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A reaction-diffusion (R-D) heroin epidemic model with relapse and permanent immunization is formulated. We use the basic
reproduction number R0 to determine the global dynamics of the models. For both the ordinary differential equation (ODE)
model and the R-D model, it is shown that the drug-free equilibrium is globally asymptotically stable if R0 ≤ 1, and if R0 > 1, the
drug-addiction equilibrium is globally asymptotically stable. Some numerical simulations are also carried out to illustrate our
analytical results.

1. Introduction

Heroin comes from opioids, commonly known as “opium,”
derived from the poppy plant. Pure heroin is a white
powdery substance or a white crystalline powder. It is well
known that long-term consumption and injection of heroin
can cause personality disintegration, psychological meta-
morphosis, and lifespan to be reduced. -ere are more and
more registered drug users, and this number is growing
continuously [1, 2]. Heroin abuse and independence has
been bringing tremendous pressures on the social and public
health systems due to its prevalence all over the world [3, 4].

Since the spread of heroin is as contagious as infectious
diseases, it is a new trend to study heroin transmission from
the perspective of infectious disease dynamics [5–16]. In
2007, White and Comiskey established an ODE model for
heroin infectious diseases [14]. -ey studied the dynamics
using a threshold R0 and showed that prevention is better
than treatment. In 2009, this model was reconsidered by
Mulone and Straughan [11], and the stability of the positive
equilibrium point of the model is obtained by the authors by
using the eigenvalue equation and Poincare–Bendixson
theory. In 2011, Wang et al. [15] used the bilinear law in-
cidence function instead of standard incidence, and they also
analyzed the dynamic behavior of the heroin model. In order
to better study the dynamics of heroin infectious diseases,

many other different epidemic models have been formulated
and studied in various ways [5–10, 12, 13, 16].

As known to all that many people who are detoxifying
are not really willing to go, and lots of people still keep in
touch with friends who use drugs after they have a successful
drug treatment, thus they have a high probability of reusing
drugs. Hence, some scholars considered relapse in the drug
model and analyzed its stability [12, 17]. However, there are
some drug users who experienced the harmful effect of drugs
and realized the happiness of being an ordinary person after
they have a successful drug treatment, such persons will be
far away from drugs, so we are optimistic that they will
continue this good habit for a lifetime. In addition, there are
some people who have been well educated since childhood
and have a healthy living environment and strong willpower.
So, they do not take drugs from the start to the finish.We call
these two types of people permanently immunized against
drugs.

In recent years, it has been well recognized that spatial
diffusion and environmental heterogeneity have important
effects on the persistence and extinction of contagious
diseases [18–38]. In the case of the heroin epidemic model,
the spatial distribution of the susceptible or infected person
is uneven, and the density may change at any time and place,
thus it is more reasonable to use the R-D equations to
describe the spread of drug abusers. Moreover, to the best of
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our knowledge, the heroin infectious disease models in
which population density depends on both time and space
variables are rarely studied.

In this work, we first formulate an R-D heroin model
with relapse and permanent immunization, and then study
its global dynamics. We organize this paper as follows: in
Section 2, the model is derived and the positive property of
the solutions for the model is proved. In Section 3, the model
without diffusion is analyzed, and we obtain the basic re-
production number and show the stability of all the equi-
libria. In Section 4, the stability of the R-Dmodel is obtained.
In Section 5, we illustrate our results by some numerical
simulations. Finally, we finish this paper with a concluding
discussion.

2. The Model

2.1.Model Formulation. We divide the total population into
five compartments: S, U1, U2, Q, andR. Here, S represents
the number of susceptible individuals who have never used
heroin; U1 represents the number of heroin users; U2
represents the number of heroin users undergoing

treatment; Q represents the number of people who have used
drugs and are not taking drugs at this stage, but may be
taking drugs in the future; and R represents the number of
people who never use drugs or these successful detoxifica-
tion people do not take drugs anymore.We assume that drug
users are not able to heal themselves through self-control,
and if they want to abstain from drugs, they have to go
through treatment.We also assume that not all people can be
cured completely. If the drug users are successfully cured,
individuals in compartment U2 will enter into the com-
partment of Q. If the treatment is terminated or failure, the
people who failed the treatment will still take drugs. Some of
these successful detoxification people will redrug because
they cannot resist the temptation of drugs, and some will
never take drugs because they know the harm of drug abuse.
-us, the total population is given by

N � S + U1 + U2 + Q + R. (1)

We give the transfer diagram of the model in Figure 1.
According to Figure 1, we obtain the following R-D heroin
epidemic model with relapse and permanent immunization:

zS
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We assume that the bounded domain Ω ⊂ R5 has a
smooth boundary zΩ. As shown in (2), the homogeneous
Neumann boundary conditions indicate that the population
movements will not cross the border. Δ is the usual Lap-
lacian operator on R5. di > 0 (i � 1, 2, 3, 4) are the diffusion
coefficients. As mentioned above, R is a compartment of
complete rehabilitation. -e individuals in R are perma-
nently immunized, and we can see that the R equation is
uncoupled with the other equations of (2). Hence, the
diffusion of R is not considered. We assume that all

parameters in the model are positive constants, and the
meaning of the parameters is described in Table 1.

To investigate the global dynamic behavior of system (2),
we first study its ODE counterpart version as follows:

_S � Λ − β1SU1 − μ + α1( 􏼁S,

_U1 � β1SU1 + k2Q + β2U2 − μ + δ1 + k( 􏼁U1,

_U2 � kU1 − μ + δ2 + k1 + β2( 􏼁U2,

_Q � k1U2 − μ + k2 + α2( 􏼁Q,

_R � α1S + α2Q − μR.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

2.2. )e Basic Properties of Model (3)

Lemma 1. If the initial values S(0), U1(0), U2(0),

Q(0), andR(0) are positive, then model (3) has positive
solutions S(t), U1(t), U2(t), Q(t), and R(t) for all t> 0.

Since the proof of the above lemma is direct, we omit it.

Lemma 2. All feasible solutions of the model (3) are bounded
and enter the following region:

Ω � S(t), U1(t), U2(t), Q(t), R(t)( 􏼁 ∈ R
5
+

􏼌􏼌􏼌􏼌 0≤ S + U1 + U2 + Q + R≤
Λ
μ

􏼨 􏼩. (4)

Proof. If (S, U1, U2, Q, R) is a solution of model (3) with
nonnegative initial conditions, adding the five equations
yields

_S + _U1 + _U2 + _Q + _R � Λ − μS − μU1 − μU2 − μQ − μR − δ1U1 − δ2U2

� Λ − μ S + U1 + U2 + Q + R( 􏼁 − δ1U1 + δ2U2( 􏼁

≤Λ − μ S + U1 + U2 + Q + R( 􏼁

� Λ − μN(t),

(5)

where

N(t) � S(t) + U1(t) + U2(t) + Q(t) + R(t), (6)

which indicates that

0≤N(t)≤
Λ
μ

+ N(0)e
− μt

, (7)

where N(0) is the initial value. -us, 0≤N(t)≤ (Λ/μ), as
t⟶∞. -is completes the proof. □

3. Global Dynamics of the ODE Model (3)

3.1.)eBasicReproductionNumberandStabilityofDrug-Free
Equilibrium. It is easy to get the drug-free equilibrium of
system (3):

E0 �
Λ

μ + α1
, 0, 0, 0,

α1Λ
μ μ + α1( 􏼁

􏼠 􏼡. (8)

We now use the next-generation matrix method for-
mulated in [41] to derive the basic reproduction number R0
of model (3).

Let l � (U1, U2, Q, S, R)T, then system (3) can be written
as

dl

dt
� P(l) − W(l), (9)

where

A
S U1 U2 R

Q

β1SU1

β2U2

μRμS

μQ

k1U2k2Q

kU1

(μ + δ2)U2
(μ + δ1)U1

α1S

α2Q

Figure 1: Transfer diagram of the heroin epidemic model with
relapse and permanent immunization.
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0

0

0
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,

W(l) �

μ + δ1 + k( 􏼁U1 − k2Q − β2U2

μ + δ2 + k1 + β2( 􏼁U2 − kU1

μ + k2 + α2( 􏼁Q − k1U2

μ + α1( 􏼁S + β1SU1 − Λ

μR − α1S − α2Q
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.

(10)

-e Jacobian matrices of P(l) and W(l) at the drug-free
equilibrium E0 are as follows:

DP E0( 􏼁 �

P3×3 0 0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

DW E0( 􏼁 �

W3×3 0 0

β1
Λ

μ + α1
0 0 μ + α1 0

0 0 − α2 − α1 μ
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,

(11)

where

P3×3 �

β1
Λ

μ + α1
0 0

0 0 0

0 0 0
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,

W3×3 �

μ + δ1 + k − β2 − k2

− k μ + δ2 + k1 + β2 0

0 − k1 μ + k2 + α2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(12)

-en, the basic reproduction number R0 is

R0 � ρ PW
− 1

􏼐 􏼑 �
β1Λ μ + δ2 + k1 + β2( 􏼁 μ + k2 + α2( 􏼁

μ + α1( 􏼁 μ + δ1 + k( 􏼁 μ + δ2 + k1 + β2( 􏼁 μ + k2 + α2( 􏼁 − kβ2 μ + k2 + α2( 􏼁 − kk1k2􏼂 􏼃
. (13)

Table 1: Description of parameters.

Parameter Description Data estimated Data sources
S(l, t) Number of susceptible people at location l and time t

U1(l, t) Number of heroin users at location l and time t

U2(l, t) Number of heroin users undergoing treatment at location l and time t

Q(l, t) Number of people who have used drugs at location l and time t

R(l, t) Number of people who never use drugs at location l and time t

Λ Recruitment rate of the population 1 [39]
μ Natural death rate 0.02 [40]
β1 Addition rate from S to abusers Variable
β2 -e proportion of failure treatment 0.0011 [40]
δ1 -e heroin-related death rate of U1 0.01 Estimate
δ2 -e heroin-related death rate of being treated 0.005 Estimate
k Progression rate to U2 from U1 0.0095 [40]
k1 -e proportion of successful treatment Variable
k2 Addition rate from Q to abusers Variable
α1 -e permanent withdrawal rate from S to R Variable Estimate
α2 -e permanent withdrawal rate from Q to R 0.0001 Estimate
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-e following result on the local stability of E0 can be
obtained directly by -eorem 2 in [41], and we thus omit its
proof.

Theorem 1. )e drug-free equilibrium E0 is locally as-
ymptotically stable for R0 < 1 and unstable for R0 > 1.

Theorem 2. If R0 ≤ 1, the drug-free equilibrium E0 of system
(3) is globally asymptotically stable.

Proof. Inspired by [28], we introduce the following Lya-
punov function:

V � S − S0 − S0 ln
S

S0
+ U1 + U2 + Q. (14)

It follows that the derivative of V is

_V � _S + _U1 + _U2 + _Q −
S0

S
_S

� S0 μ + α1( 􏼁 − S μ + α1( 􏼁 − μ + δ2( 􏼁U2 − μ + α2( 􏼁Q −
S0

S
S0 μ + α1( 􏼁 − β1S0U1 + μ + α1( 􏼁S0

� − μ + α1( 􏼁S0
S0

S
+

S

S0
− 2􏼠 􏼡 − μ + δ2( 􏼁U2 − μ + α2( 􏼁Q − μ + δ1( 􏼁 1 −

β1Λ
μ + α1( 􏼁 μ + δ1( 􏼁

􏼢 􏼣U1

≤ − μ + α1( 􏼁S0
S0

S
+

S

S0
− 2􏼠 􏼡 − μ + δ2( 􏼁U2 − μ + α2( 􏼁Q − μ + δ1( 􏼁 1 − R0( 􏼁􏼣U1.

(15)

Here, we sued the equalities Λ � S0(μ + α1). Since
(S0/S) + (S/S0) − 2≥ 0, if R0 ≤ 1, we have _V≤ 0. Clearly,
_V≤ 0 if and only if S � S0 andU1 � U2 � Q � 0. Substituting

S � S0 andU1 � U2 � Q � 0 into system (3), we get
R⟶ (α1Λ/μ(μ + α1)) as t⟶∞. According to LaSalle’s
invariance principle [42], we obtain that the drug-free
equilibrium E0 of system (3) is globally asymptotically stable
in Ω if R0 ≤ 1. -is completes the proof. □

3.2.ExistenceandStability of theDrug-AddictionEquilibrium.
Let the right side of model (3) be equal to zero. -en we get

Λ − β1S∗U∗1 − μ + α1( 􏼁S∗ � 0,

β1S∗U∗1 + k2Q
∗ + β2U∗2 − μ + δ1 + k( 􏼁U∗1 � 0,

kU∗1 − μ + δ2 + k1 + β2( 􏼁U∗2 � 0,

k1U
∗
2 − μ + k2 + α2( 􏼁Q∗ � 0,

α1S∗ + α2Q∗ − μR∗ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

-en, the unique drug-addiction equilibrium
E∗ � (S∗, U∗1 , U∗2 , Q∗, R∗) exists if R0 > 1, where

S
∗

�
Λ

β1U∗1 + μ + α1
,

U
∗
1 �

μ + α1( 􏼁 R0 − 1( 􏼁

β1
,

U
∗
2 �

kU∗1
μ + δ2 + k1 + β2

,

Q
∗

�
k1kU∗1

μ + k2 + α2( 􏼁 μ + δ2 + k1 + β2( 􏼁
,

R
∗

�
α1Λ

μ β1U∗1 + μ + α1( 􏼁
+

α2k1kU∗1
μ μ + k2 + α2( 􏼁 μ + δ2 + k1 + β2( 􏼁

.

(17)

Theorem 3. If R0 > 1, then the unique drug-addiction
equilibrium E∗ of system (3) is global asymptotically stable.

Proof. If R0 > 1, then there exists a unique drug-addiction
equilibrium E∗. We now introduce a Lyapunov function V

as follows:
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V � S − S
∗

− S
∗ ln

S

S∗
􏼒 􏼓 + A U1 − U

∗
1 − U
∗
1 ln

U1

U∗1
􏼠 􏼡 + B U2 − U

∗
2 − U
∗
2 ln

U2

U∗2
􏼠 􏼡 + C Q − Q

∗
− Q
∗ ln

Q

Q∗
􏼠 􏼡, (18)

where A, B, and C are the positive constants to be deter-
mined later. It follows that the derivative of V is

_V � _S 1 −
S∗

S
􏼠 􏼡 + A _U1 1 −

U∗1
U1

􏼠 􏼡 + B _U2 1 −
U∗2
U2

􏼠 􏼡 + C _Q 1 −
Q∗

Q
􏼠 􏼡

� 1 −
S∗

S
􏼠 􏼡 Λ − β1SU1 − μ + α1( 􏼁S􏼂 􏼃 + A 1 −

U∗1
U1

􏼠 􏼡 β1SU1 + k2Q + β2U2 − μ + δ1 + k( 􏼁U1􏼂 􏼃

+ B 1 −
U∗2
U2

􏼠 􏼡 kU1 − μ + δ2 + k1 + β2( 􏼁U2􏼂 􏼃 + C 1 −
Q∗

Q
􏼠 􏼡 k1U2 − μ + k2 + α2( 􏼁Q􏼂 􏼃

� 1 −
S∗

S
􏼠 􏼡 β1S

∗
U
∗
1 + μ + α1( 􏼁S

∗
− β1SU1 − μ + α1( 􏼁S􏼂 􏼃

+ A 1 −
U∗1
U1

􏼠 􏼡 β1SU1 + k2Q + β2U2 −
β1S∗U∗1 + k2Q

∗ + β2U∗2
U∗1

U1􏼠 􏼡

+ B 1 −
U∗2
U2

􏼠 􏼡 kU1 −
kU∗1
U∗2

U2􏼠 􏼡 + C 1 −
Q∗

Q
􏼠 􏼡 k1U2 −

k1U
∗
2

Q∗
Q􏼠 􏼡.

(19)

Let (S/S∗) � x, (U1/U∗1 ) � y, (U2/U∗2 ) � z, and
(Q/Q∗) � u. -en, we have

_V � 1 −
1
x

􏼒 􏼓 β1S
∗
U
∗
1 + μ + α1( 􏼁S

∗
− β1S
∗
U
∗
1xy − μ + α1( 􏼁S

∗
x􏼂 􏼃

+ A 1 −
1
y

􏼠 􏼡 β1S
∗
U
∗
1xy + k2Q

∗
u + β2U

∗
2z − β1S

∗
U
∗
1y − k2Q

∗
y − β2U

∗
2y( 􏼁

+ B 1 −
1
z

􏼒 􏼓 kU
∗
1y − kzU

∗
1( 􏼁 + C 1 −

1
u

􏼒 􏼓 k1U
∗
2z − k1U

∗
2u( 􏼁

� − μ + α1( 􏼁S
∗(1 − x)2

x
+ β1S
∗
U
∗
1 1 − xy −

1
x

+ y􏼒 􏼓

+ Aβ1S
∗
U
∗
1(xy − y − x + 1) + Ak2Q

∗
u − y −

u

y
+ 1􏼠 􏼡

+ Aβ2U
∗
2 z − y −

z

y
+ 1􏼠 􏼡 + BkU

∗
1 y − z −

y

z
+ 1􏼒 􏼓 + Ck1U

∗
2 z − u −

z

u
+ 1􏼒 􏼓

� − μ + α1( 􏼁S
∗(1 − x)2

x
+ β1S

∗
U
∗
1 + Aβ1S

∗
U
∗
1 + Ak2Q

∗
+ Aβ2U

∗
2 + BkU

∗
1 + Ck1U

∗
2( 􏼁

+ xy − β1S
∗
U
∗
1 + Aβ1S

∗
U
∗
1( 􏼁 + y β1S

∗
U
∗
1 − Aβ1S

∗
U
∗
1 − Ak2Q

∗
− Aβ2U

∗
2 + BkU

∗
1( 􏼁

+ u Ak2Q
∗

− Ck1U
∗
2( 􏼁 + z Aβ2U

∗
2 − BkU

∗
1 + Ck1U

∗
2( 􏼁 − xAβ1S

∗
U
∗
1

−
u

y
Ak2Q

∗
−

z

y
Aβ2U

∗
2 −

y

z
BkU
∗
1 −

z

u
Ck1U

∗
2 −

1
x
β1S
∗
U
∗
1 .

(20)
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-evariables with nonnegative coefficients in (20) are xy, y,
u, and z. If all the coefficients are positive, then _V is positive. If all
the coefficients of xy, y, u, and z are equal to zero, then we get

Aβ1S
∗
U
∗
1 − β1S

∗
U
∗
1 � 0,

β1S
∗
U
∗
1 − Aβ1S

∗
U
∗
1 − Ak2Q

∗
− Aβ2U

∗
2 + BkU

∗
1 � 0,

Ak2Q
∗

− Ck1U
∗
2 � 0,

Aβ2U
∗
2 − BkU

∗
1 + Ck1U

∗
2 � 0.

(21)

By (21), we obtain

A � 1,

B �
β2U∗2 + k2Q

∗

kU∗1
,

C �
k2Q
∗

k1U
∗
2
.

(22)

Hence, we have

_V � − μ + α1( 􏼁S
∗(1 − x)2

x
+ β1S
∗
U
∗
1 2 − x −

1
x

􏼒 􏼓

+ k2Q
∗ 3 −

u

y
−

y

z
−

z

u
􏼠 􏼡 + β2U

∗
2 2 −

z

y
−

y

z
􏼠 􏼡.

(23)

It is clear that − (μ + α1)S∗((1 − x)2/x)≤ 0 if x> 0 and −

(μ + α1)S∗((1 − x)2/x) � 0 if only if x � 1. By the rela-
tionships between the arithmetic mean and the geometric
mean, we get 2 − x − (1/x)≤ 0 if x> 0 and 2 − x − (1/x) � 0
if and only if x � 1; 3 − (u/y) − (y/z) − (z/u)≤ 0 for
x> 0, y> 0, u> 0 and 3 − (u/y) − (y/z) − (z/u) � 0 if and
only if y � z � u; 2 − (z/y) − (y/z)≤ 0 for z> 0, y> 0 and
2 − (z/y) − (y/z) � 0 if and only if z � y. -erefore, _V≤ 0 if
x, y, z, u> 0 and _V � 0 if and only if x � 1 andy � z � u.
Substituting S � S∗ and (U1/U∗1 ) � (U2/U∗2 ) � (Q/Q∗) into
the first equation of system (3), we get
0 � Λ − β1S∗U1 − (μ + α1)S∗. It follows from the first
equation of (16) that U1 � U∗1 . -erefore, the maximum

invariant set of system (2) on set (x, y, z, u): _V � 0􏽮 􏽯 is the
singleton (1, 1, 1, 1). -is implies that the largest invariant
set where _V � 0 is the singleton (S∗, U∗1 , U∗2 , Q∗, R∗)􏼈 􏼉. -us,
by LaSalle’s invariance principle in [42], the drug-addiction
equilibrium E∗ of model (3) is globally asymptotically stable
when R0 > 1. -is completes the proof. □

4. Global Dynamics of the R-D Model (2)

4.1. Positivity and Boundedness of the Solutions

Theorem 4. Let (S(l, t), U1(l, t), U2(l, t), Q(l, t), R(l, t)) be
a solution of system (2) and S(l, t), U1(l, t), U2(l, t),

Q(l, t), R(l, t) ∈ C(Ω × [0, T))∩C2,1(Ω × [0, T)), where T is
the maximal existing time. If S(l, 0)> 0, U1(l, 0)

> 0, U2(l, 0)> 0, Q(l, 0)> 0, andR(l, 0)> 0, then S(l, t)> 0,

U1(l, t)> 0, U2(l, t)> 0, Q(l, t)> 0, andR(l, t)> 0, for all
(l, t) ∈ Ω × [0, T).

Proof. By the first equation of model (2), we get
zS

zt
≥d1ΔS − β1SU1 − μ + α1( 􏼁S, (24)

that is,
zS

zt
− d1ΔS + β1U1 + μ + α1( 􏼁S≥ 0. (25)

Since S(l, 0)> 0 ≡ 0, by Lemma 2.4.1 in [33], we get
S(l, t)> 0.

Let

gU1
� β1SU1 + k2Q + β2U2 − μ + δ1 + k( 􏼁U1,

gU2
� kU1 − μ + δ2 + k1 + β2( 􏼁U2,

gQ � k1U2 − μ + k2 + α2( 􏼁Q.

(26)

-en, the second to the fourth equations of system (2)
can be rewritten as

zU1

zt
− d2ΔU1 − gU1

l, t, U1, U2, Q( 􏼁 − gU1
l, t, 0, U2, Q( 􏼁 + gU1

l, t, 0, U2, Q( 􏼁 − gU1
(l, t, 0, 0, Q) + gU1

(l, t, 0, 0, Q) − gU1
(l, t, 0, 0, 0)􏽨 􏽩

�
zU1

zt
− d2ΔU1 − β1S − μ − δ1 − k( 􏼁U1 + β2U2 + k2Q􏼂 􏼃 � 0,

zU2

zt
− d3ΔU2 − gU2

l, t, U1, U2, Q( 􏼁 − gU2
l, t, 0, U2, Q( 􏼁 + gU2

l, t, 0, U2, Q( 􏼁 − gU2
(l, t, 0, 0, Q) + gU2

(l, t, 0, 0, Q) − gU2
(l, t, 0, 0, 0)􏽨 􏽩

�
zU2

zt
− d3ΔU2 − kU1 − μ + δ2 + k1 + β2( 􏼁U2(􏼂 􏼃 � 0,

zQ

zt
− d4ΔQ − gQ l, t, U1, U2, Q( 􏼁 − gQ l, t, 0, U2, Q( 􏼁 + gQ l, t, 0, U2, Q( 􏼁 − gQ(l, t, 0, 0, Q) + gQ(l, t, 0, 0, Q) − gQ(l, t, 0, 0, 0)􏽨 􏽩

�
zQ

zt
− d4ΔQ − k1U2 − μ + k2 + α2( 􏼁Q(􏼂 􏼃

� 0.

(27)
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Define operator Li (i � 1, 2, 3) on Ω × [0, T) as follows:

L1U1 �
zU1

zt
− d2ΔU1,

L2U2 �
zU2

zt
− d3ΔU2,

L3Q �
zQ

zt
− d4ΔQ.

(28)

We now consider the following parabolic system:
L1U1 + h11U1 + h12U2 + h13Q � 0,

L2U2 + h21U1 + h22U2 + h23Q � 0,

L3Q + h31U1 + h32U2 + h33Q � 0,

U1(l, 0)> 0,

U2(l, 0)> 0,

Q(l, 0)> 0,

zU1

zt
�

zU2

zt
�

zQ

zt
� 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

where

h11 � − β1S − μ − δ1 − k( 􏼁,

h12 � − β2,

h13 � − k2, h21 � − k,

h22 � − μ + δ2 + k1 + β2( 􏼁,

h23 � 0,

h31 � 0,

h32 � − k1,

h33 � μ + k2 + α2.

(30)

Applying -eorem 4.2.4 in [33] to model (29), we get
U1(l, t)≥ 0, U2(l, t)≥ 0, andQ(l, t)≥ 0. So, by the second
equation of model (2), we get

zU1

zt
≥ d2ΔU1 − μ + δ1 + k( 􏼁U1. (31)

-at is,
zU1

zt
− d2ΔU1 + μ + δ1 + k( 􏼁U1 ≥ 0. (32)

Since U1(l, 0)> 0 ≡ 0, according to Lemma 2.4.1 in [33],
U1(l, t)> 0. Analogously,

zU2

zt
≥d3ΔU2 − μ + δ2 + k1 + β2( 􏼁U2,

zQ

zt
≥d4ΔQ − μ + k2 + α2( 􏼁Q.

(33)

-at is,

zU2

zt
− d3ΔU2 + μ + δ2 + k1 + β2( 􏼁U2 ≥ 0,

zQ

zt
− d4ΔQ + μ + k2 + α2( 􏼁Q≥ 0.

(34)

Similarly, we obtain U2(l, t)> 0 andQ(l, t)> 0. If
R(l, t)> 0 does not hold, then there exist l1 ∈ Ω, t1 ∈ [0, T)

such that R(l1, t1) � 0, _R(l1, t1)≤ 0. By the fifth equation of
model (2), we get

_R l1, t1( 􏼁 � α1S l1, t1( 􏼁 + α2Q l1, t1( 􏼁. (35)

Since ∀l ∈ Ω, t ∈ [0, T), S(l, t)> 0, Q(l, t)> 0, _R(l1, t1) �

α1S(l1, t1) + α2Q(l1, t1)> 0. -is is a contradiction. -ere-
fore, R(l, t)> 0 for all l ∈ Ω, t ∈ [0, T). -is completes the
proof. □

Theorem 5. Let (S(l, t), U1(l, t), U2(l, t), Q(l, t), R(l, t)) be
a solution of model (2) and S(l, t), U1(l, t), U2(l, t),

Q(l, t), R(l, t) ∈ C(Ω × [0, T))∩C2,1(Ω × [0, T)), where T is
the maximum time of existence. If S(l, 0)>
0, U1(l, 0)> 0, U2(l, 0)> 0, Q(l, 0)> 0, andR(l, 0)> 0, then
the solution (S(l, t), U1(l, t), U2(l, t), Q(l, t), R(l, t)) is
bounded on Ω.

Proof. By model (2), we get

zS

zt
+

zU1

zt
+

zU2

zt
+

zQ

zt
− d1ΔS − d2ΔU1 − d3ΔU2 − d4ΔQ

� Λ − μ S + U1 + U2 + Q( 􏼁 − α1S + δ1U1 + δ2U2 + α2Q( 􏼁.

(36)

It then follows that

􏽚
Ω

zS

zt
+

zU1

zt
+

zU2

zt
+

zQ

zt
− d1ΔS − d2ΔU1 − d3ΔU2 − d4ΔQ􏼠 􏼡dl

� 􏽚
Ω
Λ − μ S + U1 + U2 + Q( 􏼁 − α1S + δ1U1 + δ2U2 + α2Q( 􏼁􏼂 􏼃dl.

(37)

By Green’s formulas and Newman boundary
(zS/zt) � (zU1/zt) � (zU2/zt) � (zQ/zt) � 0, l ∈zΩ , t> 0,
we have
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d1􏽚
Ω
ΔSdl � d1􏽚

zΩ

zS

zn
ds � 0,

d2􏽚
Ω
ΔU1dl � d2􏽚

zΩ

zU1

zn
ds � 0,

d3􏽚
Ω
ΔU2dl � d3􏽚

zΩ

zU2

zn
ds � 0,

d4􏽚
Ω
ΔQdl � d4􏽚

zΩ

zQ

zn
ds � 0.

(38)

Hence,

􏽚
Ω

zS

zt
+

zU1

zt
+

zU1

zt
+

zQ

zt
􏼠 􏼡dl � 􏽚

Ω
Λ − μ S + U1 + U2 + Q( 􏼁 − α1S + δ1U1 + δ2U2 + α2Q( 􏼁􏼂 􏼃dl

≤􏽚
Ω
Λ − μ S + U1 + U2 + Q( 􏼁􏼂 􏼃dl

� Λ|Ω| − μ􏽚
Ω

S + U1 + U2 + Q( 􏼁dl.

(39)

Let 􏽒Ω(S + U1 + U2 + Q)dl � F(t). -en, (39) becomes
dF(t)

dt
≤Λ|Ω| − μF(t). (40)

Which indicates that 0≤F(t)≤ (Λ/μ)|Ω| + F(0)e− μt,
here

F(0) � 􏽚
Ω

S(l, 0) + U1(l, 0) + U2(l, 0) + Q(l, 0)( 􏼁dl

≤􏽚
Ω

S(l, 0) + U1(l, 0) + U2(l, 0) + Q(l, 0)
����

����∞dl

� S(l, 0) + U1(l, 0) + U2(l, 0) + Q(l, 0)
����

����∞|Ω|.

(41)

-is shows that F(t) � 􏽒Ω(S + U1 + U2 + Q)dl is
bounded. Let Z � (Λ/μ)|Ω| + F(0), then

F(t) � 􏽚
Ω

S + U1 + U2 + Q( 􏼁dl≤Z. (42)

By -eorem 3.1 in [43], there is a positive constant Z∗

depending on Z so that

S(l, t) + U1(l, t) + U2(l, t) + Q(l, t)
����

����L∞(Ω)
≤Z
∗
. (43)

Hence, we obtain that S(l, t), U1(l, t), U2(l, t),

andQ(l, t) are uniformly bounded on Ω.
For the last equation of model (2), let S(l, t) andQ(l, t)

be bounded by S andQ. -en,
zR

zt
≤ α1S + α2Q − μR. (44)

Hence, R(t)≤ ((α1S + α2Q)/μ) + ‖R(l, 0)‖∞ on Ω. -is
completes the proof. □

Let L ≔ C(Ω;R) be a Banach space with a supremum
norm:

‖w‖∞ ≔ sup|w(l)|, ∀w ∈ C(Ω;R). (45)

Define B: L5⟶ L5, where L5 � L × L × L × L × L, and
let Bi(i � 1, 2, 3, 4) be a linear operator on L defined by

Biw(l) ≔ diΔw(l),

D Bi( 􏼁 ≔ w ∈ L: Δw ∈ L,
zw

zn
� 0 on zΩ􏼨 􏼩.

(46)

-en, by [23], we obtain that Bi are the infinitesimal
generators of a strongly continuous semigroup etBi􏼈 􏼉t≥ 0 in L.
For ∀φ ≔ (φ1,φ2,φ3,φ4,φ5) ∈ L5, there are

Bφ(l) ≔ B1φ1(l), B2φ2(l), B3φ3(l), B4φ4(l), 0( 􏼁
T
,

D(B) ≔ D B1( 􏼁 × D B2( 􏼁 × D B3( 􏼁 × D B4( 􏼁 × L.
(47)

-ey are also the infinitesimal generator of a strongly
continuous semigroup etB􏼈 􏼉t≥ 0 in Y ≔ L5, where

e
tB

� e
tB1 , e

tB2 , e
tB3 , e

tB4 , 1􏼐 􏼑
T

,

e
tBφ � e

tB1φ1, e
tB2φ2, e

tB3φ3, e
tB4φ4,φ5􏼐 􏼑

T
,

(48)

since Y is a Banach space with norm

φ1,φ2,φ3,φ4,φ5( 􏼁
T

�����

�����Y
≔ φ1

����
����L + φ2

����
����L + φ3

����
����L + φ4

����
����L + φ5

����
����L.

(49)

Let G be a nonlinear operator on Y defined by

G(φ) ≔ g1(φ), g2(φ), g3(φ), g4(φ), g5(φ)( 􏼁, (50)

where
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g1(φ) � Λ − β1φ1φ2 − μ + α1( 􏼁φ1,

g2(φ) � β1φ1φ2 + k2φ4 + β2φ3 − μ + δ1 + k( 􏼁φ2,

g3(φ) � kφ2 − μ + δ2 + k1 + β2( 􏼁φ3,

g4(φ) � k1φ3 − μ + k2 + α2( 􏼁φ4,

g5(φ) � α1φ1 + α2φ4 − μφ5.

(51)

-en, model (2) can be rewritten into a more abstract
form in Y as follows:

dφ(t)

dt
� Bφ(t) + G(φ(t)),

φ(t) ≔ S(·, t), U1(·, t), U2(·, t), Q(·, t), R(·, t)( 􏼁
T
,

φ(0) ≔ S0(·), U10(·), U20(·), Q0(·, t), R0(·, t)( 􏼁
T
.

(52)

By Proposition 4.16 in [44], it can be obtained that the
unique continuously differentiable solution
φ: (0, Tmax]⟶ Y of the above equations has a maximum
interval of existence (0, Tmax] so that

φ(t) � e
tBφ0 + 􏽚

t

0
e

(t− s)B
G(φ(s))ds, (53)

and either Tmax⟶∞ or limsupt⟶Tmax− 0‖φ(t)‖Y⟶ +∞.
By -eorem 5, we obtain Tmax � +∞ holds. -erefore, φ(t)

is a global solution.

4.2.Global Stability of theR-DModel. Since the R equation of
model (2) is uncoupled with the other equations, model (2)
can be reduced by ignoring R. It is clear that the R-D heroin
epidemic model (2) has a drug-free equilibrium
Er � ((Λ/μ + α1), 0, 0, 0) and a unique positive drug-addic-
tion equilibrium E∗r � (S∗, U∗1 , U∗2 , Q∗) if R0 > 1.

Theorem 6. If R0 ≤ 1, the drug-free equilibrium Er is globally
asymptotically stable.

Proof. We give a Lyapunov function as follows:

W1(t) � 􏽚
Ω

V(φ(l, t))dl, (54)

where V is given by (14) and φ(l, t) � (S(l, t),

U1(l, t), U2(l, t), Q(l, t)). Direct computations show that

dW1

dt
� 􏽚
Ω

gradφV ·
zφ
zt

dl

� 􏽚
Ω

1 −
S0

S
, 1, 1, 1􏼒 􏼓 · _S + d1ΔS, _U1 + d2ΔU1,

_U2 + d3ΔU2,
_Q + d4ΔQ􏼐 􏼑dl

� 􏽚
Ω

1 −
S0

S
􏼒 􏼓 _S + U1

.

+ U2
.

+ _Q􏼢 􏼣dl + 􏽚
Ω

1 −
S0

S
􏼒 􏼓d1ΔSdl

+ 􏽚
Ω

d2ΔU1dl + 􏽚
Ω

d3ΔU2dl + 􏽚
Ω

d4ΔQdl

� 􏽚
Ω

dV

dt
dl + 􏽚

Ω
1 −

S0

S
􏼒 􏼓d1ΔSdl.

(55)

It follows by Green’s identity that

􏽚
Ω

1 −
S0

S
􏼒 􏼓d1ΔSdl � 􏽚

zΩ
1 −

S0

S
􏼒 􏼓d1

zS

zn
ds − 􏽚

Ω
d1∇ 1 −

S0

S
􏼒 􏼓∇Sdl

� − 􏽚
Ω

d1S0
|∇S|2

S2
dl≤ 0.

(56)

Taking (56) into (55) and by-eorem 2, we obtain that if
R0 ≤ 1, (dV/dt)≤ 0, 􏽒Ω(dV/dt)dl≤ 0. Furthermore, if
R0 ≤ 1, (dW1/dt)< 0. By LaSalle’s invariance principle in

[42], the drug-free equilibrium Er is globally asymptotically
stable. -is completes the proof. □

Theorem 7. If R0 > 1, then the drug-addiction equilibrium
E∗r is globally asymptotically stable.

Proof. We give the following Lyapunov function:

W2(t) � 􏽚
Ω

V2(φ(l, t))dl, (57)

where φ(l, t) � (S(l, t), U1(l, t), U2(l, t), Q(l, t)) and

10 Complexity



V2 � S − S
∗

− S
∗ln

S

S∗
􏼒 􏼓 + U1 − U

∗
1 − U
∗
1 ln

U1

U∗1
􏼠 􏼡

+
β2U∗2 + k2Q

∗

kU∗1
U2 − U

∗
2 − U
∗
2 ln

U2

U∗2
􏼠 􏼡 +

k2Q
∗

k1U
∗
2

Q − Q
∗

− Q
∗ln

Q

Q∗
􏼠 􏼡.

(58)

Direct calculation yields

dW2

dt
� 􏽚
Ω

gradφV2 ·
zφ
zt

dl

� 􏽚
Ω

1 −
S∗

S
, 1 −

U∗1
U1

,
β2U∗2 + k2Q

∗

kU∗1
1 −

U∗2
U2

􏼠 􏼡,
k2Q
∗

k1U
∗
2

1 −
Q∗

Q
􏼠 􏼡􏼠 􏼡

· _S + d1ΔS, _U1 + d2ΔU1,
_U2 + d3ΔU2,
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(59)

By -eorem 3, we know that if R0 > 1, then
(dV1/dt)≤ 0, 􏽒Ω(dV2/dt)dl≤ 0. -erefore, if R0 > 1, then
(dW2/dt)< 0. By LaSalle’s invariance principle in [42], the
drug-addiction equilibrium E∗r is globally asymptotically
stable. -is completes the proof. □

5. Numerical Simulations

In this section, we shall carry some numerical simulations to
illustrate our analytic results by using the parameter values
in Table 1. We fix Λ � 1, μ � 0.02, β2 � 0.0011, k � 0.0095,

α2 � 0.0001, δ1 � 0.01, and δ2 � 0.005.
If we choose β1 � 0.0002, k2 � 0.00008, k1 �

0.008, and α1 � 0.02, then R0 ≈ 0.13< 1 and E0 � ((Λ/
μ + α1), 0, 0, 0, (α1Λ/μ(μ + α1))). Give different initial values
I1 � (5, 5, 5, 5, 5) and I2 � (5, 10, 3, 6, 1), respectively, and
we can see that the drug-free equilibrium E0 is globally
asymptotically stable (Figure 2). When α1 � μ, we get
(Λ/μ + α1) � (α1Λ/μ(μ + α1)), this is verified by the figure.
We can see all solutions of the system converge to the drug-
free equilibrium (25, 0, 0, 0, 25). If we keep β1, k2, and k1
unchanged and let α1 � 0.08> μ � 0.02, then R0 � 0.05< 1.

According to the above discussion, E0 is asymptotically
stable, and when α1 > μ, (Λ/μ + α1)< (α1Λ/μ(μ + α1)).
Figure 3 not only illustrates the stability of E0, but also shows
the number of people who are permanently immunized
against drugs, (R(t)) is greater than the number of sus-
ceptible people (S(t)) in the equilibrium E0 when α1 > μ. By
Figures 2 and 3, we can not only clearly see that U1(t)

declined sharply and got to zero finally, but also see that all
solutions of the system infinitely close to the drug-free
equilibrium E0. It verifies the existence of E0.

If we choose parameters β1 � 0.01, k2 �

0.008, k1 � 0.01, α1 � 0.02, and initial values
I3 � (25, 25, 25, 25, 25) and I4 � (25, 5, 16, 12, 3), then
R0 ≈ 6.5> 1. Hence, the endemic equilibrium E∗ is global
asymptotically stable (Figure 4). -is also verifies the exis-
tence of E∗.

6. Discussion

In this paper, we formulated a novel R-D heroin epidemic
model, which incorporates the relapse compartment and
permanent immunization compartment. With the help of
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the next-generation matrix method, we obtained the basic
reproduction number R0. We obtained the global dynamics
of the model by constructing some suitable Lyapunov
functions. It is shown when R0 ≤ 1, the drug-free equilibrium
is globally asymptotically stable; that is, the drug abuse will
be eradicated; when R0 > 1, the endemic equilibrium is

globally asymptotically stable, which means that drug abuse
will be permanent.

For the ODE system (3), k1, β2, k2, α1, and α2 represent
the detoxification success rate, detoxification failure rate,
relapse rate from Q to abusers, permanent withdrawal rates
from S to R, and permanent withdrawal rates from Q to R,
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Figure 2:-e stability of E0 with different initial values when α1 � μ. (a)-e stability of E0 with an initial value I1. (b)-e stability of E0 with
an initial value I2.
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Figure 3:-e stability of E0 with different initial values when α1 ≠ μ. (a)-e stability of E0 with an initial value I1. (b)-e stability of E0 with
an initial value I2.
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Figure 4:-e stability ofE∗ with different initial values. (a)-e stability of E∗ with an initial value I3. (b)-e stability of E∗with an initial value I4.
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respectively. Figure 5 shows the relationship between R0 and
k1, k2, β2, and α1, with other parameter values as given in
Table 1. As shown in Figures 5(a)–5(c), R0 grows with k2 and
β2 but decreases with k1, and it means that if we want to
control heroin addiction, we should reduce k2 and β2 and
increase k1, that is, increase the detoxification success rate
and pay attention to people with a history of drug abuse to
reduce their mental dependence on heroin. Moreover, as
shown in Figure 5(d), R0 decreases with α2, and it means that
if we want to control the heroin addiction, we should in-
crease publicity to let people understand the harmful effect
of heroin and take the initiative to stay away from drugs.

-e effect of α1 and α2 on U1 is shown in Figure 6. It
indicates that the values of α1 and α2 have a significant effect
on the number of drug-addiction equilibrium. Let us observe
Figure 6(a) first, the larger the α1 is, the fewer the people who
use drugs in equilibrium is, and this tells us that we should
not only pay attention to drug abuse but should pay more
attention to those who do not use drugs. -e government
should strengthen publicity to raise people’s awareness of
drug prevention. Comparing Figure 6(b) with Figure 6(a),
we can get that although the effect of α2 on U1 is less than the
effect of α1 on U1, it can still obtain that the larger the α2 is,
the fewer the people who use drugs in equilibrium is;
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Figure 5: -e relationship between R0 and some parameter values. (a) -e relationship between R0 and k1. (b) -e relationship between R0
and k2. (c) -e relationship between R0 and β2. (d) -e relationship between R0 and α1.
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therefore, we also should pay attention to the people who
have already quit drug abuse, so that they can stay away from
drugs instead of reusing drugs.

-e diffusion phenomena make it more difficult for
governments to control drugs. Fortunately, the R-D heroin
epidemic model (2) still exists as a drug-free equilibrium,
and it convinces us that the spread of drugs can be stopped.
Additionally, the global dynamic behaviors of the R-D
model (2) show that if R0 > 1 the endemic equilibrium E∗r is
global stability, and if R0 ≤ 1, the drug-free equilibrium Er is
global stability, which indicates that the R-D model (2) may
contain traveling waves connecting the steady states Er and
E∗r . We shall conduct further research on this issue in the
future.
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