zoning. Moreover, with the help of ArcGIS
10.2 and TerrSet 18.07 software, we explore the current status of land use and predict future changes. The results showed that
drastic changes have occurred among different land use classes in Jinzhou District over the past 13 years owing to the impact of
economic development and reclamation projects. Construction land, arable land, and waters have changed by +85.09, —24.42, and
~23.62km?, respectively. By comparing the FoM and Kappa coefficients, we concluded that the prediction accuracy of partitioned
MLP-MC is better than that of unpartitioned MLP-MC. Therefore, using the spatial zoning approach to identify the conversion
rules among land use classes in different zones can more effectively predict future land use changes and provide a reference for

urban planning and policy making.

1. Introduction

With rapid global urbanization and constant economic and
population growth, the human demand for natural resources
continue to increase, resulting in a dramatic evolution of
land use/cover changes (LUCC) and an array of ecoenvir-
onmental problems, such as arable land loss, urban heat
island effect, air pollution, urban ventilation, and decline in
biodiversity [1-5]. Therefore, understanding the character-
istics of urban expansion and rational planning of land use
through monitoring and simulations are vital for the sus-
tainable development of cities and the improvements in
regional coordination.

Cities are complex systems with dynamic, self-orga-
nizing, and nonlinear characteristics [6-9]. With the de-
velopments in remote sensing and geographic information
systems (GIS), more effective tools are available for the
analysis of LUCC [10-13]. Multitemporal land use data can
be rapidly collected from remote sensing images to examine

the evolution of land use, which provides strong evidence for
predicting the future dynamic characteristics [14, 15]. There
are numerous theories and models that have been applied to
LUCC simulations, such as system dynamics (SD), multi-
agent system (MAS), cellular automata, conversion of land
use and its effects (CLUE), and SLEUTH model (slope, land
use, exclusion, urban extent, transportation, and hillshade)
[16-19]. Different models have their own theoretical
frameworks, which provide a basis for the improved ex-
ploration of the characteristics of urban spatial complexity.
Among them, the cellular automata (CA) method is widely
used in land use/cover simulations.

Cellular automata, one of the most effective tools for
simulating the dynamic characteristics of complex systems,
are widely used in the complex mechanisms associated with
urban development and have become a vital tool for land use
planning and management [20-23]. Cellular automata are
mainly composed of cells, cellular space, conversion rules,
and neighborhood configuration. Conversion rules are
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defined to determine the dynamic function of the cellular
state at the next moment according to the current state of the
cell and neighborhood, which is an important part of the
cellular automata [24-26]. However, conversion rules in
urban growth involve a complex process of dynamic and
nonlinear human-nature interactions, which are difficult to
monitor using the standard and unified methods. Thus, to
reflect the growth process of different cities and improve the
accuracy of urban expansion simulations, various methods
have been applied for calibrating conversion rules, such as
Markov-CA [27], logistic regression (logistic-CA) [28],
multicriteria evaluation (MCE-CA) [29], support vector
machine (SVM-CA) [30], artificial neural network (ANN-
CA) [31], spatial regression [32], fuzzy set algorithm [33],
and random forest (RF-CA) [34].

There are numerous integrated methods for LUCC
simulations, but the unified conversion rules are mostly
applied to simulate the complex characteristics of cities, and
ignoring the spatial heterogeneity characteristics is easy. As
factors such as geographical features and socioeconomic
affect urban spatial growth, cities display the characteristics
of multilevel and spatial heterogeneity such that the spatial
growth patterns of different regions within the city vary
dramatically. Therefore, using unified conversion rules to
simulate the cellular state is difficult [35]. To address this
problem, based on factors such as geographical character-
istics, transportation, population, and social economy,
previous studies have adopted methods including gravity
model and spatial clustering for spatial zoning and followed
the zoning approach to identify the regional growth char-
acteristics and conversion rules, thereby increasing the
prediction accuracy [36, 37].

However, researchers generally use administrative units
for spatial clustering for spatial zoning and lack of division
based on the actual land change characteristics of the region.
Therefore, according to the complexity and heterogeneity of
urban space, a reasonable division of geographic space can
effectively grasp the law of urban development. In this paper,
we aim to use spatial zoning and cellular automata to
identify the conversion rules of each area to simulate future
land use changes and improve simulation accuracy. The
approach of this study can be summarized as follows: (1)
explore the dynamic evolution of land use in Jinzhou District
in the past 13 years and analyze its spatial growth pattern; (2)
divide the study area with a spatial zoning approach to
identify the land use transition potential of each zone; (3)
adopt zoned and nonzoned MLP-MC models to predict land
use changes and validate the models.

2. Study Area

Jinzhou District is situated in the southern Liaodong Pen-
insula, bordering the Yellow and Bohai seas. Located in the
Bohai Economic Rim (BER) and Northeast Asia Economic
Rim, Jinzhou is an important area of the city of Dalian. The
district has 25 streets and has a solid foundation for de-
velopment, owing to the Jinshitan National Holiday Resort,
a 5A-Class national tourist attraction. Jinzhou District has a
warm and semihumid monsoon climate with oceanic
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climate characteristics and thus it is comfortably habitable
all year round. Recent urban expansion of Dalian has driven
the economic growth of Jinzhou District further, resulting in
considerable changes in its urban land use pattern. There-
fore, analysis and simulation of the dynamic LUCC in the
district can provide reference for spatial layout planning and
urban management. The location of the study area is shown
in Figure 1.

3. Materials and Methods

The future LUCC were predicted by combining spatial
zoning with the MLP-MC model, which includes data
preprocessing, spatial zoning, MLP-MC construction, and
model validation steps. The steps in spatial zoning and MLP-
MC model validation are shown in Figures 2(a) and 2(b),
respectively.

3.1. Data Preprocessing

3.1.1. Data Sources. The data used in the models include
land use, digital elevation model (DEM), road network,
point of interests (POIs), population, and planning data.
Among them, land use, roads, planning, and administrative
boundaries have been obtained from the Dalian Land Re-
sources and Housing Bureau. The coastline is obtained by
the SPOT 5 remote sensing image extraction. See Table 1 for
other data descriptions. According to the land use data and
the land use classification standard, that is, GB/T 21010-2017
[38], we classified the land use into six types: construction
land, arable land, forestland, garden, waters, and other land
(Table 2), which were resampled to a grid of 30 x 30 m.

3.1.2. Influencing Variables. Many factors such as natural
characteristics, social economy, and planning affect the
dynamic LUCC. Considering the previous selection of
LUCC variables and data validity in Jinzhou District
[39-42], we divided the influencing variables of LUCC into
three categories: natural characteristics, socioeconomic, and
land use planning variables, which include 12 factors such as
DEM and slope (Table 3). All variables were then normalized
to the range of [0, 1] to facilitate the subsequent analysis of
the relationship between land use changes and influencing
variables.

3.2. Spatial Zoning. The land use changes of local units are
affected by the location and natural characteristics of local
units, as well as socioeconomic factors, which cause dra-
matic differences in the spatial growth of the urban areas.
Therefore, the adoption of globally unified land use con-
version rules fails to conform to the development charac-
teristics of each region. To address this limitation, previous
studies have adopted methods such as the gravity model and
spatial clustering for zoning simulations. Spatial zoning aims
to improve the simulation accuracy [43, 44]. Current zoning
approaches are largely based on geographical administrative
units such as prefectures and counties. However, zoning by
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FiGURE 2: Land use simulation process. (a) Spatial zone. (b) MLP-MC.

TaBLE 1: Data source and description.

Type Data features Description

Land use data Polygon vector data (1:10000) Dalian land resources and housing bureau
DEM Raster data (30 m) Geospatial data cloud (http://www.gscloud.cn)
Coastline Line vector data Extraction through SPOT 5 remote sensing image
Road Line vector data (1:10000) Dalian land resources and housing bureau
POIs Leisure, public, and government points Baidu map open platform

Population density
Administrative boundary
Planning data

Statistics of each street
Vector data
Txt and jpg

Jinzhou statistical yearbook
Dalian land resources and housing bureau
Dalian land resources and housing bureau



http://www.gscloud.cn/

Complexity

TaBLE 2: Description of land use classification.

Type

Description

Construction land

Refers to land used for urban and rural housing and public facilities, including land for transportation, commercial

services, and industrial and mining storage

Arable land

Refers to the land where crops are grown, including dry land, irrigated land, and paddy field

Forestland Refers to land for growing trees, bamboos, and shrubs, including shrub land, forestland, and other forestland
Garden Refers to planting land mainly for collecting fruits, leaves, roots, stems, and so forth, including orchard, tea garden
Waters Refers to land and water areas, beaches, ditches, hydraulic structures, and other land
Other land Refers to land other than the above, including bare land, sandy land, and saline land
TaBLE 3: Description of influencing variables.

Type Variable Description

Dem (X;) DEM (m)
Natural characteristics Slope (X5) Slope ()

Distance from coastline (X3)

Euclidean distance from coastline (m)

Distance river (X,)

Distance road (Xs)
Distance railway (Xs)
Socioeconomic
Distance from public service (Xs)

Distance leisure and entertainment (Xo)

Population density (X;)

Distance from administrative center (X)

Euclidean distance from river (m)
Euclidean distance from main road (m)
Euclidean distance from railway (m)

Euclidean distance from administrative center (m)
Euclidean distance from public service point (m)
Euclidean distance from leisure and entertainment point (m)
Population density of each street (person/km?)

Farmland reserve (X;;)

Land use and planning Ecological reserve (X;,)

0 for reserve and 1 for other areas
0 for reserve and 1 for other areas

administrative units tends to overlook the problem of spatial
heterogeneity [45].

Urban growth is a complex and nonstationary spatial
process, with predictions that must include spatiotemporal
heterogeneity. In the process of land use simulation, con-
version rules should be dynamically adjusted for different
regions and time periods. The Thiessen polygon is a type of
subdivision of the space plane. Each position in the polygon
is the closest to the sample point of the polygon. Because of
its equipartition feature in space segmentation, it is mostly
used in spatial analysis problems, such as in adjacency,
proximity, and accessibility analysis [46, 47]. Therefore, we
used Thiessen polygons for irregular spatial zones to im-
prove the prediction accuracy. The process can be described
as follows. First, we extracted the changed region based on
the initial and final stages of land use. Then, we conducted a
kernel density analysis on regions with land use changes and
selected the points where the change was more concentrated
using the kernel density map and the actual development
characteristics of each region. Finally, we created Thiessen
polygons according to the selected points to achieve spatial
zoning.

3.3. MLP-MC Model. The MLP-MC model consists of MLP
and MC [48, 49]. MLP is used to obtain the spatial dis-
tribution of the land use transition potential. Transition
potential refers to the probability of predicting the tran-
sition among land use classes, which depends on the ex-
planatory power that driving factors have on land use
changes. Higher transition probability indicates higher
conversion suitability of one land use class into another
[50, 51]. MC, which has been extensively applied to LUCC

modelling, defines the changing trend of each specific land
use class from the past to the present and to the future and
is thus used to obtain the transition area or transition
probability matrix [52, 53].

MLP adopts the multilayer perceptual neural network
classifier based on the backpropagation (BP) algorithm.
Apart from remote sensing image classification, the MLP
model can also be applied to manage the nonlinear re-
lationships among variables, which can simultaneously
handle multiple models and convert the input data into
the desired output of complex mathematical functions
[54-56]. In our study, the MLP model provides a neuron
(transition potential) as the output by performing non-
parametric regression analysis between an input variable
and dependent variable. The MLP model contains an
input layer, hidden layer, and output layer (Figure 3),
which represent the land use changes and the influencing
factors, data calculation and processing, and transition
potential, respectively. Moreover, the relationships be-
tween the variables and land use changes can be explained
by Cramer’s V [57, 58]. The higher the value, the better the
fit between the variables and land use changes. In this
study, the MLP-MC model is specifically implemented
using the LCM function in TerrSet software (version
18.07):

2

X (1)

Cramer’sV = l . X
n X (min{a, b} — 1)

where x° represents the Pearson’s chi-square statistic, n
represents the number of data, a and b represent the number
of rows and columns of the matrix, and min {a, b} represents
the smaller value of a and b.
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3.4. Model Validation. The validation of land use predictions
is a major part of the CA model. Primary parameters for
validation are the figure of merit (FoM), overall accuracy,
and Kappa coeflicient [59-61]. We employed the FoM and
Kappa coefficient to more directly validate the accuracy of
the model predictions. The FoM was derived from the su-
perposition of recent land use, predicted land use, and actual
land use data and can be expressed as follows:

A
FoM = B0 @)
where A represents the hits (i.e., the model predicted the
change and LUCC did change), B denotes misses (i.e., the
model predicted persistence and LUCC did change), and C
indicates false alarms (i.e., the model predicted the change
and LUCC persisted).

Kappa is an index for evaluating the accuracy of mul-
ticlass land use simulations and predictions [62, 63]. The
result derived from the confusion matrix, that is, the su-
perposition of the land use simulation results and actual land
use data, can be expressed as follows:

Po - Pc
Kappa = ———, (3)

where P, is the proportion of correct simulations, P, is the
expected proportion of correct simulations in random cases,
and P, is the proportion of correct simulations for an ideal
classification case. In general, a value greater than 0.7 in-
dicates high accuracy.

4. Results

4.1. Spatiotemporal Land Use Change. Figure 4 shows the
main land use classes in Jinzhou District, that is, arable land,
construction land, and forestland. By 2016, the proportions
of these three land use classes were 26.88, 30.81, and 22.48%,
respectively. Because of economic development, population
increase, and reclamation projects, construction land
showed an increasing trend and scattered spatial distribu-
tion, concentrated in the southern and coastal areas such as

Magqinzi Street, Haigingdao Street, Zhangian Street, and
Wanli Street. Forestland showed a narrow and strip-shaped
distribution, mostly along the coastal streets.

To further examine the transition characteristics of each
land class, the land use transition matrix from 2004 to 2016
was calculated (Table 4). Table 4 shows that, in the past
13 years, the construction land in Jinzhou District has in-
creased by 85.09 km?, whereas arable land, garden, waters,
and forestland have decreased by 24.42, 21.79, 23.62, and
13.88 km?, respectively. Arable land, waters, forestland, and
garden have been transformed to construction land in the
order of 27.16, 25.97, 19.88, and 17.91 km?, respectively. The
waters have been largely reduced due to the impact of
reclamation projects. Apart from the transition of each land
class to construction land, other large-area land transitions
have been arable land and garden to forests by 5.24 and
6.48 km?, respectively, and forests and garden to arable land
by 5.57 and 4.70 km”, respectively.

4.2. Spatial Zoning. Due to the differences in the transition
patterns of land use classes in different regions of the city,
applying unified conversion rules to simulate future changes
tends to produce large errors in the results. Thus, we fol-
lowed the spatial zoning approach to perform spatial
analysis to acquire land use characteristics and conversion
rules in each zone. First, we extracted the regions with spatial
changes in land use from 2008 to 2012 to conduct a kernel
density analysis (Figure 5(a)). Then, we created point ele-
ments in the regions with large changes according to the
kernel density and development characteristics of each re-
gion. Finally, we created Thiessen polygons according to the
generated points to obtain the zoning results (Figure 5(b)).
The study area was divided into 17 regions.

4.3. Prediction and Validation of Land Use

4.3.1. Driving Factors and Transition Potential. The MLP
reviewed the relationships between land use changes and
influencing variables to process the training samples and
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FIGURE 4: Land use change: (a) 2004, (b) 2008, (c) 2012, and (d) 2016.
TaBLE 4: Land use transfer matrix (2004-2016) (unit: km?).
Type Construction land Forestland Arable land Garden Other land Waters 2016 total
Construction land 360.04 19.88 27.16 17.91 3.40 25.97 454.36
Forestland 343 316.35 5.24 6.48 — 0.01 331.51
Arable land 2.35 5.57 383.86 4.70 — 0.01 396.49
Garden 2.57 2.45 317 125.55 — 0.00 133.74
Other land 0.25 0.57 0.67 0.42 13.62 0.11 15.64
Waters 0.63 0.57 0.81 0.47 — 140.69 143.17
2004 total 369.27 345.39 420.91 155.53 17.02 166.79 1474.91

obtain the transition potential of one land class to another,
thereby centered at the core of the cellular automata. The
prediction accuracy was acquired from the MLP algorithm.
When the accuracy was below 75%, the influencing variables
were recalculated or adjusted. In contrast, when the accuracy
was above 75%, the transition potential between land use

classes was generated. Table 5 lists the calculation results
between the transition of each land class to construction land
and the influencing variables. The training samples are
processed by the MLP method, with a 79.71% accuracy.
The characteristics and influencing variables of land use
transition among various regions from 2008 to 2012 were
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TABLE 5: MLP classifier results.

Variables Results
Hidden layer neurons 4
Momentum factor 0.5
Sigmoid constant 1
Acceptable RMS 0.01
Iterations 10000
Training RMS 0.3882
Testing RMS 0.3834
Accuracy rate 79.71%
Skill measure 0.5942

processed and analyzed using the MLP method to acquire
the spatial distribution of the transition potential among
different land use classes (Figure 6). Figure 6 indicates that
the transition of arable land, forestland, garden, and other
land to construction land manifested the land use transition
potential in Jinzhou District from 2008 to 2012. The tran-
sition potential of arable land was more substantial, where
the regions with high transition potential were concentrated
in zones 14 and 3. The regions with high transition potential
for forestland were distributed in zones 2, 6, 10, and 12,
whereas those with high transition potential for garden were
located in zones 4, 11, and 17.

4.3.2. Prediction and Model Validation. The land use
transition probability and transition potential were obtained
using the MLP-MC model. In this study, the spatially zoned
and nonzoned MLP-MC methods were used to predict the
land use changes in 2016 (Figures 7(a) and 7(b)). Table 6
presents the comparison of the prediction accuracies.
Eventually, the zoning approach was applied to predict land
use changes in 2020 (Figure 7(c)). Figure 7 shows that the
significant expansion of construction land will be observed
in the central and western regions by 2020, but not in the

eastern region due to economic reasons, natural protection,
and other factors.

The FoM and Kappa coefficients were used to compare
the land use predictions of zoned and nonzoned MLP-MC.
Table 6 indicates that the prediction accuracy of the zoned
MLP-MC model was higher than that of the nonzoned
model. The FoM coeflicients of the zoned and nonzoned
MLP-MC were 0.27 and 0.34, respectively, with a difference
of 0.07 between them, indicating that the zoned model
predictions were more accurate than the nonzoned model
predictions. Moreover, the confusion matrix was obtained
via the superposition of the predicted and actual land use to
calculate the Kappa coeflicient for model validation. The
Kappa coeflicients of the zoned and nonzoned models were
0.87 and 0.95, respectively, also suggesting that the pre-
diction accuracy of the zoned model was higher than that of
the nonzoned model.

5. Discussion

Cities are complex and dynamic spatial systems that have the
characteristics of both top-down macro-control and bot-
tom-up macro-self-organization during their development,
which is the result of the comprehensive action of various
forces and resistances. Natural, social, economic, and policy
factors influence LUCC [64-67]. To meet the needs of urban
planning, we must understand the laws of land use evolu-
tion. The simulations of urban growth via cellular automata
involve vector and grid models [25, 68]. Different models
have different structures, variables, and parameters.

At present, regular grid cells are often used to predict the
dynamic characteristics of cities. Previous studies have
employed machine learning algorithms combined with
cellular automata, such as decision trees, logistic regression,
support vector machine, and neural networks, to simulate
future land use changes [69, 70]. However, the unified rules
often applied for urban space simulations tend to ignore the
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nonstationary spatial characteristics of cities. Thus, dividing
the space into homogeneous regions and understanding the
conversion rules of each zone is conducive to improving the
simulation accuracy.

This study focuses on combining spatial zoning and cellular
automata to improve the accuracy of land use simulation.
Previous studies on spatial zoning are mostly based on ad-
ministrative boundaries. Spatial clustering is thus based on
factors such as economy, population, and terrain. Moreover, it
is easy to ignore the problem of spatial heterogeneity.
Therefore, this paper improves simulation accuracy by com-
bining Thiessen polygons and cellular automata to simulate
urban land use changes. We combined spatial zoning with the
MLP-MC model to obtain the land use conversion rules based
on the influencing factors of each zone. Through a comparison
with the nonzoned CA model, we were able to more accurately
simulate the characteristics of land use change. Combining

spatial zoning and CA models not only can effectively predict
land use changes but also have application value in regional
ecosystem service value and surface temperature simulation.

However, there are certain limitations in our approach.
First, when using Thiessen polygons for spatial zoning, the
selection of the location and number of points can affect their
creation and zoning results and thus the prediction results of
the model. Therefore, we must select the appropriate point
according to the development characteristics of each zone.
Second, this study only used the MLP-MC method to predict
land use but did not compare the differences between dif-
ferent models. Third, due to data limitations, the land use data
and influencing factors were acquired for a short period. Thus,
accurately obtaining the complexity characteristics of urban
land use remains a challenge. Therefore, future studies must
integrate different zoning approaches and prediction models
to examine the complexity of cities.
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TABLE 6: Accuracy comparison of land use simulation.

Statistical value
Model

Hits Misses False alarms FoM Kappa
Nonsimulation 9.73 1411 11.73 0.27  0.87
Zoning simulation 1212 12.78 10.67 034 095

6. Conclusions

Taking Jinzhou District as an example, we used multisource
data, such as land use, topography, and social economy, as
well as spatial zoning and the MLP-MC model, to predict

future dynamic land use changes. From 2004 to 2016, the
construction land in Jinzhou District increased by
85.09 km?, whereas arable land and garden decreased by
24.42 and 21.79km?, respectively. The MLP method was
applied to obtain the land use transition potential of each
zone to predict future changes. The simulation results
showed that the simulation accuracy of zoning was higher
than that of nonzoning while the FoM and Kappa coeffi-
cients were higher by 0.07 and 0.08, respectively, in the
zoned model than in the nonzoned model. Therefore, the
spatial zoning approach chosen to simulate land use changes
in this study produce highly accurate predictions.
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