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�e paper deals with the study of the existence of weak positive solutions for a new class of the system of elliptic di�erential
equations with respect to the symmetry conditions and the right hand side which has been de�ned as multiplication of two
separate functions by using the sub-supersolutions method (1991 Mathematics Subject Classi�cation: 35J60, 35B30,
and 35B40).

1. Introduction

Elliptic systems of di�erential equations are of crucial im-
portance in modelization and description of a wide variety of
phenomena such as �uid dynamics, quantum physics,
sound, heat, electrostatics, di�usion, gravitation, chemistry,
biology, simulation of airplane, calculator charts, and time
prediction. PDEs are equations involving functions of sev-
eral variables and their derivatives and model multidi-
mensional systems generalizing ODEs (ordinary di�erential
equations), which deal with functions of a single variable and
their derivatives (see, for example, [1–15]).

In contrary to ODEs, there is no general result such as
the Picard–Lindelöf theorem for PDEs to settle the exis-
tence and uniqueness of solutions. Malgrange–Ehrenpreis
theorem states that linear partial di�erential equations
with constant coe¡cients always have at least one solution;
another powerful and general result in case of polynomial
coe¡cients is the Cauchy–Kovalevskaya theorem ensuring
the existence and uniqueness of a locally analytic solution

for PDEs with coe¡cients that are analytic in the unknown
function and its derivatives; otherwise, the existence of
solutions is not guaranteed at all for nonanalytic coe¡-
cients even if they have derivatives of all orders (see [16]).
Given the rich variety of PDEs, there is no general theory
of solvability. Instead, research focuses on particular PDEs
that are important for applications. It would be desirable
when solving a PDE to prove the existence and uniqueness
of a regular solution that depends on the initial data given
in the problem, but perhaps we are asking too much. A
solution with enough smoothness is called a classical
solution, but in most cases as for conservation laws, we
cannot achieve that much and allow generalized or weak
solutions. �e point is this: looking for weak solutions
allows us to investigate a larger class of candidates, so it is
more reasonable to consider as separate the existence and
the regularity problems. For various PDEs, this is the best
that can be done, and naturally nonlinear equations are
more di¡cult than linear ones. Overall, we know too much
about linear PDEs and in best cases, we can express their
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solutions but too little about nonlinear equations. For
linear PDEs, various methods and techniques can be used
for separation of variables, method of characteristics,
integral transform, change of variables, superposition
principle, or even finding a fundamental solution and
taking a convolution product to obtain the solution.
Variational theory is the most accessible and useful of the
methods for nonlinear PDEs, but there are other non-
variational techniques of use for nonlinear elliptic and
parabolic PDEs such as monotonicity and fixed point
methods, semigroup theory, and sub-supersolutions
method that played an important role in the study of
nonlinear boundary value problems for a long time.
Scorza-Dragoni’s work in [17] was one of the earliest
papers using a pair of ordered solutions of differential
inequalities to establish the existence of solution to a given
boundary value problem for a nonlinear second-order
ordinary differential equation; his work was followed later
by Nagumo in [18, 19] which inspired much work on both
ordinary and PDEs during the decade of the sixties.
Knobloch in [20] introduced the sub-supersolution
method to the study of periodic boundary value problems
for nonlinear second-order ordinary differential equations
using Cesari’s method; similar problems and techniques
were studied in [21, 22] and still the sub-supersolutions
and supersolutions are assumed to be smooth solutions of
differential inequalities. )en, the SSM were also used to
study Dirichlet and Neumann boundary value problems
for semilinear elliptic problems in [23, 24], and even for
nonlinear boundary value problems in [25–27] and also for
systems of nonlinear ordinary differential equations in
[28–30]. )e concept of weak sub-supersolutions and
supersolutions was first formulated by Hess and Deuel in
[31, 32] to obtain existence results for weak solutions of
semilinear elliptic Dirichlet problems and was subse-
quently continued by several authors (see, e.g., [33–43]).

)e study of differential equations and variational
problems with nonstandard p(x)-growth conditions is a
new and interesting topic. It arises from nonlinear elasticity
theory, electrorheological fluids, etc (see [44]). Many exis-
tence results have been obtained on this kind of problems
(see, for example, [44–57]) and in [45] a new class of an-
isotropic quasilinear elliptic equations with a power-like
variable reaction term has been investigated.

In the last few years in [51, 58–60], the regularity and
existence of solutions for differential equations with non-
standard p(x)-growth conditions have been studied and
p-Laplacian elliptic systems with p(x) � q(x) � p (a con-
stant) have been archived. In this work, we study the ex-
istence of weak positive solutions for a new class of the
system of differential equations with respect to the symmetry
conditions by using sub-supersolution method.

2. Preliminaries, Assumptions, and
Statement of the Problem

2.1. PlateProblemsand ItsHistory. In this paper, we consider
the system of differential equations:

− Δp(x)u � λp(x)[a(x)f(u)h(v)] inΩ,

− Δq(x)v � λq(x)[b(x)g(u)τ(v)] inΩ,

u � v � 0 on zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where Ω ⊂ RN is a bounded smooth domain with C2

boundary zΩ and 1<p(x), q(x) ∈ C1(Ω) are functions with
1<p− ≔ infΩp(x)≤p+ ≔ supΩp(x)<∞, 1< q− ≔ infΩq
(x)≤ q+ ≔ supΩq(x), and Δp(x) is a p(x)-Laplacian defined
as

Δp(x)u � div |∇u|
p(x)− 2∇u􏼐 􏼑, (2)

and a, b: Ω⟶ R+ are continuous functions, while
f, g, h, and τ are monotone functions in R+ such that

lim
u⟶+∞

f(u) � +∞,

lim
u⟶+∞

g(u) � +∞,

lim
u⟶+∞

h(u) � +∞,

lim
u⟶+∞

τ(u) � +∞,

(3)

satisfying some natural growth condition at u �∞.

We point out that the extension from p-Laplace operator
to p(x)-Laplace operator is not trivial, since the p

(x)-Laplacian has a more complicated structure then the
p-Laplace operator, such as it is nonhomogeneous. More-
over, many results and methods for p-Laplacians are not
valid for the p(x)-Laplacian; for example, if Ω is bounded,
then the Rayleigh quotient

λp(x) � inf
u∈W1,p(x)

0 (Ω)\ 0{ }

􏽒Ω(1/p(x))|∇u|p(x)dx

􏽒Ω(1/p(x))|u|p(x)dx
, (4)

is zero in general, and only under some special conditions,
λp(x) is positive (see [53]). Maybe the first eigenvalue and the
first eigenfunction of the p(x)-Laplacian do not exist, but
the fact that the first eigenvalue λp is positive and the ex-
istence of the first eigenfunction are very important in the
study of p-Laplacian problem. )ere are more difficulties in
discussing the existence of solutions of variable exponent
problems. In [59], the authors considered the existence of
positive weak solutions for the following p-Laplacian
problem:

− Δpu � λf(v) inΩ,

− Δpu � λg(u) inΩ,

u � v � 0 on zΩ ,

⎧⎪⎪⎨

⎪⎪⎩
(5)

where the first eigenfunction has been used to construct the
subsolution of p-Laplacian problem. Under the condition
that for all M> 0,

lim
u⟶+∞

f M(g(u))1/p− 1
􏼐 􏼑

up− 1 � 0, (6)

the authors gave the existence of positive solutions for
problem (5) provided that λ is large enough.
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In [48], the existence and nonexistence of positive weak
solutions to the following quasilinear elliptic system:

− Δpu � λuαvc inΩ,

− Δqu � λuδvβ inΩ,

u � v � 0 on zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

has been considered where the first eigenfunction has been
used to construct the subsolution of problem (7) and the
following results were obtained:

(i) If α, β≥ 0, c, δ > 0, θ � (p − 1 − α)(q − 1 − β) − cδ >
0, then problem (7) has a positive weak solution for
each λ> 0.

(ii) If θ � 0 and pc � q(p − 1 − α), then there exists
λ0 > 0 such that for 0< λ< λ0, problem (7) has no
nontrivial nonnegative weak solution. For further
generalizations of system (7), we refer to [49, 50].

As already discussed before, on the p(x)-Laplacian
problems, maybe the first eigenvalue and the first eigen-
function of the p(x)-Laplacian do not exist even if the first
eigenfunction of the p(x)-Laplacian exists. Because of the
nonhomogeneous property of the p(x)-Laplacian, the first
eigenfunction cannot be used to construct the subsolutions
of p(x)-Laplacian problems. Moreover, in [47, 61], the
authors studied the existence of solutions for problem (5),
where some symmetry conditions are imposed. )en, in
[46], the existence of positive solutions of the system was
investigated:

− Δp(x)u � λp(x)f(v) inΩ,

− Δp(x)u � λp(x)g(u) inΩ,

u � v � 0 on Ω,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

without any symmetry conditions. Motivated by the ideas
introduced in [47], the authors proved the existence of a
positive solution when λ is large enough and satisfies
condition (6) and they did not assume any symmetric
condition and did not assume any sign condition on f(0)

and g(0). Also the authors proved the existence of positive
solutions with multiparameters; in this paper, we extend this
given system of differential equations, where we establish the
existence of a positive solution for a new class of this system
with respect to the symmetry conditions by constructing a
positive subsolution and supersolution and p, q ∈ C1(Ω) are
functions, λ, λ1, λ2, μ1, and μ2 are positive parameters, and
Ω ⊂ RN is a bounded domain and we did not assume any
sign condition on f(0), g(0), h(0), and τ(0).

2.2. Preliminary Results. In order to discuss problem (1), we
need some theories on W

1,p(x)
0 (Ω) which we call variable

exponent Sobolev space. Firstly, we state some basic
properties of spaces W

1,p(x)
0 (Ω) which will be used later (for

details, see [54]).
Let us define

L
p(x)

(Ω) �

u: u is ameasurable real − valued function such that

􏽚
Ω

|u(x)|p(x)dx<∞

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (9)

We introduce the norm on Lp(x)(Ω) by

|u(x)|p(x) � inf λ> 0: 􏽚
Ω

u(x)

λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

p(x)

dx≤ 1􏼨 􏼩,

W
1,p(x)

(Ω) � u ∈ L
p(x)

(Ω); |∇u| ∈ L
p(x)

(Ω)􏽮 􏽯,

(10)

with the norm

‖u‖ � |u|p(x) +|∇u|p(x),∀u ∈W
1,p(x)

(Ω). (11)

We denote by W
1,p(x)
0 (Ω) the closure of C∞0 (Ω) in

W1,p(x)(Ω).

Proposition 1 (see [59]). 9e spaces Lp(x)(Ω), W1,p(x)(Ω),
and W

1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

)roughout the paper, we will assume that

(H1) p, q ∈ C1(Ω ) and 1<p− ≤p+, 1< q− ≤ q+

(H2) f, g, h, τ: R+⟶ R are C1 monotone functions
such that

lim
u⟶+∞

f(u) � +∞,

lim
u⟶+∞

g(u) � +∞;

lim
u⟶+∞

h(u) � +∞,

lim
u⟶+∞

τ(u) � +∞.

(12)

(H3) ∃r> 0 such that

lim
u⟶+∞

f(u)h cur/q− − 1( 􏼁

up− − 1 � 0, (13)

for all c> 0,

lim
u⟶+∞

g(u)τ kur/q− − 1( 􏼁

ur
� 0, (14)
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for all k> 0.

(H4) a, b: Ω⟶ R+ are continuous functions, such
that

a1 � min
x∈Ω

a(x),

b1 � min
x∈Ω

b(x),

a2 � max
x∈Ω

a(x),

b2 � max
x∈Ω

b(x).

(15)

We define

〈L(u), v〉 � 􏽚
Ω

|∇u|
p(x)− 2∇u∇v dx, ∀u, v ∈W

1,p(x)
0 (Ω).

(16)

)en, L: W
1,p(x)
0 (Ω)⟶ (W

1,p(x)
0 (Ω))∗ is a continuous,

bounded, and strictly monotone operator, and it is a ho-
meomorphism (see [61], )eorem 3.1).

Define A: W
1,p(x)
0 (Ω)⟶ (W

1,p(x)
0 (Ω))∗ as for all

u,φ ∈W
1,p(x)
0 (Ω),

〈A(u),φ〉 � 􏽚
Ω

|∇u|
p(x)− 2∇u∇φ + h(x, u)φ􏼐 􏼑dx, (17)

where h(x, u) is continuous on Ω × R and h(x) is in-
creasing. It is easy to check that A is a continuous bounded
mapping. Copying the proof of [44], we have the following
lemma:

Lemma 1 (see [45]) (comparison principle). Let
u, v ∈W

1,p(x)
0 (Ω) satisfy

Au − Av≥ 0 in W
1,p(x)
0 (Ω)􏼐 􏼑

∗
,

φ(x) � min u(x) − v(x), 0{ }.
(18)

If
φ(x) ∈W

1,p(x)
0 (Ω), (i.e u≥ v on zΩ), (19)

then u≥ v a.e. in Ω.

Definition 1. Let (u, v) ∈ (W
1,p(x)
0 (Ω) × W

1,q(x)
0 (Ω)); the

couple (u, v) is said to be a weak solution of (1) if it satisfies

􏽚
Ω

|∇u|p(x)− 2∇u · ∇φ dx � 􏽚
Ω
λp(x)[a(x)f(u)h(v)]φ dx,

􏽚
Ω

|∇v|q(x)− 2∇v · ∇φ dx � 􏽚
Ω
λq(x)[b(x)g(u)τ(v)]ψ dx,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

for all (φ,ψ) ∈ (W
1,p(x)
0 (Ω) × W

1,q(x)
0 (Ω)) with (φ,ψ)≥ 0.

Here, and hereafter, we will use the notation d(x, zΩ) to
denote the distance of x ∈ Ω to denote the distance of Ω.
Denote d(x) � d(x, zΩ) and zΩε � x ∈ Ω: d(x, zΩ)< ε{ }.

Since zΩ is C2 regularly, there exists a constant δ ∈ (0, 1)

such that d(x) ∈ C2(zΩ3δ) and |∇d(x)| � 1.
Denote

v1(x) �

cd(x), d(x)< δ,

cδ + 􏽚
d(x)

δ
c

2δ − t

δ
􏼠 􏼡

2/p− − 1

a2( 􏼁
2/p− − 1dt,

δ ≤ d(x)< 2δ,

cδ + 􏽚
2δ

δ
c

2δ − t

δ
􏼠 􏼡

2/p− − 1

a2( 􏼁
2/p− − 1dt,

2δ ≤d(x).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v2(x) �

c d(x), d(x)< δ,

cδ + 􏽚
d(x)

δ
c

2δ − t

δ
􏼠 􏼡

2/p− − 1

b2( 􏼁
2/p− − 1dt,

δ ≤d(x)< 2δ,

cδ + 􏽚
2δ

δ
c

2δ − t

δ
􏼠 􏼡

2/p− − 1

b2( 􏼁
2/p− − 1dt,

2δ ≤d(x).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Obviously, 0≤ v1(x), v2(x) ∈ C1(Ω). Considering

− Δp(x)ω(x) � η inΩ,

ω � on zΩ ,
􏼨 (22)

we have the following result

Lemma 2 (Lemma 2.1 in [52]). If positive parameter η is
large enough and ω is the unique solution of (22), then we
have

(i) For any θ ∈ (0, 1), there exists a positive constant C1
such that

C1η
1/p+− 1+θ ≤ max

x∈Ω
ω(x), (23)

(ii) and, there exists a positive constant C2 such that

max
x∈Ω

ω(x)≤C2η
1/p− − 1

. (24)

3. Main Result

In the following, when there is no misunderstanding, we
always use Ci to denote positive constants.

Theorem 1. Assume that the conditions (H1) − (H4) are
satisfied. 9en problem (1) has a positive solution when λ is
large enough.

Proof. We shall establish )eorem 1 by constructing a
positive subsolution (ϕ1, ϕ2) and supersolution (z1, z2) of
(1) such that ϕ1 ≤ z1 and ϕ2 ≤ z2, that is, (ϕ1,ϕ2) and (z1, z2)

satisfy
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􏽚
Ω
∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇ϕ1 · ∇φ dx≤􏽚

Ω
λp(x)

a(x)f ϕ1( 􏼁h ϕ2( 􏼁􏼂 􏼃φ dx,

􏽚
Ω
∇ϕ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)− 2∇ϕ2 · ∇ψ dx≤􏽚

Ω
λq(x)

b(x)g ϕ1( 􏼁τ ϕ2( 􏼁􏼂 􏼃ψ dx,

􏽚
Ω
∇z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇z1 · ∇φ dx≥􏽚

Ω
λp(x) a(x)f z1( 􏼁h z2( 􏼁􏼂 􏼃φ dx,

􏽚
Ω
∇z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)− 2∇z2 · ∇ψ dx≥􏽚

Ω
λq(x) b(x)g z1( 􏼁τ z2( 􏼁􏼂 􏼃ψ dx,

⎧⎪⎪⎨

⎪⎪⎩

(25)

for all (φ,ψ) ∈ (W
1,p(x)
0 (Ω) × W

1,q(x)
0 (Ω)) with (φ,ψ)≥ 0.

According to the sub-supersolution method for p(x)-Lap-
lacian equations (see [52]), problem (1) has a positive
solution.

Step 1. We will construct a subsolution of (1). Let σ ∈ (0, δ)

be small enough. Denote

ϕ1(x) �

ekd(x) − 1, d(x)< σ,

ekσ − 1 + 􏽚
d(x)

σ
ke

kσ 2δ − t

2δ − σ
􏼠 􏼡

2/p− − 1

a1( 􏼁
2/p− − 1dt,

σ ≤ d(x)< 2δ,

ekσ − 1 + 􏽚
2δ

σ
ke

kσ 2δ − t

2δ − σ
􏼠 􏼡

2/p− − 1

a1( 􏼁
2/p− − 1dt,

2δ ≤ d(x),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ2(x) �

ekd(x) − 1, d(x)< σ,

ekσ − 1 + 􏽚
d(x)

σ
ke

kσ 2δ − t

2δ − σ
􏼠 􏼡

2/p− − 1

b1( 􏼁
2/q− − 1dt, σ ≤ d(x)< 2δ,

ekσ − 1 + 􏽚
2δ

σ
ke

kσ 2δ − t

2δ − σ
􏼠 􏼡

2/p− − 1

b1( 􏼁
2/q− − 1dt, 2δ ≤ d(x).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

It is easy to see that ϕ1, ϕ2 ∈ C1(Ω). Denote

α � min
infp(x) − 1

4(sup|∇p(x)| + 1)
,

infq(x) − 1
4(sup|∇q(x)| + 1)

, 1􏼨 􏼩,

ζ �

min
− α

a1f(0)h(0)
􏼠 􏼡

1/p+

;
− α

a1f(0)h(0)
􏼠 􏼡

1/p−

;
− α

b1g(0)τ(0)
􏼠 􏼡

1/q+

;
− α

b1g(0)τ(0)
􏼠 􏼡

1/q−

⎡⎣ ⎤⎦, if f(0)h(0)< 0, g(0)τ(0)< 0,

min
− α

a1f(0)h(0)
􏼠 􏼡

1/p+

;
− α

a1f(0)h(0)
􏼠 􏼡

1/p−

⎡⎣ ⎤⎦, if f(0)h(0)< 0, g(0)τ(0)> 0,

min
− α

b1g(0)τ(0)
􏼠 􏼡

1/q+

;
− α

b1g(0)τ(0)
􏼠 􏼡

1/q−

⎡⎣ ⎤⎦, if f(0)h(0)> 0, g(0)τ(0)< 0,

1, if f(0)h(0)> 0, g(0)τ(0)> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

By some simple computations, we can obtain
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− Δp(x)ϕ1 �

− k ekd(x)( 􏼁
p(x)− 1

× (p(x) − 1) + d(x) +
ln k

k
􏼠 􏼡∇p∇d +

Δd
k

􏼢 􏼣, d(x)< σ,

1
2δ − σ

2(p(x) − 1)

p− − 1
−

2δ − d

2δ − σ
􏼠 􏼡 × ln ke

kσ
􏼐 􏼑 ×

2δ − d

2δ − σ
􏼠 􏼡

2/p− − 1

∇p∇d + Δd⎡⎣ ⎤⎦

× Kekσ( 􏼁
p(x)− 1 2δ− d

2δ− σ􏼐 􏼑
2(p(x)− 1)/p− − 1− 1

a1( 􏼁, σ ≤d(x)< 2δ,

0, 2δ ≤d(x),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Δq(x)ϕ2 �

− k ek d(x)( 􏼁
q(x)− 1

×

(q(x) − 1)

+ d(x) +
ln k

k
􏼠 􏼡∇q∇d +

Δd
k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, d(x)< σ,

1
2δ − σ

2(q(x) − 1)

q− − 1
−

2δ − d

2δ − σ
􏼠 􏼡 × ln ke

kσ
􏼐 􏼑 ×

2δ − d

2δ − σ
􏼠 􏼡

2/q− − 1

∇q∇d + Δ d⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭

× Kekσ( 􏼁
q(x)− 1 2δ− d

2δ− σ􏼐 􏼑
2(q(x)− 1)/q− − 1( )− 1

b1( 􏼁, σ ≤d(x)< 2δ,

0, 2δ ≤d(x).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

From (H2), there exists a positive constant M> 1 such
that

f(M − 1)h(M − 1)≥ 1,

g(M − 1)τ(M − 1)≥ 1.
(29)

Let σ � (1/k)lnM, then

σk � lnM. (30)

If k is sufficiently large, from (30), we have

− Δp(x)ϕ1 ≤ − k
p(x)α, d(x)< σ. (31)

Let λ � ζk. We claim that

− k
p(x)α≤ a1f(0)h(0)λp(x)

, ∀x ∈ Ω, (32)

Indeed, by definition of λ, the last inequality is obvious when
f(0)h(0) > 0.

When f(0)h(0)< 0, we can notice that

λ
k
≤

− α
a1f(0)h(0)

􏼠 􏼡

1/p(x)

, ∀x ∈ Ω, (33)

)en, we have

− Δp(x)ϕ1 ≤ − k
p(x)α≤ λp(x)

a1f ϕ1( 􏼁h ϕ2( 􏼁( 􏼁, d(x)< σ.

(34)

Since d(x) ∈ C2(zΩ3δ), there exists a positive constant
C3 such that

− Δp(x)ϕ1 ≤ Kekσ( 􏼁
p(x)− 1

× 2δ− d
2δ− σ􏼐 􏼑

2(p(x)− 1)/p− − 1( )− 1
a1

×
1

2δ − σ
2(p(x) − 1)

p− − 1
−

2δ − d

2δ − σ
􏼠 􏼡 × ln ke

kσ
􏼐 􏼑 ×

2δ − d

2δ − σ
􏼠 􏼡

2/p− − 1

∇p∇d + Δd⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

≤C3 Kekσ( 􏼁
p(x)− 1

a1 ln k,

σ ≤d(x)< 2δ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

If k is sufficiently large, we have C3 ke
kσ

􏼐 􏼑
p(x)− 1

a1( 􏼁ln k � C3(kM)
p(x)− 1

a1 ln k≤ λp(x)
a1.

(36)
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)en,

− Δp(x)ϕ1 ≤ λ
p(x)

a1,

σ ≤d(x)< 2δ.
(37)

Since ϕ1(x), ϕ2(x), and f, h are monotone, when λ is
large enough, we have

− Δp(x)ϕ1 ≤ λ
p(x)

a1f ϕ1( 􏼁h ϕ2( 􏼁( 􏼁,

σ ≤d(x) < 2δ,
(38)

− Δp(x)ϕ1 � 0≤ λp(x)
a1 ≤ λ

p(x)
a1f ϕ1( 􏼁h ϕ2( 􏼁( 􏼁,

2δ ≤d(x).
(39)

Combining (34), (38), and (39), we can deduce that

− Δp(x)ϕ1 ≤ λ
p(x)

a(x)f ϕ1( 􏼁h ϕ2( 􏼁( 􏼁, a.e. onΩ. (40)

Similarly,

− Δq(x)ϕ2 ≤ λ
q(x)

b(x)g ϕ1( 􏼁τ ϕ2( 􏼁( 􏼁, a.e. onΩ. (41)

From (40) and (41), we can see that (ϕ1, ϕ2) is a sub-
solution of problem (1).

Step 2. We will construct a supersolution of problem (1); we
consider

− Δp(x)z1 � λp+a2μ inΩ,

− Δq(x)z2 � λq+b2β
r inΩ,

z1 � z2 � 0 on zΩ,

⎧⎪⎪⎨

⎪⎪⎩
(42)

where r> 0 is the positive number that verifies (H3) and
β � max

x∈Ωz1(x). We shall prove that (z1, z2) is a super-
solution of problem (1).

For ψ ∈W
1,q(x)
0 (Ω) with ψ ≥ 0, it is easy to see that

􏽚
Ω
∇z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)− 2∇z2 · ∇ψ dx � 􏽚

Ω
λq+

b2β
rψ dx. (43)

By (H4), for a μ large enough, using Lemma 2, we have

βr ≥g(β)τ C2 λq+

b2β
r

􏼐 􏼑
1/q− − 1

􏼒 􏼓. (44)

Hence,

􏽚
Ω
∇z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)− 2∇z2 · ∇ψ dx≥􏽚

Ω
λq+

b2g max z1( 􏼁τ max z2( 􏼁ψ dx,

≥􏽚
Ω
λq(x)

b(x)g z1( 􏼁τ z2( 􏼁ψ dx.

(45)

Also, for φ ∈W
1,p(x)
0 (Ω) with φ≥ 0, it is easy to see that

􏽚
Ω
∇z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇z1 · ∇φ dx � 􏽚

Ω
λp+

a2μφ dx. (46)

By (H3) and Lemma 2, when μ is sufficiently large, we
have

a2λ
p+

μ≥
1

C2
β􏼢 􏼣

p− − 1

≥ a2λ
p+

f(β)h C2 λq+

b2β
r

􏼐 􏼑
1/q− − 1

􏼒 􏼓.

(47)

)en,

􏽚
Ω
∇z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇z1 · ∇φ dx≥􏽚

Ω
λp(x)

a(x)f z1( 􏼁h z2( 􏼁φ dx.

(48)

According to (45) and (48), we can conclude that (z1, z2)

is a supersolution of problem (1). It only remains to prove
that ϕ1 ≤ z1 and ϕ2 ≤ z2.

In the definition of v1(x), let

c �
2
δ

max
Ω

ϕ1(x) + max
Ω
∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(x)􏼠 􏼡. (49)

We claim that

ϕ1(x)≤ v1(x), ∀x ∈ Ω. (50)

From the definition of v1, it is easy to see that

ϕ1(x)≤ 2max
Ω

ϕ1(x)≤ v1(x), when d(x) � δ,

ϕ1(x)≤ 2max
Ω

ϕ1(x)≤ v1(x), when d(x)≥ δ,

ϕ1(x)≤ v1(x), when d(x)< δ.

(51)

Since v1 − ϕ1 ∈ C1(zΩδ), there exists a point x0 ∈ zΩδ
such that

v1 x0( 􏼁 − ϕ1 x0( 􏼁 � min
x0∈zΩδ

v1 x0( 􏼁 − ϕ1 x0( 􏼁( 􏼁. (52)

If v1(x0) − ϕ1(x0)< 0, it is easy to see that 0< d(x)< δ
and then

∇v1 x0( 􏼁 − ∇ϕ1 x0( 􏼁 � 0. (53)

From the definition of v1, we have

∇v1 x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � c �
2
δ

max
Ω

ϕ1 x0( 􏼁 + max
Ω
∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 x0( 􏼁􏼠 􏼡

> ∇ϕ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 x0( 􏼁.

(54)

It is a contradiction to

∇v1 x0( 􏼁 − ∇ϕ1 x0( 􏼁 � 0. (55)

)us, (50) is valid.
Obviously, there exists a positive constant C3 such that

c≤C3λ.
Since d(x) ∈ C2(zΩ3δ), according to the proof of

Lemma 2, there exists a positive constant C4 such that

− Δp(x)v1(x)≤C∗c
p(x)− 1+θ ≤C4λ

p(x)− 1+θ
,

a.e, inΩ, where θ ∈ (0, 1).
(56)
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When η≥ λp+

is large enough, we have − Δp(x)v1(x)≤ η.
According to the comparison principle, we have

v1(x)≤ω(x). (57)

From (50) and (57), when η≥ λp+

and λ≥ 1 are suffi-
ciently large, we have, for all x ∈ Ω,

ϕ1(x)≤ v1(x)≤ω(x). (58)

According to the comparison principle, when μ is large
enough, we have, for all x ∈ Ω,

v1(x)≤ω(x)≤ z1(x). (59)

Combining the definition of v1(x) and (58), it is easy to
see that, for all x ∈ Ω,

ϕ1(x)≤ v1(x)≤ω(x)≤ z1(x). (60)

When μ≥ 1 and λ is large enough, from Lemma 2, we can
see that β is large enough, and then λq+b2β

r is a large enough.
Similarly, we have ϕ2 ≤ z2. )is completes the proof.

4. Conclusion

Validity of the comparison principle and of the SSM for local
and nonlocal problems as the stationary and evolutionary
Kirchhoff Equation was an important subject in the last few
years (see, for example, [44, 53, 58, 62–66]), where the
authors showed by giving different counterexamples that the
simple assumption M increasing somewhere is enough to
make the comparison principle and SSM hold false con-
tradiction and clear up some results in the literature.
Moreover, the two conditions thatM is nonincreasing and H
is increasing turn out to be necessary and sufficient, at least
for the validity of the comparison principle. It is worth to
note that in [45, 67], C. O. Alves and F. J. S. A. Correa
developed a new SSM for problem (1) to deal with the in-
creasing M case. )e result is obtained by using a kind of
Minty–Browder theorem for a suitable pseudomonotone
operator, but instead of constructing a subsolution, the
authors assumed the existence of a whole family of functions
which satisfy a stronger condition than just being sub-
solutions; the inconvenience is that these stronger condi-
tions restrict the possible right hand sides in (1). Another
SSM for nonlocal problems is obtained in [45] for a problem
involving a nonlocal term with a Lebesgue norm, instead of
the Sobolev norm appearing in (1).
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Matemática, vol. 33, no. 2, pp. 95–109, 2015.

[3] O. Kavian, Introduction a la theorie des points critiques et
applications aux problemes elliptiques, Springer-Velarg,
France, Paris, 1993.

[4] S. Boulaaras and M. Haiour, “L∞-asymptotic behavior for a
finite element approximation in parabolic quasi-variational
inequalities related to impulse control problem,” Applied
Mathematics and Computation, vol. 217, no. 14, pp. 6443–
6450, 2011.

[5] S. Boulaaras and M. Haiour, “)e finite element approxi-
mation of evolutionary Hamilton–Jacobi–Bellman equations
with nonlinear source terms,” Indagationes Mathematicae,
vol. 24, no. 1, pp. 161–173, 2013.

[6] S. Boulaaras and M. Haiour, “)e maximum norm analysis of
an overlapping Shwarz method for parabolic quasi-variational
inequalities related to impulse control problem with the
mixed boundary conditions,” Applied Mathematics & Infor-
mation Sciences, vol. 7, no. 1, pp. 343–353, 2013.

[7] J. L. Lions, “On some questions in boundary value problems of
mathematical physics,” North-Holland Mathematics Studies,
vol. 30, pp. 284–346, 1978.
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