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Real-world complex systems always interact with each other, which causes these systems to collapse in an avalanche or cascading
manner in the case of random failures or malicious attacks. .e robustness of multilayer networks has attracted great interest,
where the modeling and theoretical studies of which always rely on the concept of multilayer networks and percolation methods.
A straightforward and tacit assumption is that the interdependence across network layers is strong, which means that a node will
fail entirely with the removal of all links if one of its interdependent nodes in other network layers fails. However, this
oversimplification cannot describe the general form of interactions across the network layers in a real-world multilayer system. In
this paper, we reveal the nature of the avalanche disintegration of general multilayer networks with arbitrary interdependency
strength across network layers. Specifically, we identify that the avalanche process of the whole system can essentially be
decomposed into twomicroscopic cascading dynamics in terms of the propagation direction of the failures: depth penetration and
scope extension. In the process of depth penetration, the failures propagate from layer to layer, where the greater the number of
failed nodes is, the greater is the destructive power that will emerge in an interdependency group. In the process of scope
extension, failures propagate with the removal of connections in each network layer. Under the synergy of the two processes, we
find that the percolation transition of the system can be discontinuous or continuous with changes in the interdependency
strength across network layers, which means that a sudden system-wide collapse can be avoided by controlling the interde-
pendency strength across network layers. Our work not only reveals the microscopic mechanism of global collapse in multilayer
infrastructure systems but also provides stimulating ideas on intervention programs and approaches for cascade failures.

1. Introduction

Many real-world complex systems, both natural [1] and man
made [2–5], can be described as multilayer or interdepen-
dent networks given the existence of different levels of in-
terdependence across network layers. Recent theoretical
studies on networks with two or more layers show that when
the nodes in each network are interdependent on the nodes
in other networks, even small initial failures can propagate
back and forth and lead to the abrupt collapse of the whole
system [5–10]. In this sense, multilayer networks are more
fragile than single-layer networks in resisting the propa-
gation of initial failures [6]. In recent years, we have wit-
nessed considerable progress in the study of multilayer
networks with the aid of percolation theory [11–13]. It has
been found that multilayer networks are not as fragile as in

theoretical studies under certain specific conditions such as
those given link overlap [14, 15], geometric correlations
[16, 17], correlated community structures [18], interlayer
degree correlations [19, 20], intralayer degree correlations
[21], asymmetry in interdependence [22], and autonomous
nodes [23–25] being able to facilitate the viability of nodes
and alleviate the suddenness of the collapse in an interde-
pendent system. In addition, some features of real inter-
dependent systems, such as spatial constraints [26–30],
clustering [31, 32], and degree distribution [33, 34], also
enhance the robustness and mitigate cascading failures of
interdependent networks.

A key question in the modeling of multilayer networks is
how to describe the interdependencies across network
layers. A straightforward method employed in most pre-
vious models of cascading failures in multilayer networks is
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assuming that the layer interdependence is “strong,” where a
failure node can cause all of its interdependent neighbors to
fail completely [6, 23, 35–40]. .is assumption has already
been extended extensively to the study of cascading dy-
namics in networks under different conditions such as in-
terdependency groups in single-layer networks [41–43] and
k-core percolation [44], weak percolation [45], and re-
dundant percolation [46] in multilayer networks. Never-
theless, this assumption is somewhat simplistic and cannot
cover the case where nodes are weakly interdependent. For
instance, in a civil transportation system, the flow of pas-
sengers from city to city depends on a number of trans-
portation modes such as coaches, trains, airplanes, and
ferries. When any mode becomes unavailable, the total
failure of the other three modes seems impossible, e.g., when
a local train station is shut down, passenger flow into the city
may be decreased: some passengers destined for this city may
cancel their trips, and the transferring passengers would
switch to other cities to reach their destinations. .e re-
duction of passenger flow can cause some routes in other
modes to not operate properly, and carriers experience fi-
nancial or other losses; for instance, airlines may cancel
flights if passenger numbers are below expectations. Spe-
cifically, the interdependence across network layers can be
“weak,” and the failure of a node cannot destroy all of its
dependency nodes in other network layers with certainty
[47, 48]. Under these circumstances, the failure of a train
station can cause one or more of its interdependent nodes in
other network layers to suffer damage or even failure, e.g.,
the failure of a local coach station, which can further lead to
failures in more modes and deteriorate the connectivity of
the city. By this token, there may exist a cascading process
underlying a group of interdependent nodes across network
layers, which means that the microscopic mechanism of
global collapse inmultilayer networks could include not only
the propagation of failures from node to node inside a
certain network layer but also the cascading process of
failures across network layers. In this paper, we regard the
propagation of failures inside a network layer as “inner-layer
cascading” and the propagation of failures in a dependency
group across network layers as “cross-layer cascading.”

Previous networks that have considered the “strong”
interdependence ignore the microscopic process of “cross-
layer cascading,” as the failure of one node will destroy all its
interdependent neighbors. In this paper, we aim to model
the cascading dynamics in multilayer networks within a
more general situation by using the assumption of “weak”
interdependence [47], where the strength of interdepen-
dence can be tuned by introducing a tolerance parameter α.
Using a comprehensive theoretical study and numerical
simulations, we find that the cascading dynamic in multi-
layer networks is essentially the synergistic result of “cross-
layer cascading” and “inner-layer cascading.” In particular,
we find that the system can undergo different types of
percolation with changing tolerance parameters α. Specifi-
cally, the system percolates as an abrupt (first-order) per-
colation transition for small values of α. With increasing α
exceeding a critical value αc, the system percolates in a
continuous (second-order) manner. However, for scale-free

networks, the phenomenon of double phase transitions
occurs for some moderate parameter values of α, where the
networks in the system first percolate in a continuous
(second-order) manner and then experience a first-order
phase transition in an abrupt manner at another phase
transition point.

2. Model

We consider a multilayer network consisting of M layers of
networks, where each network layer has N nodes. We label
the network layers with Latin letters A, B, C, and so on, and
the nodes in each network layer are labeled with Arabic
numbers 1, 2, . . . , N. .erefore, each node in a certain
network layer can be identified as a pair of coordinates (x,
X), with x denoting the node label and X denoting the layer
label. .e nodes across network layers with the same Arabic
number are interdependent on each other, i.e., they are
replica nodes. As shown in Figure 1, the nodes (1, A), (1, B),
(1, C), and (1, D) are interdependent nodes in network layers
A, B, C, and D, respectively. When one of these nodes fails,
the other three nodes will suffer damages. Similarly, the
other nodes can be also divided into several interdependent
groups by their Arabic number labels. .e nodes in the same
network layer X are linked by a set of connectivity links, and
the connectivity degree of nodes follows a degree distri-
bution pX

k . In this paper, we consider the case where the M

network layers within the multilayer system have an iden-
tical degree distribution for simplicity.

.e cascading in the multilayer networks is triggered by
randomly selecting a fraction 1 − p of nodes and their
replicas as initially failed nodes. For each network layer, all
the links of failed nodes are removed simultaneously, which
breaks the network layer into a number of connected
components [49]. .e nodes in the isolated components are
treated as failed ones, and the nodes in the giant component
are functional. Due to the interdependency among the
replica nodes across network layers, a failed node will cause a
certain level of damage to it replicas, where the damage
degree is controlled by the tolerance parameter α. Specifi-
cally, when one node in a network layer fails, each con-
nectivity link of its viable interdependency replicas in other
network layers will be removed with a probability 1 − α.
Along with the removal of the connectivity links, the net-
work layers will be further fragmented and, thus, lead to
more failures. After a number of iterations of link removal
caused by node failures and node isolations resulting from
network fragmentation, the system can reach a steady state.
In this iterative process, the failures can propagate from layer
to layer through the interdependencies among replica nodes,
and the failures can also propagate from node to node along
with the removal of connectivity links in a certain network
layer simultaneously. Here, we regard the propagation of
failures inside a network layer as “scope extension” and the
propagation of failures in an interdependency group across
network layers as “depth penetration.” Especially, it should
be noticed that there is a microscopic cascading in the
process of depth penetration: a failed node can lead more
node failures in its replicas and, thus, lead more and more
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node failures in its replicas. Schematic illustration of cas-
cading process of a four-layer system is shown in Figure 1. In
this paper, we use the relative size SX of the giant component
in each layer of network X to measure the robustness of the
network.

3. Theory

We use the method of probability generation functions
[50, 51] to obtain the theoretical solution of the model, and
the generating function GX

0 (x) � kpX
k xk is employed to

generate the degree distribution pX
k of layer X. Similarly, the

generating function GX
1 (x) � kpX

k kxk− 1/〈k〉X is used to
generate the excess degree distribution of a node reached by
following a random link, where 〈k〉 ≡ kpX

k k represents the
average degree of the network layer X. In particular, we
define RX as the probability that a randomly chosen link in
network X leads to its giant component in the steady state of
the system. For the case where the M network layers in the
system have a same degree distribution, pX

k � pk. Accord-
ingly, GX

0 (x) ≡ G0(x), GX
1 (x) ≡ G1(x), RX ≡ R, and

〈k〉X ≡ 〈k〉. Assuming that each network of M network
layers is tree-like, we aim to obtain the probability SX that a
random node is in the giant component of layer X. Because
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Figure 1: Schematic diagram of the cascading process in a four-layer network. .e nodes in different layers with the same Arabic number
are replica nodes, and they are connected by dotted lines. .e funtional links are marked in solid lines and the failed links are marked in
dashed lines. .e functional nodes are marked in green, the failed nodes are marked in red, and the yellow nodes are still viable after being
damaged. At stage (A), the replicas with the Arabic number 1 are removed from all layers. At stage (B), the node (2, D) becomes isolated
from the giant component in layerD and fails, which leads to the link removal of its replicas in layersA, B, andC. At stage (C) the node (3,C)
becomes isolated from the giant component in layer C and fails, which leads to the link removal of its replicas in layers A, B, and D.
Simultaneously, node (2, A) becomes isolated and fails due to the removal of link 23 in layer A, which further leads to the link removal of its
replicas in layers B and C. At stage (D), the node (4, A) becomes isolated from the giant component in layer A and fails, which leads to the
link removal of its replicas in layers B, C, and D. Simultaneously, node (2, A) becomes isolated and fails due to the removal of link 23 in layer
B. At stage (E), the node (4, C) becomes isolated from the giant component and fails, which leads to the link removal of its replicas in layers B

and D. At stage (F), the node (4, D) becomes isolated and fails, and the system reaches the final steady state. (a) Stage A. (b) Stage B. (c) Stage
C. (d) Stage D. (e) Stage E. (f ) Stage F.
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each layer has the same degree distribution, we have
SA � SB � SC · · · ≡ S. Following a randomly chosen link in
the layer X, we arrive at a node (x, X) of degree k with t

failed replicas. .erefore, each link of node (x, X) can be
preserved with a probability αt. Considering that the degree
k follows the probability distribution kpk/〈k〉, the proba-
bility that a random link can lead to the giant component
follows αt[1 − kpk/〈k〉(1 − αtR)k− 1], which can be simpli-
fied as αt[1 − G1(1 − αtR)] in terms of the generating
function G1(x). If the number t of failed replicas for a given
node follows a probability distribution f(t), we can obtain
the self-consistent equation for R by summing over all
possible t.

R � p 
M− 1

t�0
αt 1 − G1 1 − αt

R  f(t) ≡ h(R). (1)

Similarly, we can obtain the probability S that a random
node is in the giant component:

S � p 
M− 1

t�0
1 − G0 1 − αt

R  f(t). (2)

.e solution process of equations (1) and (2) utilizes the
probability distribution function f(t), which can be ob-
tained by using the probability R. Considering that there are
t failed replicas for a random node (x, X) in the layer X at
steady state, the viable probability of each replica is
1 − G0(1 − αtR), and the remaining M − t − 1 replicas are all
viable with probability [1 − G0(1 − αtR)]M− t− 1. Because the
failures can propagate from layer to layer through the in-
terdependencies among replica nodes, we assume that there
are s failed replicas caused by the link removal of other nodes
in the corresponding network layers, and there are t − s

failed nodes induced by the s failed replicas. .e probability
of s failed replicas existing caused by isolation is Gs

0(1 − R).
After that, the probability of t − s additional replicas failing
is [G0(1 − αsR) − G0(1 − R)]t− s. .erefore, f(t) satisfies

f(t) �
M − 1

t
  1 − G0 1 − αt

R  
M− t− 1



t

s�0

t

s
 G

s
0

· (1 − R) G0 1 − αs
R(  − G0(1 − R) 

t− s
.

(3)

For a given degree distribution pk, we can obtain the
final size S of the giant component in a certain layer by
solving equations (1) and (2) simultaneously.

When α⟶ 1, the interdependence across network
layers is weakest, and the system percolates in a second-
order manner as in single-layer networks [52, 53]. When
α⟶ 0, the interdependence across network layers is the
strongest, and the system percolates in a first-order manner
[10]. .erefore, the manner of percolation transitions can be
determined by the value of α, and the critical value αc is
defined as the switch point of the percolation transition from
a second-order to a first-order. For the second-order per-
colation transition, the probability R tends to zero when p is
close to the second-order percolation point pII

c . We can use

the Taylor expansion of equation (1) for R ≡ ϵ⟶ 0 and
p⟶ pII

c :

h(ϵ) � h′(0)ϵ +
1
2
h″(0)ϵ2 + O ϵ3  � ϵ. (4)

Ignoring the high-order terms of ϵ, we have h′(0) � 1
when p⟶ pII

c . We, thus, have the condition for the sec-
ond-order percolation transitions

p
II
c α

2M− 2
G1′ (1) � 1, (5)

and the second-order percolation point

p
II
c �

1
α2M− 2G1′(1)

. (6)

When α � 1 or M � 1, the second-order percolation
transition point pII

c � 1/G1′(1), which is coincident with the
result for the ordinary percolation in a single-layer network
[53]. In addition, we can also find the second-order per-
colation point pII

c increases with the increase of M, which
means the more network layers a system has, the more
fragile it becomes.

At the first-order phase transition point pI
c, the proba-

bility R jumps from Rc to zero or a nontrivial value, and the
curve of y � h(R) − R is tangent with the straight line y � 0:

dh(R)

dR

R�Rc,p�pI
c

� 1. (7)

In this paper, we resort to the numerical method to solve
equations (1) and (7) for the first-order percolation tran-
sition point pI

c.
When α � αc, the conditions for the first- and second-

order percolation transitions are satisfied simultaneously,
i.e., pI

c � pII
c for Rc⟶ 0 at the percolation transition point.

At this time, equation (4) reduces to
1
2
h″(0)ϵ2 + O ϵ3  � 0. (8)

.erefore, we know that h″(0) � 0 when p⟶ pc and
α � αc. We can have

α3G1″(1) + 2 α2 − 1 (M − 1)G1′ (1)G0′ (1) � 0. (9)

By the solution of equation (9), we can obtain the switch
point αc of first-order and second-order percolation tran-
sitions. Formultilayer random networks, the degree of nodes
follows Poisson distribution, and equation (9) can be sim-
plified as

α3c +(2M − 2)α2c − (2M − 2) � 0. (10)

.erefore the value of αc is only relevant to M. For scale-
free networks, equation (9) can be written as
α3c〈k(k − 1)(k − 2)〉

〈k〉〈k(k − 1)〉
+(2M − 2)α2c − (2M − 2) � 0, (11)

where the brackets 〈·〉 denote the average over the degree
distribution. .erefore, αc depends not only on M but also
on the degree distribution pk for multilayer scale-free
networks.
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Figure 2 shows the function curves y � h(R) − R for
different values of p, from which we can validate the ex-
istence of first- and second-order percolation transitions.
Figure 2(a) shows the graphical solutions of equation (1) for
α< αc, from which we can find that the solution of R is given
by the tangent point when p � pI

c, indicating a discontin-
uous percolation transition. From Figure 2(c), we can find
that the nontrivial solution of R emerges at the point p � pII

c ,
at which the function curve y � h(R) − R is tangent with the
R axis at R � 0, indicating a continuous percolation tran-
sition. Interestingly, we also found that the system un-
dergoes double phase transitions for some moderate values
of α if the degree distribution pk of the systems is scale-free,
as shown in Figure 2(b). In this case, the system first per-
colates in a second-order manner and then experiences a
first-order phase transition with increased p, and conditions
(5) and (7) should be satisfied at the phase transition points
pII

c and pI
c successively. If condition (5) cannot be satisfied,

the double phase transition reduces to a single first-order
percolation transition, and if condition (7) cannot be sat-
isfied, the double phase transition reduces to a single second-
order percolation transition. Using these conditions, we can
locate the boundary between double phase transitions and
single first-order phase transitions and the boundary be-
tween double phase transitions and single second-order
percolation transitions.

4. Results

4.1. Synthetic Network. In this paper, we take two special
multilayer networks with M � 3 and M � 4 layers as ex-
amples to illustrate the characteristics of percolation dy-
namics. Figures 3(a) and 3(b) show the size S of the giant
component as functions of p for different values of α in
three-layer random networks and four-layer random
networks with 〈k〉 � 4, respectively. For both three-layer
and four-layer random networks, we find that the system
can percolate in a discontinuous manner for α � 0.8 or in a
continuous manner for a larger value of α � 0.95. In ad-
dition, the percolation transition point of three-layer

networks is less than that of four-layer networks, which
means that three-layer networks are always more robust
than four-layer networks. Simultaneously, we find that the
critical point αc separating the types of percolation tran-
sitions depends on the number of layers in the system.
Similar results can also be found for three-layer random
networks and four-layer random networks with 〈k〉 � 5. In
Figure 3, the theoretical predictions for the size S of the
giant component as functions of p and percolation
transition points pI

c(pII
c ) are also provided, from which we

can find that they agree with the simulation results very
well.

.e results for multilayer scale-free networks are also
provided in Figure 4. For each network layer of the system,
the degree of the nodes follows a truncated power-law
distribution with an average 〈k〉, and the degree distribution
is pk ∼ k− c(kmin ≤ k≤ kmax), where kmin and kmax are the
minimum and maximum of the degree, respectively, and c

denotes the power law exponent. Similarly, we can also find
that the system can percolate in a discontinuous manner for
a small value of α or in a continuous manner for a large value
of α, and the three-layer networks are more robust than four-
layer networks for both 〈k〉 � 4 and 〈k〉 � 5. Interestingly,
we can also find that the four-layer networks can undergo a
double phase transition for α � 0.65. Specifically, the system
first percolates as a continuous phase transition and then
undergoes a discontinuous phase transition with increasing
p. With increasing α, the discontinuous phase transition
disappears, and the system reduces to a single continuous
phase transition. With decreasing α, the continuous phase
transition disappears, and the system reduces to a single
discontinuous phase transition.

Figures 5(a) and 5(b) show the percolation transition
points pc as functions of α for three- and four-layer random
networks with different average degrees, respectively. For
both three- and four-layer random networks, the manners of
percolation transition are classified as discontinuous and
continuous by a critical value of αc, and the critical value of
αc only depends on the number of network layers M in a
system, which coincides the theoretical result provided by
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Figure 2:.e graphical solutions of equation (1) for different values of p and α, as marked by the black dots. (a).e result for α � 0.5, (b) the
result for α � 0.65, and (c) the result for α � 0.9. For each panel, the degree distribution of networks follows a truncated power-law
distribution pk ∼ k− c(kmin ≤ k≤ kmax), where kmin � 2, kmax � 141, and c � 2.3.
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Figure 3: Simulation results for percolation transitions on three-layer and four-layer random networks. (a), (b) .e results for three-layer
and four-layer random networks with 〈k〉 � 4, respectively. (c), (d) .e results for three-layer random networks and four-layer random
networks with 〈k〉 � 5, respectively. .e results were obtained by averaging over 100 independent realizations, and the network size was
N � 105. .e solid lines behind the symbols denote the theoretical predictions that were obtained by equations (1) and (2). .e vertical
dashed lines denote the first- and second-order percolation transition points predicted by equations (5) and (7), respectively.
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Figure 4: Continued.
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Figure 4: Simulation results for percolation transitions on three- and four-layer scale-free networks. (a), (b).e results for three- and four-
layer scale-free networks with 〈k〉 � 4, respectively. (c), (d) .e results for three- and four-layer scale-free networks with 〈k〉 � 5, re-
spectively. When the average degree 〈k〉 � 4, the parameter settings for the power-law distribution are kmin � 2, kmax � 63, and c � 2.5.
When the average degree 〈k〉 � 5, the parameter settings are kmin � 2, kmax � 141, and c � 2.3. .e simulation results were obtained by
averaging over 100 independent realizations, and the network size is N � 105. .e solid lines behind the symbols denote the theoretical
predictions that were obtained by equations (1) and (2). .e vertical dashed lines denote the first- and second-order percolation transition
points predicted by equations (5) and (7), respectively.
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Figure 5: Continued.
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equation (10). Figures 5(c) and 5(d) show the percolation
transition points pc as functions of α for three- and four-
layer scale-free networks with different average degrees,
respectively, fromwhich we can also find that themanners of
percolation transition are classified as discontinuous and
continuous by a critical value of αc; however, the specific
value of αc depends on the parameter settings of the degree
distributions. .ese results imply that the robustness of a
multilayer network increases with the increase of the average

degree of network layers and decreases with the increase of
the number M of network layers. For multilayer random
networks, the collapse manner is irrelevant to the average
degree of the networks, and abrupt breakdown cannot be
avoided by the increase of the average degree. For multilayer
scale-free networks, the collapse manner is relevant to the
number M of network layers and the parameters of degree
distribution, i.g., minimum degree, maximum degree, and
power law exponent.
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Figure 5: (Color online) (a).e percolation transition point pc ((pI
c) or (pII

c )) versus α for three-layer random networks, where the average
degree 〈k〉 is 4, 5, and 6 from top to bottom, respectively. (b) Corresponding results for four-layer random networks. (c).e corresponding
results for three-layer scale-free networks of average degree 〈k〉 4, 5, and 6 (corresponding to a power-law exponent of degree distribution
− 2.6, − 2.3, and − 2.1 from top to bottom, respectively) with minimum degree 2. (d) Corresponding results for four-layer scale-free networks.

0.0 0.2 0.4 0.6
p

0.4

0.3

0.2

0.1

SA

0.0

α = 0.0
α = 0.3

α = 0.6
α = 0.9

(a)

0.4

0.3

0.2

0.1

SB

0.0
0.0 0.2 0.4 0.6

p

α = 0.0
α = 0.3

α = 0.6
α = 0.9

(b)

0.4

0.3

0.2

0.1

SC

0.0
0.0 0.2 0.4 0.6

p

α = 0.0
α = 0.3

α = 0.6
α = 0.9

(c)

Figure 6: Percolation inmultilayer empirical networks..e system consists of the three layers of networks A, B, and Cwhich represent three
major carriers: American Airlines (AA), Delta Air Lines (DL), and United Airlines (UA), respectively. (a–c) .e sizes of the giant
components of the network layers A, B, and C as functions of p for different values of α, respectively. .e data points are the result of
averaging over 1000 statistical realizations. (a) AA. (b) DL. (c) UA.
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4.2. Empirical Networks. To address the percolation process
in empirical multilayer networks, we consider a three-layer
system constituting the three major carriers in the United
States: Delta Air Lines (DL), American Airlines (AA), and
United Airlines (UA). In each layer of a network, nodes
represent airports, and links between two airports are
connected in the layers if there is at least one flight operated
by a given carrier. We construct the multilayer system using
the dataset from OpenFlights (https://openflights.org/data.
html). For civil flights of the three major carriers, there are in
total N � 310 nodes (functioning airports). Some of the
nodes do not appear as connected in all the layers, leading to
a difference in the relative sizes of the giant components.
Figures 6(a)–6(c)) show the sizes S of the giant component as
functions of p for AA, DL, and UA, respectively.We can find
that a large value of α always leads to a larger size S of the
giant component for three layers, which means that the
robustness of the system can be improved greatly by
restricting the interdependence across network layers with
increasing α.

5. Conclusions and Discussion

.e interdependence of real multilayer networks is generally
weak in layer-to-layer interactions, where the failure of one
node usually does not result in failures of interdependent
nodes across all network layers. In this paper, we have
examined the percolation process and the robustness of a
multilayer network when the interdependence of nodes
across networks is weak. We reveal that the avalanche
process of the whole system can be essentially decomposed
into two microscopic cascading dynamics in terms of the
propagation direction of failures: depth penetration and
scope extension. Specifically, the former describes the
propagation of failures across network layers and thus is
regarded as “cross-layer cascading,” while the latter de-
scribes the propagation of failures inside a network layer
and, thus, is regarded as “inner-layer cascading.” With the
coaction of the two cascading dynamics, a multilayer net-
work can disintegrate via first- or second-order percolation
transitions in the case of initial failures, where the inter-
dependence across network layers plays important roles in
determining the percolation behaviors of the system. When
the interdependence of network layers is weak, the failures of
nodes can neither penetrate into deep network layers nor
cause great destructiveness to their interdependent replicas,
which inhibits the spread of failure and makes the system
percolate via a second-order percolation transition. When
the interdependence of network layers is strong, the failures
of nodes can penetrate into deep network layers in a cas-
cading manner and spread with a broad scope through
various network layers, which, thus, makes the system
collapse abruptly. .ese results prove that the process of
“cross-layer cascading” dominates over the process of “in-
ner-layer cascading” and plays a crucial role in determining
the robustness of a multilayer system.

.e present work essentially reveals the complexity of
cascading failures, and previous works ignoring the weak
interdependence may underestimate the complexity.

Specifically, the cascading dynamics that occur across net-
work layers cannot be produced in a strong layer-to-layer
interdependence of multilayer networks. .erefore, our
method insights for the intervention of cascading failures in
a multilayer network and evidences the idea that imposing
restrictions on “cross-layer cascading” can restrain the
spread of failures more effectively. Our work not only offers
a new understanding of the cascading failure dynamics of
multilayer networks but also implies that the strength of
interdependence can be used for enhancing the robustness
of multilayer structured infrastructure systems. .at is to
say, the penetration depth of cascading failures can be
significantly reduced and thus the scale of cascading failures
is also decreased by imposing restrictions on the strength of
interdependence if the strength of interdependence is ad-
justable. For some other systems with fixed or nonadjustable
interdependence across network layers, our finding is also
meaningful for the robustness assessment. In this case, we
can evaluate the robustness of such system by the parameters
such as average degrees, number of network layers, strength
of interdependence, and so on.

It has been found that overlapping links [14, 15] of real
multilayer networks are able to relieve the destruction of
cascading failures and improve robustness of the systems.
.erefore, it is meaningful to study the percolation on
multilayer networks with overlapping links in terms of
tunable interdependency strength across networks in future
works. Specifically, for a system with M network layer, any
two networks of it may have overlapping links and the
degree of overlap may change with the varying of combi-
nation of network layers. We believe that the study of this
issue will yield richer results.
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