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Renewable energy has become popular compared with traditional energy like coal. *e relative demand for renewable energy
compared to traditional energy is an important index to determine the energy supply structure. Forecasting the relative demand
index has become quite essential. Data mining methods like decision trees are quite effective in such time series forecasting, but
theory behind them is rarely discussed in research. In this paper, some theories are explored about decision trees including the
behavior of bias, variance, and squared prediction error using trees and the prediction interval analysis. After that, real UK grid
data are used in interval forecasting application. In the renewable energy ratio forecasting application, the ratio of renewable
energy supply over that of traditional energy can be dynamically forecasted with an interval coverage accuracy higher than 80%
and a small width around 22, which is similar to its standard deviation.

1. Introduction

Renewable energy such as solar and wind has been playing
an integral role in sustaining power supply and relieving the
environment pollution and global warming crisis. With the
increasing penetration of renewable energy, determining the
amounts of renewable energy generation is critical to
maintain the energy balance and the stability and reliability
of power networks. Forecasting the mixing shares of the
energy generation offers the guidance of setting up the
power generation for each energy source and ensures the
load demand of power networks to be satisfied [1, 2]. Data-
based prediction methods, in particular machine learning
methods, provide a promising solution to infer the required
ratios of energy generation, among which decision tree is a
well-recognized approach due to its satisfactory accuracy
and interpretation [3–6].

Although decision tree provides an effective method in
forecasting, the theory explaining when and how it performs
well is rarely discussed. *e required ratios of renewable
energy generation can be seen as a linear time series. In this

context, we explore how the tree model performs in terms of
the bias, variance, and prediction error. In addition, point
prediction is not sufficient in time series prediction, so we
also provide prediction interval choices like Gaussian and
quantile intervals in theories with the application in re-
newable energy ratio forecasting.

Decision tree [7] is a nonparametric supervised learning
method used for discovery and prediction-oriented classi-
fication and regression. *e goal is to create a model that
predicts the value of a target variable by learning simple
decision rules inferred from the data features. Decision tree,
compared to other data mining methods, has its own ad-
vantages. (1) For casual relationship, it can deal with non-
linear models. In most cases, economics pay more attention
to linear models, while if it is a nonlinear model, it will be
transferred to be a linear model. In problems like consumer
behavior analysis, the number of variables exceeds the
normal extent to be tens or even hundreds, which will
definitely lead to high correlation among variables. In that
case, coefficients may have the wrong meaning in reality.
Decision tree, however, provides variable importance
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ranking criteria, which helps a lot. (2) In terms of com-
prehensibility, it tends to be relatively better than “black-
box” models like neural network, which means it can in-
terpret data structure more clearly and help readers un-
derstand the information involved.*ese undoubtedly bring
convenience to decision making in medical treatment
[8–10], e-commerce, [11–13] and so on.

We now explore the performance of trees when fitted to
data generated from a linear model. *e corresponding bias,
variance, and prediction error between the fitted simplified
tree and the true simple linear model will be calculated.
*en, how those errors vary will be explored when the linear
data distribution changes. *e motivation is to explore how
the trees perform under different distributions. Afterwards,
prediction interval is proposed using Gaussian and quantile
intervals, which explains why quantile interval is chosen in
the study by Zhao et al. [14]. *e simple linear model in use
is

Y � α + βX + ε, (1)

where f(X) � α + βX is the true model. It is supposed that,
throughout this paper, X ∼ U(a, b) independently and
ε ∼ N(0, σ2). Uniform distribution guarantees that if the tree
has k terminal nodes, the sample size in each node will be
equal which is convenient in theory and simulation analysis.
Decision tree analysis under the uniform distribution as-
sumption includes the work by Hancock [15], Jackson and
Servedio [16], and White and Liu [17]. Other distributions
can also be considered but the analysis will be much more
complex as the sample size of each terminal node depends
on many parameters.

*e expected squared prediction error (SPE) is one of the
important metrics to measure how well the trained model is
applied to further unseen data. As shown in Hastie et al. [18],
SPE of a regression fit f(X) at an input point X � x0 is

SPE x0(  � E Y − f x0(  
2

| X � x0 

� σ2 + Ef x0(  − f x0(  
2

+ E f x0(  − Ef x0(  
2

� σ2 + Bias2 f x0(   + Var f x0(  

� irreducible error + bias2 + variance.
(2)

In (2), the first term is the variance of the target around
its true mean f(x0) and cannot be avoided no matter how
well the f(x0) is estimated, unless σ2 � 0. *e second term
is the squared bias, the amount by which the average of the
estimate differs from the true mean; the last term is the
variance, the expected squared deviation of f(x0) around
its mean. Typically the more complex the model f is, the
lower the (squared) bias but the higher the variance [18]
will be.

In Section 2, the performance of regression trees is
analyzed when fitted to data which simply follow a uniform
distribution, with additive Gaussian noise. When we predict
this time series using simplified trees, the prediction error is
calculated and decomposed into variance and other errors.

When Gaussian or uniform effect is strong, those errors have
different kinds of behavior. Other exploration is conducted
in Section 3 including the best tree depth with minimum
prediction error and the performance of Gaussian and
quantile prediction intervals under different conditions. A
real interval forecasting application is conducted in Section
4. Conclusions are drawn in Section 5. All calculations were
done using R [19]; ‘waveslim’ [20] was used for wavelet
decomposition and ‘ctree’ [21] for CTree.

2. Bias-Variance Exploration

2.1. Decomposition Background. For the ith observation Yi,
the (unconditional) expectation is

E Yi(  � E α + βXi + εi( 

� α + βE Xi(  + E εi( 

� α + β ·
a + b

2
,

(3)

and the variance is

Var Yi(  � Var α + βXi + εi( 

� β2Var Xi(  + Var εi( 

� β2 ·
(b − a)

2

12
+ σ2.

(4)

*ey both have no relationship to i. In that case, E(Y) �

E(Yi) and Var(Y) � Var(Yi). Accordingly, for N obser-
vations, the expectation and variance for the average Y are
shown in

E(Y) �
1
N

E Y1(  + E Y2(  + · · · + E YN( ( ,

E(Y) � α + β ·
a + b

2
,

(5)

Var(Y) �
1

N
2 Var Y1(  + Var Y2(  + · · · + Var YN( ( 

�
1
N

Var(Y)

�
1
N

β2 ·
(b − a)

2

12
+ σ2 .

(6)

2.2. Decomposition in the Context of Decision Trees. In the
context of decision trees, the fitted model is f(X) in a
simplified form is

f(X) � Y
i
, i � 1, 2, . . . , k, (7)

where k is the number of terminal nodes in the tree f(X)

and Y
i is the mean of y in terminal node i. In a tree with only

the root node, k � 1, and the fitted model is f(X) � Y. *en,
for point x0,
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and the variance is
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*us, the SPE at point x0 is
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*en, the mean squared prediction error (MSPE) is
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Comprising variance is

E(Var) �
1
N

σ2 + β2
(b − a)

2

12
 , (12)

and squared bias is

E Bias2  � β2
(b − a)

2

12
. (13)

Now the number of terminal nodes in the decision tree is
extended from k � 1 to a general k; then, the MSPE, bias2,
and variance for x ∈ [a, b] are equal to those for x ∈ [a, (a +

((b − a)/k))] since the decision tree is assumed to make k

equal terminal nodes with the same number of observations
in each terminal node. In that case, for x ∈ [a, b] for a
general k, the MSPE is

MSPE � 1 +
k

N
  σ2 + β2

(b − a)
2

12k
2 , (14)

with variance as

E(Var) �
k

N
  σ2 + β2

(b − a)
2

12k
2  (15)

and squared bias as

E Bias2  � β2
(b − a)

2

12k
2 . (16)

It is easy to see that with a lower |β|, b − a, and σ2 and
higher N, variance, squared bias, andMSPE will all decrease.

2.3. Optimal k to Minimize MSPE. *e ideal number of
terminal nodes can be found by minimizing the MSPE with
respect to k. Here k is a discrete integer, so the target k will be
the nearest integer from the differentiate result. Calculating
the first derivative of MSPE, we get

dMSPE(k)
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2

12Nk2
, (17)

and the second derivative of MSPE is always positive.
*erefore, we only need to solve

dMSPE(k)

d(k)
� 0, k ∈ [1, N]. (18)

*e real root of (18) is
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Having

N≫
β(b − a)

18σ
, (20)

we can approximate kmin by

kmin ≈
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β2(b − a)
2
N

6σ2
.

3



(21)
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In addition, the constraint for root k is also kmin ∈ [1, N].
If kmin is not in [1, N], MSPE might always decrease.

By substituting kmin in (19) back into (16), we will get

E Bias2  � 48
12σ2β(b − a)

N
 

(2/3)

, (22)

and it is easy to see that, with the increase of σ and β(b − a),
when N is fixed, E(Bias2) will increase. *e others will be
shown as figures.

Accordingly, how will the ratios (E(Var)/MSPE),
(E(Bias2)/MSPE), (σ2/MSPE) vary when parameters
change? Since a, b, and β appear together, they are regarded
as one parameter. For b and a, the thing that matters is their
difference, so we use a � 0 and only change b. Here, k is set
to be kmin calculated using given parameters for (19), and if
kmin does not exist, the results will not be shown. *e results
in Figure 1 (changing β2(b − a)2) and Figure 2 (changing σ2)
show that, under both circumstances, MSPE, E(Var), and
E(Bias2) all increase.

In Figure 1, when β2(b − a)2 gets bigger, X is more likely
to be uniformly distributed and kmin increases as y is more
accurately described with a uniform distribution; besides,
the ratio of Var and Bias2 over MSPE gets larger while σ2
increases. In Figure 2, when σ2 gets bigger, the Gaussian
distribution will play a bigger role in data generation and
kmin decreases. *at is why (σ2/MSPE) increases.
(E(Var)/MSPE) and (E(Bias2)/MSPE) generally decrease.
*e decrease speed slows with bigger b and β as expected.

2.4. Simulation. In this simulation, a simplified tree model
will be designed to confirm the theory results using simu-
lated data. *at is, when parameters of the simulated data
change, the distribution of X and y will also change. *e
question is, how will the statistics of Var, Bias2, MSE, and
kmin change accordingly?

In the simplified tree, X is evenly split into k intervals,
i � 1, 2, . . . , k. For specific k, a, b, N, α, and β, we are going to
calculate the statistics of MSPE, Var, and Bias2 for the ith

interval in k from simulated data. *us, for the ith interval,
the x range is

Ri � a +
(i − 1)(b − a)

K
, a +

(i)(b − a)

K
 . (23)

*e number of observations in interval i

(i � 1, 2, . . . k − 1) is ni:

ni �

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
N − 

i− 1
j�0nj 

(k − i)

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (24)

defining n0 � 0 and nk � N − 
k− 1
j�0nj.

(i) Step 1: for the data (x, y) in Ri, we train a model from
them as

fi(x) � y, (25)

for simulated y, and y is the averaged value of y in
Ri.

(ii) Step 2: repeat Step 1 s times. *en, we have s trained
models fj(x) , j � 1, 2, . . . , s.

(iii) Step 3: simulate one x0 uniformly from the x range
Ri. We are going to calculate the SPE(x0), Var(x0),
and Bias2(x0) for this specific x0.

(iv) Step 4: simulate s values of yj using x0.
(v) Step 5: calculate the statistics of SPE(x0), Var(x0),

and Bias2(x0) for this specific x0 as

SPE x0(  �
1
s



s

j�1

fi x0(  − yj 
2
,Bias2 x0(  �

1
s



s

j�1

fi x0(  − f x0( }
2
,Var x0(  � variance fi x0(  .

⎧⎪⎨

⎪⎩
(26)

(vi) Step 6: repeat Step 3 to Step 5 for n.repeat times and
calculate the mean of SPE(x0), Var(x0), and
Bias2(x0) as MSPEi, Bias2i , and Vari.

Follow Step 1 to Step 6 for all i, i � 1, 2, . . . , k, and
calculate the mean as MSPE, Bias2, and Var.

*e results of simulations with 200 trials are shown in
Figures 3 and 4. For Figure 3, kmin ∈ [1, N], we have a
minimum MSPE. However, when kmin ∉ [1, N] as in
Figure 4, MSPE keeps decreasing.

3. Prediction Interval

Instead of point prediction, a prediction interval is also
desirable especially for time series with high variance. If

both the point prediction and the prediction interval can
be provided, we will be more confident for the prediction.
*is study also helps us decide the proper prediction
interval method for decision-tree-based regression
problems. Gaussian-based prediction interval and quan-
tile interval are compared under different parameters
distributions.

3.1. Probability Function of Y. Since our linear model,

Y � α + βX + ε, (27)

is the sum of uniform and Gaussian distributions, the
probability function for Y is
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PY(y) � 
b

a
P(Y � y|X � x)PX(x)dx
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2π
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exp −
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dx.

(28)

By letting t � ((α + βx − y)/σ), we obtain

PY(y) �
1

β(b − a)


(α+βb− y/σ)

(α+βa− y/σ)

1
���
2π

√ exp −
t
2

2
 dt

�
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β(b − a)
Φ

α + βb − y

σ
  − Φ

α + βa − y

σ
  .

(29)

Now we get the probability of Y as (29). However, PY(y)

is in a complex form meaning that the parameters are not
easily solvable in theory by a given value for PY(y).

3.2. Prediction Interval as aGaussianDistribution. If we want
to get the prediction interval, say [y1, y2] for Y at (1 − p)

level, the theoretical way is to obtain y1 and y2 from the
equations


y1

− ∞
PY(y)dy �

p

2
,


∞

y2

PY(y)dy � 1 −
p

2
.

(30)

However, the integral of Φ is not analytically solvable
without approximating Φ with other suitable expressions.
*e results will also be quite complex. If we know the pa-
rameters values, then y1 and y2 can easily be found
numerically.

From Figure 5, if the uniform (Gaussian) distribution
plays a main role, then Y can be approximately described by
a uniform (Gaussian) distribution. Under the conditions
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Figure 1: Ratios (E(Var)/MSPE), (E(Bias2)/MSPE), (σ2/MSPE) with different β2(b − a)2. N � 100 and α � 0.
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that β is not too large, σ is not too small, and k is 1 (with only
one interval), we will approximate the distribution of Y as a
Gaussian distribution N(μY, σ2Y):

Y ∼ N α + β ·
a + b

2
, β2 ·

(b − a)
2

12
+ σ2 . (31)

*en, the prediction interval under 95% criteria for this
Gaussian distribution is around
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*en, for a general k, the prediction interval becomes
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Figure 2: Ratios (E(Var)/MSPE), (E(Bias2)/MSPE), (σ2/MSPE) with different σ2. N � 100 and α � 0.

6 Complexity



which is the form

[f − 1.96 × RMSPE, f + 1.96 × RMSPE], (34)

a typical Gaussian prediction interval.

3.3. Prediction Simulation Using Gaussian Prediction Interval
and Quantile Interval. In this simulation, we explore the
performance of Gaussian prediction intervals and quantile
intervals under different parameter combinations. *e pa-
rameters include σ, b − a, β, and k. When the other pa-
rameters are fixed, a higher σ means a stronger Gaussian
distribution effect, in which case, Gaussian prediction in-
terval may work well. When β2(b − a)2 is large, the uniform
distribution plays a bigger role. *en, Gaussian prediction
interval may not work so well. Both Gaussian prediction
interval and quantile interval are influenced by the obser-
vation size of the terminal node. When the sample size is
large, they can have stable performance, but when sample
size is small, performance differs.

*e Gaussian prediction interval in use is

[f − cRMSPE, f + cRMSPE], (35)

where c is 1.96 and RMSPE is the root mean squared error
estimated from the training data in each terminal node.

*e quantile interval [L, U] comes from the 0.025 and
0.975 quantiles of each terminal node from the training data.

(i) Step 1: training data generation.

Using given parameters α, β, a, b, σ, N, data are
generated according to the model

Y � α + βX + ε. (36)

*erefore, we get the true fitted values for Y.

(ii) Step 2: RMSPE and quantiles from training data.
From this training data, the trained model, RMSPE,
and quantiles are calculated as in the following steps.

(i) Step 2.1: model training.
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Figure 3: An example when kmin exists.*e x axis label is k: the number of trees splits. MSPE, Bias2, and Var are averaged calculations from
200 simulation trials.*e black line is the MSPE, the blue line is the Bias2, the orange line is σ2, and the red line is the Var.*e solid lines are
from simulated data, and the dashed lines are theoretical calculations. *e parameters values are given as follows: α � 2, β � 4, N � 100,
a � 0, b � 3, and σ � 4.
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For training data A (the rest of data B is the test
data), we sort the data x in an ascending order, so y

will also be rearranged following x, and then Atraining
is divided into k roughly successive equal folds,
making a total of N observations. *e number of
observations in fold i (i � 1, 2, . . . k) is ni:

ni �

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
N − 

i− 1
j�0nj 

(k − i)

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (37)

defining n0 � 0.
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Figure 4: An example when kmin does not exist. *e x axis label is k: the number of trees splits. MSPE, Bias2, and Var are averaged
calculations from 200 simulation trials. *e black line is the MSPE, the blue line is the Bias2, the orange line is σ2, and the red line is the Var.
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For the ith fold in A, giving xi and yi, the predicted
value will be

y � yi, $x ∈ min xi( , max xi(  $, (38)

in the trees context. *e predicted value of a tree model
is the averaged response values of each terminal node.

Samples being split into those terminal nodes will have
the corresponding averaged value as the predicted
value.

(ii) Step 2.2: RMSPE and quantile calculation.

When the model for each i is trained as modelAi
, the

predicted values for y in A will be y. *en, the RMSPE
for the training data is
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RMSPE �

�����������


N
r�1 (y − y)

2

N



. (39)

*e quantile intervals L and U are the 0.025 and
0.975 quantiles of the ith training data y.

(iii) Step 3: test data generation and model testing.
Using the same parameters α, β, a, b, and σN as in
Step 1, data are generated according to

Y � α + βX + ε. (40)

*en, the test data B are put into modelA and the
coverage is computed as

1
N



N

r�1
I(y − cRMSPE<y< y + cRMSPE). (41)

(iv) Step 4: repeating Steps 1 to 3.

Repeat Steps 1 to 3 s times to get an averaged coverage.
Using parameters a � 0, α � 2, and s � 200, the results

are shown in Figures 6.
*e results show that quantile interval coverages are

closer to the 0.95 reference line for fixed σ, b, and β. Gaussian
prediction interval is only closer to the 0.95 coverage when σ
is large; otherwise, it is larger than 0.95 at the cost of wider
width. When k is chosen as the best kmin, the coverages get
closer to the 0.95 reference line as σ increases for both
quantile and Gaussian prediction intervals. However, when
the uniform distribution effect gets stronger, the coverages
all go far away from 0.95. Accordingly, when the number of
observations for each terminal node is large and the data
distribution is not obviously Gaussian, quantile intervals are
suggested. When the data follows obvious Gaussian distri-
bution, Gaussian prediction intervals are recommended.

4. Real Application

We have explored the performance of decision trees under
different circumstances. A real application is conducted in
this section. *e data come from UK Gridwatch (http://
www.gridwatch.templar.co.uk/), which are the demand data
of grid and the supply data of each energy source. *e time
series begin from year 2011 to year 2020, making a total of
953824 observations with a record every 5 minutes. *e
details are shown in Figure 7.

From the figure, we can see that the demand of grid
changes in period as expected since there are peak and valley
values daily and seasonally. *e general trend of grid de-
mand changes a little. Some kinds of energy like wind and
biomass increase a lot in supply these years; they will be
more frequently used in the future than traditional energy
like coal as they are more environmentally friendly. We

construct a metric ratio to measure the ratio of other energy
supply over that of coal. By deleting observations which have
none or zero values of coal, we have 847922 observations left,
as shown in Figure 8.

We average the time series ratio from a frequency of 5
minutes to a daily basis, ending with 2954 observations left.
A forecasting method is conducted on ratio to help us know
how much renewable energy is needed in the near future.
*e interval forecasting method we use is from our designed
method, Zhao et al. [14], called ctreeone, which uses the tree
method ctree in a dynamic interval forecasting context. *e
different parameter we choose is 7 for time gap (weekly
dynamic forecasting), leaving the other parameters
unchanged.
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Figure 8: *e ratio of other energy supply over that of coal.

Table 1: Results of interval forecasting on the time series ratio.

Coverage (%) Averaged width Computational time (s)
80.31 22.95 11.86
*e experiment is run on a 3.2GHz 8-Core Intel Xeon W processor.
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Figure 9: *e dynamic interval forecasting result. *e black lines
are the raw daily ratio time series; the red lines are the predicted
values; the blue line is the upper forecasted interval; and the yellow
line is the lower forecasted interval. *e purple line describes
whether the data are coved by the interval or not. *e circle means
the model is retrained on that time point. *e upper and lower
forecasted interval [U, L] give an interval that in most cases the real
future value will be in, which is similar to the 95% confidence
interval that the fitted value is most likely to be covered in.
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Interval forecasting provides not only the point fore-
casting results but also the prediction interval that the
predicted point belongs to. Small change of the ratio often
happens, which influences a little the the energy supply and
demand system, so no action is needed in this circumstance.
When the predicted ratio changes a lot, out of a preset limit,
an alarm may be raised to help the system accommodate to
the new circumstance, for example, by producing more
renewable energies in advance to meet the instant demand.
*e interval forecasting model provides such an alerting
system to adjust the energy production.

*e results are shown in Table 1 and Figure 9. *e
coverage and width make a good balance; that is, a higher
coverage costs a relatively higher width. We end with a
coverage of 80.31% and a suitable width of 22.95 which is
similar to the standard deviation of ratio of 19.78.

5. Conclusion

In this paper, the data are constructed using a simple model
that includes both Gaussian and uniform distributions. We
explore the squared prediction error in the context of trees
and decompose that error into bias, variance, and irreducible
error.*e bias decreases when the tree gets bigger. However,
for squared prediction error and variance, the relationship is
not monotonic. We also calculate the best tree depth with a
minimum mean squared prediction error. When Gaussian
effect dominates, the best tree depth density decreases.
However, when uniform effect dominates, the best tree
depth increases. Under both circumstances, mean squared
error, variance, and bias all increase.

After that, two options are given for the prediction
interval using Gaussian prediction interval or quantile in-
terval. When Gaussian distribution is obviously dominant,
Gaussian prediction intervals are suggested. Otherwise,
quantile intervals are suggested, which is also why quantile
intervals are chosen as the prediction intervals in our re-
gression application, although they both perform poorly
when the uniform distribution is quite strong. When the
number of observations is small in the terminal node, both
interval constructions perform poorly in terms of coverage.

In the real data application, we applied ourmethod to the
UK grid energy supply and demand data to forecast the ratio
of renewable energy supply over that of coal. We have good
forecasting results as 80.31% in interval coverage and 22.95
in interval width. *e method can be extended to other
models as well besides decision trees.

We use the model decision tree for interval fore-
casting. In practice, other models can also be considered.
For example, Hall et al. [22] used multiple nonlinear
regression to forecast and analyze the changes of climate
and weather dynamics and proposed a simple model
averaging approach to reduce model and prediction un-
certainty. Besides decision tree, other dynamic regression
models can also be considered, for example, Gu et al. [23]
used dynamic regression model to predict the dynamics of
a specific space weather index and proposed a new ap-
proach for prediction uncertainty analysis using point-
cloud model parameters. Dynamic regression model was

also applied to social dynamic behavior modeling and
analysis [24].

In the future research, the model can be applied to more
kinds of datasets to test its generation ability. In the sim-
ulation, instead of linear model, nonlinear model can also be
considered to test the tree performance.
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