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Low-dimensional chaotic mappings are simple functions that have low computation cost and are easy to realize, but applying
them in a cryptographic algorithm will lead to security vulnerabilities. To overcome this shortcoming, this paper proposes the
coupled chaotic system, which coupled the piecewise and Henonmapping. Simulation results indicate that the novel mapping has
better complexity and initial sensitivity and larger key space compared with the original mapping. *en, a new color image
encryption algorithm is proposed based on the new chaotic mapping.*e algorithm has two processes: diffusion and confusion. In
this scheme, the key is more than 2216, and SSIM and PSNR are 0.009675 and 8.6767, respectively. *e secret key is applied in the
shuffling and diffusion. Security analysis indicates that the proposed scheme can resist cryptanalytic attacks. It has superior
performance and has high security.

1. Introduction

Chaos has always been a very active research topic in the
field of nonlinear science. *ere are many common char-
acteristics of digital chaotic system and cryptography, such
as sensitivity and being aperiodic and pseudorandom. *ese
characteristics promote the application of digital chaotic
system in cryptographic algorithm design. Image encryption
is one of the main means of information protection. An
image will have some characteristics such as high correla-
tion, large data size, and high data dimension, which should
be considered additional, when it is encrypted. Because of
the low efficiency of real-time processing, traditional en-
cryption algorithms are not suitable for digital images such
as DES, 3DES, and AES [1]. *erefore, many image en-
cryption schemes based on different fields have been pro-
posed in recent years such as cellular automata [2, 3], wavelet
transform [4, 5], compressing sensing [6], selective en-
cryption [7], DNA coding [8, 9], and chaos [10–14].

Because of the large key space, strong dynamic char-
acteristics, complex attractor, and strong ergodicity of high-

dimensional chaotic system, it is more secure than low
dimension. *e high computational cost of high-dimen-
sional chaotic system makes it occupy more hardware and
software resources, which is difficult to implement. By
contrast, the low-dimensional chaotic system is a simple
function, which is easier to implement. Due to the com-
putation precision of software and hardware, the chaotic
complexity in real-numbered chaos is often affected by
dynamic degradation (collapsing effect) [14, 15]. With the
study going on, low-dimensional chaotic maps have been
performed perfectly on its characteristics [16, 17]. In par-
ticular, some algorithms based on low-dimensional chaotic
maps have been widely studied and cracked [18–20].
*erefore, when a low-dimensional chaotic mapping is
applied in cryptography, it is necessary to enhance all of its
chaotic characteristics.

Aiming at the degradation of digital chaotic property
caused by innate structural defects, many algorithms such as
[21, 22], pseudorandom perturbation [23], switching sys-
tems [24, 25], and combination systems based on modular
operation [26–29] have been proposed to overcome this.
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However, due to the uncertain parameters, it still includes
partial periodic regions which do not maintain long stable
synchronization. Each of the existing approaches has its own
limitations and drawbacks [30].

Many image encryption algorithms have been proposed
based on Shannon’s theory about shuffling and diffusion
[5, 12, 31, 32]. Shuffling can rearrange pixels by some rules
[33] and diffusion can substitute pixels by a series generated
by a chaotic map.*e inherent features of a chaotic map can
be suitable for the two security notions.

Generally, most of algorithms come with the common
limitations. Firstly, the key is independent of the original
image; that is, if the key is unchanged, the different original
images that need to be encrypted will use the same key
[34–36]. Secondly, the encryption scheme based on low-
dimensional chaotic maps is not suitable for practical use
because of its small key space, short period, and low
complexity [14–17]. At last, the ciphertext is only related to
the key and has no relationship with the plaintext and
middle ciphertext, which cannot resist the plaintext attack
and the ciphertext attack.

In this paper, we propose a novel color image encryption
algorithm based on an efficient chaotic system coupling two
low-dimensional chaotic maps. Firstly, the new chaotic
system utilizes combination method to formulate a 3D
chaotic map. It not only retains the complexity of its un-
derlying maps but also enlarges the dimensions from 2D to
3D. Also, it enlarges the key space.*us, the chaotic map can
depict highly chaotic behavior for all parameters. Secondly,
the initial key is derived from plaintext, and different images
have different initial key, which improves the security of the
algorithm. Finally, the formula of this algorithm is related
not only to the key and plaintext but also to the intermediate
ciphertext, which increases the complexity among plaintext,
ciphertext, and key.

*e other sections of this paper are organized as follows:
Section 2 represents the proposed chaotic system and in-
troduces the new 3D chaotic map and then proves its chaotic
properties. In Section 3, a detailed explanation of the pro-
posed encryption algorithm is provided. Some analysis of its
security and performance is carried out in Section 4 and the
conclusion is given in Section 5.

2. 3D Piecewise-Henon Map

With the continuous improvement of computing speed and
performance of modern computers, nonlinear systems have
developed greatly. However, because of the computational
accuracy of computer software and hardware limiting, the
complexity of chaotic mapping in real number field will
gradually decline. In addition, the orbit of the low-dimen-
sional chaotic map will degenerate (collapse effect) in some
periods. *erefore, low-dimensional chaotic systems are
rarely used alone [37, 38]. In particular, Henon and logistic
mappings are quite different in theory when they are used
alone [39, 40]. *erefore, we combine the characteristics of
Henon mapping and the piecewise mapping to construct a
new chaotic mapping with larger dimension and better

chaotic characteristics, 3D piecewise-Henon mapping (3D-
PHM).

3D-PHM is as follows:

T xn, yn, zn( 􏼁 �

xn+1 � ψc1 xn( 􏼁 + Λc2 yn, zn( 􏼁mod1,

yn+1 � ψc1 yn( 􏼁 + Λc2 zn, xn( 􏼁mod1,

zn+1 � ψc1 zn( 􏼁 + Λc2 xn, yn( 􏼁mod1,

⎧⎪⎪⎨

⎪⎪⎩

(1)

where c1 and c2 are real control parameters; ψc1(x) is a
piecewise function; that is,

ψc1(x) � 1 − c1x
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

Λc2(x, y) � y + 1 − c2x
2
,

(2)

is the Henon mapping.

*e initial values x0, y0, and z0 are selected in the in-
terval [0, 1]. From 3D-PHM, three state values are obtained
by each integer k, which are denoted as xk, yk, and zk. *e
range of the value is confined in [0, 1]3. Because of its good
simplicity, ergodicity, and sensitivity to initial conditions,
the system has good cryptographic performance.

2.1. Graphical Analysis. *e control parameters c1 and c2 in
3D-PHM are very important. We drew a contour map of the
approximate entropy of the system with different values,
which is shown in Figure 1; c1 and c2 are varied from 0 to 15,
and the step � 0.01. In Figure 1(a), the complexity of the
system is good in most of the regions, and, with the increase
of parameters c1 and c2, the approximate entropy is high,
except for some regions (Figure 1(b) is the enlargement of
part (a); the low value position can be seen).*erefore, when
studying the characteristics of 3D-PHM, we will set the
control parameters of the system (formula (1)) as c1 � c2 � c.

Lyapunov exponent is an important parameter of chaotic
systems. When one of Lyapunov exponents is positive, the
system will be a chaotic system. Provided that there are two
or more positive Lyapunov exponents, the system is a
hyperchaotic system. Eigenvalue method is used to calculate
Lyapunov exponent of 3D-PHM, which is (0.3055, 0.3158,
0.1529), when (x0, y0, z0) � (0.1, 0.2, 0.3), and
c1 � c2 � c � 15. *e Jacobian of equation (1) is as follows:
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. (3)
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*e initial point is (x0, y0, z0), and the other iteration
points obtained from the iterative equation are
(x0, y0, z0), (x1, y1, z1), . . . , (xn, yn, zn), respectively. *e
first (n−1) Jacobian matrices are J0 � J(x0, y0, z0),

J1 � J(x1, y1, z1), and Jn−1 � J(xn−1, yn−1, zn−1), respec-
tively. When the increment is small enough, its evolution
satisfies the linear differential equation:
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where J� Jn−1Jn−2 . . . J. Let the three eigenvalues of matrix J
be λ1, λ2, λ3, respectively.

LE1 �
1
n
ln λ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

LE2 �
1
n
ln λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

LE3 �
1
n
ln λ3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Figure 2 shows the chaotic attractor of A, which has no
obvious uneven distribution in the region. It has a very good
ergodicity when c � 15.

2.2. Comparative Analysis of Permutation Entropy of Henon,
3D-Henon, and 3D-PHMMaps. *e complexity of a chaotic
system indicates the uncertainty of a mapping, which can be
measured by entropy. For a symbol sequence, the higher its
entropy is, the higher its complexity is; otherwise, the lower
its complexity is.

Permutation entropy (PE) is the algorithm of complexity
for measuring time series, which was proposed by Christoph
Bandt and Pompe in 2002. *e permutation entropy is
defined as follows [34]:

H(e) � − 􏽘
k

i�1
Pk lnPk, (6)

where e is the embedded dimension of the reconstructed
sequence and Pk is the probability of the occurrence of each
symbol. In theory, when Pk � 1/e!, H(e) reaches the max-
imum ln(e!), but, in practice, H(e)≤ ln(N − e + 1). In
general, H(e) will be standardized by ln(N − e + 1); that is,

0≤ h(e) �
H(e)

ln(N − e + 1)
≤ 1. (7)

Obviously, the complexity of the series can be reflected
by h(e). *e smaller h(e) is, the stronger regularity of the
chaotic series is. On the contrary, the larger h(e) is, the
higher complexity of the chaotic sequence is and the greater
the complexity of the chaotic sequence is. *e comparisons
of PE among Henon mapping, 3D-Henon, and 3D-PHM are
shown in Figure 3. As is shown, PE of 3D-PHM is higher
than those of 3D-Henon mapping and Henon mapping.
Henon mapping is the least complex. PE of 3D-PHM is
significantly higher than that of Henon mapping. *at
means the complexity of Henon mapping is increased
significantly.

2.3. Sensitive to Initial Conditions. *e initial condition
sensitiveness is another important characteristic of chaotic
systems. Figure 4 illustrates the sensitivity of 3D-PHM to
small changes in initial conditions. For two very close initial
values (x0, y0, z0) and (􏽥x0, 􏽥y0, 􏽥z0) � (x0 + δ, y0 + δ, z0 + δ),
where δ ≈ 10− 16, 3D-PHM can produce two completely
different sequences and the gaps between their trajectories
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Figure 1: *e approximate entropy of the control parameters of c1 and c2. (a)(c1, c2) ∈ [0, 15] × [0, 15]; (b) an enlargement of (a).

Complexity 3



(xn, yn, zn)􏼈 􏼉n�0,1,··· . . . and (􏽥xn, 􏽥yn, 􏽥zn)􏼈 􏼉n�0,1,2... increase
considerably.

2.4. 2e NIST Statistical Test. For all 15 tests in the NIST
suite, the significance level was set to 1%. If P − value> 0.01,
the binary sequence is accepted to be random with a con-
fidence of 99%; otherwise, it is considered as nonrandom. To
perform this battery of tests, we have generated up to 106
points (xi, yi, zi); i> nt􏼈 􏼉 by 3D-PHM. We convert these
sequences into binary form and NIST tests were performed
on them.*e test results are shown in Table 1 and all the tests
were successful. It is shown that 3D-PHM has a strong

randomness and can resist many statistical attacks. Hence,
the tested binary sequences generated by 3D-PLM are
random with respect to all the 15 tests of NIST suite.

2.5. Approximate Probability Density. Probability distribu-
tion function is a tool to measure whether a dynamic system
is a uniform distribution [41]. In order to measure the
probability density of the system, we divide the three-di-
mensional attractor A into a group of small cubes in
B � [0, 1]3, and the number of cubes is n3, which is defined
by

ri �
i

n
, gj �

j

n
, bk �

k

n
, i, j, k � 0, 1, . . . , n − 1,

Bi,j,k � ri, ri+1􏼂 􏼃 × gj, gj+1􏽨 􏽩 × bk, bk+1􏼂 􏼃, i, j, k � 0, 1, . . . , n − 2,

Bn−1,j,k � rn−1, 1􏼂 􏼃 × gj, gj+1􏽨 􏽩 × bk, bk+1􏼂 􏼃, i, j, k � 0, 1, . . . , n − 2,

Bi,n−1,k � ri, ri+1􏼂 􏼃 × gn−1, 1􏼂 􏼃 × bk, bk+1􏼂 􏼃, , i, j, k � 0, 1, . . . , n − 2, and

Bi,j,n−1 � ri, ri+1􏼂 􏼃 × gj, gj+1􏽨 􏽩 × bn−1, 1􏼂 􏼃, , i, j, k � 0, 1, . . . , n − 2.

(8)
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Let nt be the number of iterations in transition regime,
large enough, and after nt + 􏽢n iterations of 3D-PHM, the
proportion of the box Bi,j,k􏽮 􏽯0≤ i,j,k≤ n−1 reached by the orbit
C􏽢n(x0, y0, z0) � Tnt+i(x0, y0, z0); i � 1, . . . , 􏽢n􏼈 􏼉 is calculated
by

%P􏽢n �
1
n
3 􏽘

0≤ i,j,k≤ n−1
χBi,j,k

C􏽢n x0, y0, z0( 􏼁􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × 100%, (9)

where χE is a special function about the set E′ which is
defined as follows:

χE E′( 􏼁 �
1, if E∩E′ ≠∅,

0, if E∩E′ � ∅.

⎧⎨

⎩ (10)

In addition, in order to get the number of times the
trajectory C􏽢n(x0, y0, z0) passes through a particular cube
Bi,j,k, we need to calculate the relative times of trajectory
C􏽢n(x0, y0, z0) accessing this box relative to 􏽢n. Given that 􏽢n is
large enough, the approximate probability density function
P􏽢n(x, y, z) � P􏽢n(Bi,j,k) under all conditions 0≤ i, j, k≤ n − 1
and all (x, y, z) ∈ Bi,j,k and then

P􏽢n Bi,j,k􏼐 􏼑 �
1
􏽢n

􏽘

s�􏽢n

s�1
χBi,j,k

T
nt+s

x0, y0, z0( 􏼁( 􏼁. (11)

In order to define the 3D-PHM system to random, it will
be further required that the variables defined above and the
invariant measure mathematicians called must be inde-
pendent of the starting point (x0, y0, z0). Moreover, when
the track C􏽢n(x0, y0, z0) is evenly distributed throughout the
space, in that way, for all 0≤ i, j, k≤ n − 1, the following
formula holds right:

μ Bi,j,k􏼐 􏼑 � lim
􏽢n⟶∞

P􏽢n Bi,j,k􏼐 􏼑 �
1
n
3, (12)

where μ(Bi,j,k) represents the natural Lebesgue metric of
Bi,j,k [42].

For computing the approximate density function of 3D-
PHM, cube B is divided into n3 � 1003 boxes. When nt � 104

and nt + 􏽢n iterates with mapping (1), 􏽢n � s × n3, where
s � 1, . . . , 30. *e control parameter and the initial values
are fixed at c � 15 and (x0, y0, z0) � (0.1, 0.2, 0.3). In
Figure 5(a), the trajectory C􏽢n(x0, y0, z0) will visit more than
99% cubes Bi,j,k, when 􏽢n exceeds 5 × n3. *e calculation
using mean square error (MSE) is carried out to measure the
difference between the values of P􏽢n(Bi,j,k) and μ(Bi,j,k). *is
metric is as follows:

MSE P􏽢n −
1
n
3􏼠 􏼡 �

1
n
3 P􏽢n −

1
n3

�������

�������

2
, (13)

where ‖ · ‖ denotes the Euclidian norm. Obviously, in
Figure 5(b), MSE values decrease to zero with the number of
iterations 􏽢n increasing, which means the point of the tra-
jectory C􏽢n(x0, y0, z0) is distributed uniformly in the phase
space.

*e histogram of the approximate density function P􏽢n is
displayed in Figure 6(b). It shows a standard normalized
distribution perfectly. *e series, which is generated by 3D-
PHM, is distributed uniformly in the phase space without
any concentration in Figure 6(a). It implies strong chaoticity
and ergodicity.

3. The Color Image Encryption Algorithm

To thwart a powerful attack based on statistical analysis,
Shannon suggests using confusion and diffusion for en-
cryption [43]. Generally, the security of image encryption
technology is defined by shuffling and diffusion. Shuffling is
a method to change the positions of pixels in an image.
Shuffling can make it difficult to predict the initial positions
of an encrypted pixel.

*e diffusion operation can be implemented by a chaotic
map; it can change the behavior of the whole chaotic system
through a small change of the chaotic map. *e two
implementations can be applied to all kinds of pictures.

Our proposed scheme also has two major steps.
First, the plain image is destroyed by shuffling with 3D-

PHM.*e second step is to diffuse the shuffled image, which

Table 1: *e NIST test results of each component generated by 3D-PHM.

No. Test name
P value

Result
x y z

1 Frequency 0.554320 0.326810 0.458760 Success
2 Block frequency 0.834570 0.577802 0.435602 Success
3 Runs 0.547600 0.197506 0.231586 Success
4 Longest run 0.801265 0.792351 0.786422 Success
5 Rank 0.972745 0.267811 0.336589 Success
6 FFT 0.035687 0.948721 0.456874 Success
7 Nonoverlapping template 0.235874 0.478512 0.587456 Success
8 Overlapping template 0.497832 0.089451 0.785421 Success
9 Universal 0.935647 0.058974 0.057894 Success
10 Linear complexity 0.798145 0.278945 0.924578 Success
11 Serial 0.754612 0.845971 0.348755 Success
12 Approximate entropy 0.616784 0.089451 0.365874 Success
13 Cumulative sums 0.168745 0.944513 0.638745 Success
14 Random excursions 0.654123 0.087945 0.654716 Success
15 Random excursions variant 0.565209 0.058799 0.565209 Success
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is to reach a high complexity. *e block diagram of the
proposed scheme is shown in Figure 7. *e details of the
proposed encrypting algorithm are outlined as follows:

(1) Primary Stages. Convert the image with the size of
m × n × 3 into three monochromatic images, where
the size is m × n , namely, PR, PG, and PB, and then
each matrix is converted into a vector (1 × mn),
represented by IR, IG, and IB.

(2) Generate the Initial Conditions. Let the control pa-
rameter at c � 15 and n0 be large enough and choose
an initial pixel (􏽢x0, 􏽢y0, 􏽢z0) ∈ A and calculate the sum
of all pixels in every component of the plain image.
*e formula is as follows:

􏽘
R

� 􏽘
mn

i�1
IR(i), 􏽘

G

� 􏽘
mn

i�1
IG(i),

􏽘
B

� 􏽘
mn

i�1
IB(i).

(14)

K represents the initial values of the scheme and the
formula is as follows:

K ≡ x0, y0, z0( 􏼁 � 􏽢x0, 􏽢y0, 􏽢z0( 􏼁 + 10− 8+d
× 􏽘

R

, 10− 8+d
× 􏽘

G

, 10− 8+d
× 􏽘

B

⎛⎝ ⎞⎠. (15)
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Figure 5: *e results of P􏽢n and MSE, where n � 100, 􏽢n � s × n3, and s � 1, 2, . . . , 30. (a) *e proportion of P􏽢n; (b) the mean square error
MSE(P􏽢n − 1/n3).
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Figure 6: (a) *e approximate density function P􏽢n of 3D-PHM. (b) *e histogram of the density, wheren � 100 and 􏽢n � 30 × n3.
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(3) Generate the Key to Shuffling. Formula (1) of 3D-
PHM and the initial condition K are used to generate
three real-valued sequences with the length of
1 × m n, namely, MR

′, MG
′, and MB

′, where
MR
′(i) ∈ [amin � 0, amax � 1],

MG
′(i) ∈ [amin � 0, amax � 1], and

MB
′(i) ∈ [amin � 0, amax � 1], i � 1, . . . , mn. *e in-

terval [amin, amax] is divided into d + 1 subintervals
on average, and the length of each interval is
h � |amax − amin|/d + 1. What function ϕd does is to
map the value of interval [amin, amax] to the set of
integers 0, 1, . . . , d{ }.

ϕd: amin, amax􏼂 􏼃⟶ 0, 1, . . . , d{ },

ϕd(x) �

⌊
x − amin

h
⌋ if amin ≤x< amax,

d, if x � amax,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

where d � mn − 1, and get the integer key sequence
KR(i), KG(i), and KB(i); obviously
KR(i), KG(i), KB(i)􏼈 􏼉 ∈ [0, mn − 1].

(4) Shuffle Images. Use Algorithm 1 to generate the
shuffled vectors SR, SG, and SB corresponding to the
threemonochromatic components of the initial plain
images IR, IG, and IB.
For example, provide that KR(1) � 345, I(1) � 255,
and then SR(345 + 1) � I(1) � 255. So generate
three shuffled images SR, SG and SB.

(5) Generate the Chaotic Mask Sequence. Use formula
(17) to obtain the integer chaotic masks,MR,MG and
MB, respectively, where d � 255. *e formula is as
follows:

MR(i) � ϕd MR
′(i)( 􏼁

MG(i) � ϕd MG
′(i)( 􏼁

MB(i) � ϕd MB
′(i)( 􏼁

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, i � 1, 2, . . . , mn. (17)

(6) Diffusion of the Cipher Image. Formulas (18)–(20) are
used to obtain three encrypted image integer ma-
trices CR, CG, and CB. For example, for the red
component, the pixel sequence of the scrambled
image is SR(i)| tin � q1, 2h,... x, 7mCn􏼈 􏼉, the chaotic
mask series is MR(i)|it � n1, 2q, h . . ., xm7n􏽮 􏽯, and
the ciphertext is CR(i)| tin � q1, 2h,... x, 7mCn􏼈 􏼉.
Here, the round n encryption scheme is introduced
as follows:

C
(1)
R (0) � mod DR(0) + MR(1), 256( 􏼁,

C
(1)
R (i) � mod SR(i) + MR(i + 1), 256( 􏼁⊕C

(1)
R (i − 1),

C
(2)
R (i) � mod C

(1)
R (i) + MR(i + 1), 256􏼐 􏼑⊕C

(2)
R (i − 1),

⋮

C
(n)
R (i) � mod C

(n−1)
R (i) + MR(i + 1), 256􏼐 􏼑⊕C

(n)
R (i − 1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i � 1, 2, . . . , mn, (18)

C
(1)
G (0) � mod DG(0) + MG(1), 256( 􏼁,

C
(1)
G (i) � mod SG(i) + MG(i + 1), 256( 􏼁⊕CG(i − 1),

C
(2)
G (i) � mod C

(1)
G (i) + MG(i + 1), 256􏼐 􏼑⊕C

(2)
G (i − 1),

⋮
C

(n)
G (i) � mod C

(n−1)
G (i) + MG(i + 1), 256􏼐 􏼑⊕C

(n)
G (i − 1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i � 1, 2, . . . , mn, (19)

Plain imageGenerating 
secret key

Shuffled

Diffusion (1)

Diffusion (i)

Cipher image

K

ϕmn

ϕ255

Figure 7: *e block diagram of encryption algorithm.
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C
(1)
B (0) � mod DB(0) + MB(1), 256( 􏼁,

C
(1)
B (i) � mod SB(i) + MB(i + 1), 256( 􏼁⊕C

(1)
B (i − 1),

C
(2)
B (i) � mod C

(1)
B (i) + MB(i + 1), 256􏼐 􏼑⊕C

(2)
B (i − 1),

⋮
C

(n)
B (i) � mod C

(n−1)
B (i) + MB(i + 1), 256􏼐 􏼑⊕C

(n)
B (i − 1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i � 1, 2, . . . , mn, (20)

where DR(0), DG(0), DB(0)􏼈 􏼉 ∈ [0, 255] are the parameters
introduced when encrypting the first scrambling pixel,
which can be used as the initial key in the encryption and
C

(1)
R , C

(1)
G , C

(1)
B ; C

(2)
R , C

(2)
G , C

(2)
B ; · · · C

(n)
R , C

(n)
G , C

(n)
B􏽮 􏽯 are re-

sults of the nth round encryption. Generally, n≥ 2. *e
relationship among the ciphertext, plaintext (or interme-
diate ciphertext), and the key not only is XOR but also
includes nonlinear module. *us, the proposed algorithm
can resist plaintext attack. *en convert each component
into matrices C

(n)
R , C

(n)
G , and C

(n)
B , whose size is m × n. Fi-

nally, the color cipher CRGB is combined.

Decryption is the inverse of encryption, but decryption
starts with the last pixel and goes back to the first. *e
process of decryption is given as follows:

(1) Splitting the ciphered image CRGB into three sepa-
rated components and then converting them into
encrypted pixel sequences CR, CG, and CB (1 × mn).

(2) Formula (17) is used to obtain the secret key se-
quences MR, MG, and MB, and formulas (21)–(23)
are used to obtain the shuffled sequences SR(i), SG(i),
and SB(i) when the round number n � 2.

C
(1)
R (i) � mod C

(2)
R (i)⊕C(2)

R (i − 1) − MR(i + 1)􏼐 􏼑, 256􏼐 􏼑,

SR(i) � mod C
(1)
R (i)⊕C(1)

R (i − 1) − MR(i + 1)􏼐 􏼑, 256􏼐 􏼑,

⎧⎪⎨

⎪⎩
i � mn, mn − 1, . . . , 1, (21)

C
(1)
G (i) � mod C

(2)
G (i)⊕C(2)

G (i − 1) − MG(i + 1)􏼐 􏼑, 256􏼐 􏼑,

SG(i) � mod C
(1)
G (i)⊕C(1)

G (i − 1) − MG(i + 1)􏼐 􏼑, 256􏼐 􏼑,

⎧⎪⎨

⎪⎩
i � mn, mn − 1, . . . , 1, (22)

C
(1)
B (i) � mod C

(2)
B (i)⊕C(2)

B (i − 1) − MB(i + 1)􏼐 􏼑, 256􏼐 􏼑,

SB(i) � mod C
(1)
B (i)⊕C(1)

B (i − 1) − MB(i + 1)􏼐 􏼑 , 256􏼐 􏼑,

⎧⎪⎨

⎪⎩
i � mn, mn − 1, . . . , 1. (23)

Input: the integers m and n, and the vectors IR, IG and IB

Output: the shuffled images vectorsSR, SG and SB

while kR≤mn
SR← − 1, SR← − 1, SR← − 1

end
kR←1, i←1
while kR ≤mn

if ()SR(KR(kR) + 1) � −1
SR(KR(kR) + 1)←IR(kR);

else
SR(KR(kR) + 1 + i)←IR(kR);

end
kR←kR + 1; i←i + 1;

end

ALGORITHM 1: Shuffle images (the red component is selected as research sample).
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(3) Use the vectors SR, SG, and SB as input with Algo-
rithm 2 to generate the deshuffled vectors IR, IG, and
IB.

(4) Obtain pixel sequencesIR, IG, and IB, and combine
them into the plain image P.

4. Simulation and Experimental Analysis

For all the analysis, the control parameters c1 � c2 � c � 15,
the round number n � 2, the initial val-
ue(x0, y0, z0) � (0.1, 0.2, 0.3), and
CR(0), CG(0), CB(0)􏼈 􏼉 � 234, 15, 167{ }. *e proposed color
image cryptosystem is executed on the standard test image
named “Lena” with the size 512 × 512 × 3. *e ciphertext of
the three color components of the color image is shown in
Figure 8.

In order to demonstrate that the proposed image en-
cryption algorithm is secure against most common attacks,
key space and key sensitivity tests are analyzed, and security
analyses such as chosen plaintext attack, histogram analysis,
correlation of the image, difference measurement, and in-
formation entropy are also carried out.

4.1.Key SpaceAnalysis. In order to resist brute-force attacks,
it is necessary to extend a key space as large as feasible.
Generally, the security will be accepted when the key space is
greater than 2128. *e proposed algorithm takes the initial
three states of formula (1) as the initial secret keys, expressed
by double-precision real type. So the key space is
264 × 264 × 264 � 2192. In addition, DR(0), DG(0), DB(0)􏼈 􏼉

can also be the initial key. So the key space of the proposed
algorithm is 2216. *erefore, it is sufficiently large to prevent
a brute-force attack [35, 44, 45].*e comparison of key space
sizes between the proposed scheme and similar works is
displayed in Table 2.

4.2. Key Sensitivity Analysis. A secure image encryption
scheme requires a high secret key sensitivity. It means that
even a very small change between the initial keys can cause
two completely different decrypted images. *e plaintext
and the ciphertext are shown in Figures 9(a) and 9(b). In
Figure 9(c), the right decryption is shown and the wrong
result is shown in Figure 9(d), where the initial value is 􏽥K �

x0 + δ, y0, z0􏼈 􏼉 and δ � 10− 16. It is easy to distinguish that
the last image is completely different from the original
image. *e proposed scheme is sensitive to the key.

4.3. Image Histogram Analysis. For the three color com-
ponents of RGB images, the graph with the number of pixels
at each gray level is histogram. Histogram analyses for the
original image and the encrypted image by the proposed
scheme are carried out in this paper. Histograms for three
components of the original and encrypted images are shown
in Figure 10. From Figures 10(b), 10(d), and 10(f), the
histograms are quite uniform and they are different from the
plaintext. It means the that result of the algorithm can resist
the known plaintext attack [47].

It is necessary to verify the security of the encrypted
image with histogram analysis, but it is not enough. In order
to further verify the uniform distribution of the ciphertext,
the Chi-square test is applied. It is as follows:

χ2 � 􏽘
255

i�0

oi − ei( 􏼁
2

ei

, (24)

where oi are the occurrence times for every gray level (0 to
255) of the cipher and ei is the mean occurrence frequency of
the uniform distribution, which is 1024 in the image with the
size of 512 × 512. For a secure cryptosystem, the values of χ2
in encrypted images must be less than the values of χ2 in
plain images. In Table 3, values of χ2 in the plain image are
much larger than values of χ2 in the encryption image, which
means the security of the proposed algorithm has good
encryption effect.

4.4. Correlations of Adjacent Pixels. Besides histograms
analysis, the correlation between adjacent pixels in the plain
and encrypted image is conducted. *e correlation coeffi-
cients ρ of several adjacent pixel pairs (including horizontal,
vertical, and diagonal pixel pairs) which are selected from
the image are computed. *e formula is as follows:

ρ �
􏽐

M0
i�1 xi −x) yi( − y( 􏼁

���������������������������

􏽐
M0
i�1 xi − x( 􏼁

2
􏼑 􏽐

M0
i�1 yi − y( 􏼁

2
􏼐􏼐 􏼑

􏽱 , (25)

where xi and yi represent the gray values of two adjacent
pixels in the plain and encrypted image and M0 is the
number of adjacent pixels pairs selected randomly from the
plain or encrypted image. ρ, x, and y represent the two
means of two adjacent pixels. When ρ⟶ 1, it will indicate
that the adjacent pixels are highly correlated, and when
ρ⟶ 0, it will mean that the adjacent pixels are low
correlated.

For the correlation analysis experiment, we randomly
selected 10000 pairs of adjacent pixels from the plain and
encrypted images in horizontal, vertical, and diagonal di-
rections. *e experimental results are shown in Figure 11,
where (i, j) represents the coordinate of pixels in an image.
From Figure 11, the correlation of the plain image is sig-
nificantly higher than that of the encrypted image.

In addition, the correlation coefficients ρ of the original
image are computed, which are listed in Table 4. ρ of the
original image are close to 1. Otherwise, the encrypted ρ are
close to 0. It means that the proposed algorithm removed the
correlation between adjacent pixels of the original image.
*en, comparisons are conducted among different algo-
rithms in Table 4. *e correlation coefficient of the plain
image is extremely different from the encrypted image and
the former is close to zero. *e encrypted ρ of ours is more
close to zero than others.

4.5. 2e Difference Measurements. *e degradation rate of
the image after encryption can also prove the encrypted
effect of an encryption system. To measure the difference
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between the original and the encrypted images, we have the
two following effective statistical tools.

4.5.1. 2e Structural Similarity Index. *e structural simi-
larity (SSIM) index can indicate the similarity between the
two images. *e SSIM belongs to [−1, 1]. When the SSIM is
1, it indicates that the two images are completely similar. It is

defined by the attribute of the object structure in the re-
flection scene independent of brightness and contrast, which
is from the angle of image composition.*e value of SSIM is
composed of brightness, contrast, and structure of images.
Mean values are used by estimating the brightness, and the
standard deviation is used by estimating the contrast, and
the covariance is used by measuring the similarity of the
structure. *e formula used to calculate SSIM of two images
is as follows:

SSIM(X, Y) �
2uXuY + C1( 􏼁 2σXY + C1( 􏼁

u
2
X + u

2
Y + C1􏼐 􏼑 σ2X + σ2Y + C2􏼐 􏼑

, (26)

where uX and uY represent the means of gray pixels in two
images; σX and σY are the standard deviations of the two
images; σ2X and σ2Y are the variances of the two images; σXY

Input: MR and MG and MB, SR, SG, and SB

Output: IR, IG and IB

Initialize: kr←0, i←1
while kr ≤mn

if (SR(KR(kR) + 1)≥ 0)

IR(kR)←SR(KR(kR) + 1);
SR(KR(kR) + 1)← − 1;

else
i←KR(kR) + 1;
IR(kR)←SR(i);
SR(i)← − 1;

end
kR←kR + 1;

end

ALGORITHM 2: Deshuffling the images.

(a) (b) (c)

(d) (e) (f )

Figure 8: Every component of plaintext and its ciphertext. (a) Component R of plaintext; (b) component G of plaintext; (c) component B of
plaintext; (d) component R of ciphertext; (e) component G of ciphertext; (f ) component B of ciphertext.

Table 2: Comparison of key spaces among different schemes.

*e number of keys Key space size
Our cryptosystem 6 2216

Reference [44] 7 2130

Reference [35] 3 2140

Reference [45] 8 2160

Reference [46] 8 2280

Complexity 11



(a) (b) (c) (d)

Figure 9: Decrypting Lena image by two secret keys K � x0, y0, z0􏼈 􏼉 and 􏽥K � x0 + δ, y0, z0􏼈 􏼉, where δ � 10− 16. (a) *e original image; (b)
encrypted image with K; (c) decrypted image with t K; (d) decrypted image with the wrong key 􏽥K.
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Figure 10: Continued.
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represents the covariance of the two images; C1 and C2 are
two constants, where C1 � K1 × L and C2 � K2 × L. Gen-
erally, K1 � 0.01, K2 � 0.03, and L � 255. *e SSIM of
different encryption schemes are listed in Table 5. *e SSIM
between the original image and other encrypted schemes of
“Lena” approach zero. Compared with others, the proposed
algorithm has higher superiority.

4.5.2. Peak Signal-to-Noise Ratio Analysis. Peak signal-to-
noise ratio (PSNR) is the most common and widely used
objective evaluation index of images. For a perfect image
encryption scheme, the smaller values of the PSNR are
(generally, less than 10), the better schemes are. *e cal-
culation is as follows:

MSE �
1

mn
􏽘
i,j

(C(i, j) − I(i, j))
2
,

PSNR � 10log10
L
2

MSE
􏼠 􏼡,

(27)

where MSE is the mean square error of an image; C(i, j) is a
pixel of the encrypted image and I(i, j) is a pixel of the
original image, the coordinate of which is (i, j); L is the
range of pixel in the image. We calculated PSNR of each
color component of the encrypted image (Lena) and found
that it was less than 10. Values of PSNR of this encryption
scheme are compared with the results of other schemes; see
Table 6. From the comparison in Table 6, we can see that the

results of PSNR of this scheme are better than those of other
existing algorithms.

4.6. Analysis of Antidifferential Attack. In the encryption
algorithm, diffusion is an important property, which was
proposed by Shannon in [43]. A good encryption system
must have good diffusivity. It means that one pixel in the
original image is changed, and the encrypted image will be
changed completely in an unpredictable way.

*e important significance of the diffusion depends on
how complex the algorithm is, which can resist the analysis
of the algorithm by the attacker. *e number of pixel change
rate (NPCR) is usually used to test the effect of changing a
pixel in the encrypted scheme, which calculates the per-
centage of two different image pixels.

*e average intensity of the two images is tested by
UACI. Here, C1 and C2 are two cipher images whose cor-
responding plain images have only one pixel difference.
D(i, j) is defined as

D(i, j) �
0, C1(i, j) � C2(i, j),

1, C1(i, j)≠C2(i, j),

⎧⎪⎨

⎪⎩

NPCR �
􏽐

m
i�1 􏽐

n
j�1 D(i, j)

mn
,

(28)

and UACI is defined as

UACI �
􏽐

m
i�1 􏽐

n
j�1 C1(i, j) − C2(i, j)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

255 × m × n
, (29)

where m and n are rows and columns of the image, re-
spectively. Ideally, the means of NPCR and UACI are
NPCR � (1 − 2− n) × 100% and
UACI � 1/22n 􏽐

2n−1
i�1 i(i + 1)/2n − 1100%. For grayscale im-

age with 256 levels, n � 8. *e expected values of NPCR and
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Figure 10: Histogram of every component of RGB (Lena); (a) histogram of R of plaintext; (b) histogram ofG of plaintext; (c) histogram of B

of plaintext; (d) histogram of R of ciphertext; (e) histogram of G of ciphertext; (f ) histogram of B of ciphertext.

Table 3: Values of χ2 for plain and encrypted Lena images.

χ2

Red Green Blue
Original image 243712.39 118826.39 335466.77
Proposed algorithm 300.1914 272.8633 273.4277
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Figure 11: *e correlation plots of two adjacent pixels for plaintext and ciphertext. (a) Horizontal correlation of plaintext; (b) vertical
correlation of plaintext; (c) diagonal correlation of plaintext; (d) horizontal correlation of ciphertext; (e) vertical correlation of ciphertext; (f )
diagonal correlation of ciphertext.
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UACI are NPCRE � 99.6094070 and UACIE � 33.463507,
respectively.

In the experiment, 100 group pixels of Lena image were
selected for encryption. Every group has two images. One is
the original image, and the other is image with one pixel
changed, which is an image where one pixel is changed
randomly in the original image. *e results of NPCR and
UACI are shown in Figures 12 and 13. Results of the
proposed algorithm are distributed near the ideal value
(horizontal lines in the figure). *e mean values of NPCR
and UACI in the proposed scheme are 99.6214% and
33.4149%, respectively, which are very close to the ideal
values.

*e comparison with other algorithms is shown in
Table 7. *e results show that the proposed algorithm can
resist plaintext attack, ciphertext attack, and known plaintext
attack well, and it is also superior to other algorithms. *e
reason is, in other schemes, the ciphertext diffusion effect of
the algorithm works only in one round of pixel substitution,
in which the change of any one pixel in plaintext can only
affect the ciphertext behind the changed pixel. In this paper,
two or more rounds of diffusion are carried out. *erefore,
each pixel in the encrypted image will be affected.

4.7. Analysis of Chosen Plaintext Attack. *e ability of a
scheme to resist the chosen plaintext attack should be tested
in the following way. *e formula is as follows [61]:

O1(i, j)⊕O2(i, j) � E1(i, j)⊕E2(i, j), (30)

where O1 and O2 are two plain images and E1 and E2 are
two encrypted images which are encrypted by the same plain
images. When the equation holds right, the algorithm will be
highly vulnerable to chosen plaintext attack. Figure 14(a)
indicates E1⊕E2 (XOR operation to the encrypted images of
Lena and baboon), and Figure 14(b) indicates O1⊕O2 (XOR
operation to the plain images of Lena and baboon). Obvi-
ously, Figures 14(a) and 14(b) are completely different,
indicating that the equation is not tenable. *erefore, the
algorithm can resist chosen plaintext attack.

4.8. Analysis of Plaintext Attacks. In many methods of
cryptanalysis, attackers try to identify the relationship be-
tween plaintext and ciphertext by searching ways to reduce
the key space or the equivalent key space. *is kind of attack
usually uses white or black pixels to generate ciphertext by
the proposed algorithm. *en the key is inferred from the
corresponding ciphertext image. In order to resist this at-
tack, this encryption scheme should eliminate any rela-
tionship between ciphertext and plaintext.

*e proposed scheme, even if a specific plaintext is
selected, such as black and white images, cannot generate
recognizable patterns. It is because the encryption algorithm
not only depends on the change of pixel position but also
depends on the high complexity of the novel chaotic and
good multiple diffusion characteristics of the encryption
algorithm. Especially when the algorithm is used to encrypt
adjacent columns/rows, the adjacent pixels will have little
correlation.

*e results of our proposed algorithm are depicted in
Figure 15. *e size of the white and black images is
512 × 512. *ey are encrypted by the proposed algorithm.
From Figures 15(b) and 15(d), the encrypted images are
different from the original images. *en, our proposed
encryption algorithm can resist the known plaintext attack.

4.9. Analysis of Noise Attack

4.9.1. Analysis of Pepper and Salt Noise Attack. *e ability of
the encryption system to resist noise attack is tested by
adding salt and pepper noise with different intensities when
encrypting the image. Figure 16 shows the decrypted images
where densities of 0.05 and 0.1 are added, respectively. *e
decrypted images become slightly blurred, but the contents
of the images can still be recognized.

4.9.2. Analysis of Gaussian Noise. *e Gaussian noise with
variance of 0.01 and zero mean was added to the encryption
process, and the result is shown in Figure 17(a). Take the
Gaussian noise with variance of 0.5 and zero mean, and the
result is shown in Figure 17(b). Although the decrypted
image is still fuzzy, it can still distinguish the basic image

Table 4:*e correlation coefficients between the proposed method
and other algorithms.

Correlation direction
Diagonal Horizontal Vertical

Original image 0.9501 0.9690 0.9835
Proposed algorithm −0.0033 −0.0012 −0.0027
Reference [48] 0.0036 0.0053 0.0085
Reference [49] 0.0024 0.0042 0.0033
Reference [50] — 0.0681 0.0845
Reference [51] 0.0030 −0.0082 0.0027

Table 5: SSIM between the plain and other encrypted images.

Algorithm
SSIM Average

SSIMRed Green Blue
Proposed
algorithm 0.010050 0.009141 0.010104 0.009765

Reference [52] 0.0194 0.0448 0.04475 0.0372
Reference [53] — — — 0.3795
Reference [54] — — — 0.0425

Table 6: PSNR results between the proposed algorithm and other
algorithms (Lena).

Algorithms
PSNR

Average PSNR
Red Green Blue

Proposed algorithm 7.8415 8.5890 9.5995 8.6767
Reference [55] — — — 10.8314
Reference [56] — — — 9.5513
Reference [57] 7.8160 8.6070 9.6404 8.6877
Reference [58] — — — 9.2322
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content. It illustrates that the proposed algorithm can resist
the Gaussian noise.

4.10. Information Entropy. Information entropy (EN) can
describe the complexity, which can quantify the randomness
of a chaotic system. Let s represent a source of information,
and the entropy H(s) can be calculated by

H(s) � − 􏽘
2n−1

i�0
P si( 􏼁log2 P si( 􏼁( 􏼁, (31)

where P(si) is the probability of the symbol si which can
appear in the chaotic system. For a random signal consisting
of 2n symbols, H(s) is equal to 8. *e information entropy
value of the proposed scheme is calculated. *e results

between the proposed algorithm and other schemes are
shown in Table 8 and our values are 7.9984, 7.9982, and
7.9979, respectively, which are higher than others, ensuring
that our scheme is more complex.

4.11. Computational Complexity and Speed Test. *e com-
putational complexity of algorithms is often used to describe
the execution time of programs or the space occupied by
algorithms in memory or disk. It is often represented by
symbol O.

*e function T(n) represents the time of an algorithm
(or the number of steps), where n is the size of the problem to
be solved and n↦g(n). *eoretically, the function
T(n) � O(g(n)). It means that there is a positive constant δ
which makes 0≤T(n)≤ δg(n). Given that the size of the
image is m × n, the times of scrambling statements are m × n

during the image encryption. Take two rounds as an ex-
ample; the times of the diffusion statement are 2m × n. *e
times of decrypted statement are the same as those of the
encryption. So, we can write the expression as
T(n) � O(mn). *erefore, the complexity of the algorithm is
O(mn). *us, the proposed algorithm can resist different
cryptographic analysis.
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Figure 12: Test results of NPCR (N is the test group label).
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Figure 13: Test results of UACI (N is the test group label).

Table 7: NPCR and UACI results between the proposed algorithm
and other schemes (Lena).

Algorithms NPCR UACI
Proposed algorithm 0.9962 0.3341
Reference [59] 0.9936 0.3272
Reference [60] 0.9961 0.3346
Reference [36] 0.9960 0.3347
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(a) (b)

Figure 14: *e result of chosen plaintext attack analysis: (a)E1⊕E2; (b)O1⊕O2.

(a) (b) (c) (d)

Figure 15: Results of the black and white images by the proposed algorithm. (a) Black plaintext; (b) black ciphertext; (c) white plaintext; (d)
white ciphertext.

(a) (b)

Figure 16: *e decryption image with different densities of salt and pepper noise. (a) 0.05 and (b) 0.1.

(a) (b)

Figure 17: *e decryption image of the plain image by adding different variance Gaussian noise.
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*e speed of every scheme is shown in Table 9. We
implement our scheme and other schemes using Matlab
R2016b on an Intel Core i5-4590 @ 3.30GHz Processor,
4GB RAM, and Windows 10 operating system. Compared
with DES, AES, and logistic mapping encryption scheme,
our chaotic encrypted algorithm is more quick than tradi-
tional ones.

5. Conclusion

*is paper has proposed a new color image encryption based
on 3D-PHM. 3D-PHM shows better chaotic complexity and
performance than the original mappings. It enlarges the
dimensions of Henon mapping and the complexity of low-
dimensional chaotic mapping is increased, and the method
can also be applied to other low-dimensional chaotic
mappings. At the same time, the parameter range of 3D-
PHM is also enlarged, which increases the key space of the
original mapping. Based on the new chaotic mapping, this
paper proposes the color image encryption scheme, which is
associated with the key, plaintext, and intermediate ci-
phertext. Security and performance evaluation shows that
the proposed cipher has various desirable characteristics
such as efficiency, flexibility, and resistance against crypt-
analytic attacks.
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