
Research Article
Stochastic Exponential Stabilization for Markov Jump Neural
Networks with Time-varying Delays via Adaptive Event-Triggered
Impulsive Control

Xiaoman Liu,1 Haiyang Zhang ,1,2 Tao Wu ,3 and Jinlong Shu 4

1School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650500, China
2School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
3Department of Mathematics, Southeast University, Nanjing 210096, China
4School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China

Correspondence should be addressed to Haiyang Zhang; haiya287@126.com

Received 10 February 2020; Revised 18 May 2020; Accepted 28 May 2020; Published 27 June 2020

Academic Editor: Yong Xu

Copyright © 2020 Xiaoman Liu et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*is paper focuses on the exponential stabilization problem for Markov jump neural networks with Time-varying Delays (TDs).
Firstly, we provide a new Free-matrix-based Exponential-type Integral Inequality (FMEII) containing the information of at-
tenuation exponent, which is helpful to reduce the conservativeness of stability criteria. To further save control cost, we introduce
a sample-based Adaptive Event-triggered Impulsive Control (AEIC) scheme, in which the trigger threshold is adaptively varied
with the sampled state. By fully considering the information about sampled state, TDs, and Markov jump parameters, a suitable
Lyapunov–Krasovskii functional is constructed. With the virtue of FMEII and AEIC scheme, some novel stabilization criteria are
presented in the form of linear matrix inequalities. At last, two numerical examples are given to show the validity of the
obtained results.

1. Introduction

Recent decades have witnessed the fast development of
neural networks since its wide applications in many practical
fields, such as pattern recognition [1], smart antenna arrays
[2], and circuit design [3]. In the implementation of such
applications, both Time-varying Delays (TDs) caused by the
inherent communication time among neurons or the finite
switching speed of amplifier [4–8] and random abrupt arisen
from the external environment sudden change or the in-
formation latching [9–11] are inevitably encountered, which
often lead to some undesirable dynamic behaviors, such as
chaotic, oscillation, and even unstable [12–14]. Markov
Jump Neural Networks (MJNNs) with Time-varying Delays
(TDs), as a special kind of hybrid system, has a powerful
ability in describing those complicated behaviors. Stability is
a precondition for the normal operation of systems, and
sometimes fast convergence of the networks is essential for

real-time computation. As it is well known, the exponential
convergence rate is generally used to determine the speed of
neural computations [15]. *us, it is of great theoretical and
practical importance to study the exponential stability for
MJNNs with TDs, and many fruit results have been reported
in the literature [16–18].

In particular, under an assumption that the proportional
delay is unbounded time-varying, some global stochastic
exponential stability conditions for MJNNs with propor-
tional TDs are derived in [16]. By considering a more general
uncertain transition rates, Liu et al. [17] investigated the
stochastic exponential stability for neutral-type impulsive
MJNNs with mixed TDs. With the aid of random analysis
method and Lyapunov functional techniques, Zhang et al.
[18] presented some exponential stability results for MJNNs
with TDs and general disturbance. It is worth mentioning
that the Exponential-type Integral Quadratic Terms (EIQTs),
i.e., − 

δ2
δ1

eα(s− δ2)φT(s)Ξφ(s)ds, which play crucial role in
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deriving less conservative stability criteria [16–21]. In most
of the existing literature, the upper bound of EIQTs are
usually estimated by using some nonexponential-type in-
tegral inequalities, such as Free-matrix-based Integral In-
equality (FMII) [19], Wirtinger’s integral inequality
[16–18, 20], and other kind of integral inequality [21].
However, there exists a common shortcoming in such kinds
of inequalities, that is, the information of attenuation ex-
ponent is not considered fully, which brings some conser-
vativeness to some extent. Recently, some Exponential-type
Integral Inequalities (EIIs) have been proposed and suc-
cessfully applied to the exponential stability analysis for
time-delay systems [22, 23]. Nerveless, it cannot find more
tighter upper bound for the EIQTs, since the parameter
matrices in EIIs are not adjustable. Consequently, it should
be possible to reduce the conservativeness of results based on
the ideas of FMII [19] and EIIs [23], which is the first
motivation of our paper.

On the contrary, Event-triggered Impulsive Control
(EIC), as a powerful tool, plays an important role in many
different science and engineering fields. Especially, in the
field of artificial neural networks, the study for stabilization
is more complicated due to the state-dependent nonlinear
switching behaviors of neural networks. Compared with the
common impulsive control, EIC scheme may avoid some
undesirable network behaviors, such as some “unnecessary”
data are sent frequently, and the network resources are
excessively used to some extent, especially in the case that the
networks resources are limited [24]. *erefore, EIC scheme
has attracted much more attention in many different fields,
multiagent systems [25], nonlinear systems [26, 27], neural
networks [28, 29], and so on [30, 31]. It should be pointed
out that there exist some disadvantages in the above EIC
schemes in [25–31]. For example, the supervising time of
sensors is in themean of continuous time, which implies that
the sensors are required to monitor the system state all the
time [25, 30, 31], but it is not necessary because the worst
scenario rarely happens. Besides, the triggering threshold is
assumed to be a constant [27–29], which reduces the flex-
ibility of EIC schemes and limits the applications ability of
them. Furthermore, to overcome the above disadvantages, a
sample-based AEIC scheme is introduced in this paper,
where the trigger threshold is adaptively varied with the
sampled state. So far as it is known to the authors, few
literature studies have devoted to the exponential

stabilization problem for MJNNs with TDs via a sample-
based AEIC scheme, which is another motivation of our
paper.

Motivated by the aforementioned discussions, the main
contributions of our paper are summarized as follows. (1)
Inspired by the ideas of FMII [19] and EIIs [23], a new
FMEII is proposed to derive more tighter bound of the
EIQTs in this paper, which is more general and flexible than
the existing EIIs. (2) In order to overcome the shortcomings
in existing EIC schemes, a sample-based AEIC scheme is
introduced, where the triggering threshold is governed by a
well designed adaptive rule corresponded to the sampled
state. (3) *e FMEII and AEIC scheme are successfully
applied to investigate the exponential stabilization issue for
MJNNs with TDs, and some novel stabilization results are
derived in terms of linear matrices inequalities.

Notations: let N denote the set of positive integers, R the
set of real numbers, Rn the n-dimensional real space
equipped with the Euclidean norm ‖·‖, Rm×n the set of all
m × n real matrices, and Rn

+ and Rn the set of symmetric
positive definite and symmetric matrices of Rn×n, respec-
tively. Denote 〈f, g〉w � 

b

a
f(s)g(s)w(s)ds for any inte-

grable functionsf(·), g(·), w(·) in [a, b].*e symbol “∗” in a
block matrix signifies the symmetric terms, col · · ·{ } and
diag · · ·{ } express a column vector and a diagonal matrix,
respectively. For any matrix X ∈ Rn×n, H X{ } means that X +

XT and λmax(X) and λmin(X) stand for the maximum and
minimum eigenvalue of X, respectively. *e zero and
identity matrices with appropriate dimensions are described
by 0 and I, respectively. *e symbol ei � (0, . . . ,

0, I
i

, 0, . . . , 0, ), (i � 1, . . . , 14).

2. Description of Problem and Preliminaries

Let r(t), t≥ 0{ } be a continuous-time Markov process taking
values in a finite state spaceN � (1, 2, . . . ,N).*e evolution
of r(t), t≥ 0{ } is governed by the following transition
probability:

Pr r(t + Δ) � j | r(t) � i  �
πijΔ + o(Δ), i≠ j,

1 + πiiΔ + o(Δ), i � j,


(1)

where Δ≥ 0, limΔ⟶0o(Δ)/Δ � 0; πij ≥ 0 for i≠ j ∈ N is the
transition rate from mode i at time t to mode j at time t + Δ,
and πii � − 

N
j�1,j≠i πij.

Consider the following impulsive MJNNs with TDs:

_x(t) � − Br(t)x(t) + Ar(t)f(x(t)) + Cr(t)x tk(  + Dr(t)f(x(t − δ(t))), t ∈ tk, tk+1( ,

x(t) � 1 + qk( x t−( ), t � tk, k ∈ N,

ϕ(θ) � x t0 + θ( , r t0(  � r0, θ ∈ [− max δ, η , 0],

⎧⎪⎪⎨

⎪⎪⎩
(2)

where x(t) � col x1(t), . . . , xn(t)  is the state; f(x(t)) �

col f1(x1(t)), . . . , fn(xn(t))  is the neuron activation
function and satisfies

λ−
l ≤

fl x1(  − fl x2( 

x1 − x2
≤ λ+

l , fl(0) � 0, l ∈ N, ∀x1 ≠ x2 ∈ R,

(3)
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where λ−
l and λ

+
l are scalars which can be positive, negative,

and zero; ϕ(θ) is the initial condition; and δ(t) is a time-
varying delay and satisfies

0≤ δ1 ≤ δ(t)≤ δ2,
_δ(t)≤ μ,

(4)

where δ1, δ2, and μ are known constants; Br(t) is a positive
diagonal matrix and Ar(t) and Dr(t) are connection weighted
matrices; Cr(t) is control gain matrix to be determine, qk is
impulsive intensity, tk is impulsive instant, x(tk) � x(t+

k ) �

limε⟶0+ x(tk + ε), x(t−
k ) � limε⟶0− x(tk + ε), and r0 ∈ N is

the initial mode as t � t0.
To further mitigate unnecessary waste of network re-

sources, a sample-based AEIC scheme is introduced in this
paper. Assume that the system’s state is periodically sampled
and the sampling sequence is depicted by the set
Πs � 0, h, 2h, . . . , kh{ } with k ∈ N, where h is constant
sampling period, and the event-triggered sequence is de-
scribed by the set Πe � 0, b1h, b2h, . . . , bkh ⊆Πs with
bk ∈ N. Suppose the event-triggered instants to be the im-
pulsive instants, i.e., tk � bkh, then the next impulsive instant
tk+1 � tk + lmh, where

lm � min l | e
T

tk + lh( Ωe tk + lh( > σ tk + lh( x
T



· tk + lh( Ωx tk + lh( , l ∈ N,

(5)

and Ω ∈Rn
+ is an unknown weighted matrix, e(tk + lh) �

x(tk + lh) − x(tk) expresses the error between the two states
at the latest trigger instant and the current sampling one, and
trigger threshold σ(tk + lh) ∈ [0, 1) is governed by the fol-
lowing adaptive rule:

σ tk +(l + 1)h(  � max σ tk + lh( Δ tk + lh( , σm , (6)

where
Δ(tk + lh) � 1 − (2Δ1/π)arctan[Δ2(‖x(tk + lh)‖ − ‖x(tk)‖)],
arctan(·) is the invert tangent function, Δ1,Δ2 > 0 are given
constants to adjust the output of arctan(·), σm is the given
lower bound of σ(tk + lh), and σ(0) � σm.

Remark 1. Note that the function arctan(·) in adaptive rule
(6) has the lower and upper bounds, i.e., actan(·) ∈ [− π/2,

π/2], and this property can be used in this paper combining
with adjustable parameters Δ1 and Δ2 to adaptively adjust
the trigger threshold σ(tk + lh). Specifically, when the norm
of the current sampling state is larger than the one of the last
triggered state, that is, ‖x(tk + lh)‖> ‖x(tk)‖, then we can
obtain that Δ(tk + lh) ∈ (0, 1) and σ(tk + (l + 1)h)

< σ(tk + lh), which means that, in this case, the adaptive rule

(6) uses smaller σ(tk + (l + 1)h) to reduce the error between
‖x(tk + (l + 1)h)‖ and ‖x(tk)‖ at next sampling instant, and
if the trigger condition is satisfied, the trigger threshold will
be updated as σ(tk+1) at the same time. *e inverse case is
similar with the above discussions, and it is omitted here.
Besides, the existence of parameters Δ1 andΔ2 can ensure
that the threshold σ(tk + lh) are always belonging to [0, 1) as
the parameters Δ1 andΔ2 are adjustable.

Remark 2. It is familiar to use the following EIC scheme:

tk+1 � inf t | t> tk, x(t) − x tk( 
����

����≥ σ x tk( 
����

���� , (7)

which has been widely used in recent years [28, 30, 31].
However, there are some undesirable traits in scheme (7).
For example, (i) the EIC scheme (7) does not need to be
carried out if the system state decreases very fast in a very
short time, even though it satisfies the trigger condition. (ii)
It requires the sensors to monitor the system state all the
time. Clearly, methods that require continuous monitoring
of the systems could waste network resources much more
because the worst errors that can happen, such as external
disturbance, network congestion, or packet dropout are
rarely evident. Hence, the sample-based AEIC scheme (5)
saves more communication cost than the scheme (7), be-
cause it only needs supervision at sampling instants. Fur-
thermore, the Zeno behavior can be naturally avoided by
using the sample-based AEIC scheme (5), since the impulse
interval satisfies that inf tk+1 − tk ≥ h> 0 for all
t ∈ [tk, tk+1), k ∈ Z+. (iii) Moreover, under the pregiven
constant threshold σ, the EIC scheme (7) cannot deal with
the case that the trajectory of the system oscillates along with
a certain line and does not converge in a relatively large
interval. In these senses, the trigger threshold σ(tk + lh) in
scheme (5) is more reasonable, flexible, and can be adap-
tively adjusted by according to the adaptive rule (6).

For the sake of introducing the sample-based AEIC
scheme to determine whether the current sampled-data
should be transmitted, an effective way is to consider the
sampled-data error at every sampling instant. Decompose
the impulsive interval [tk, tk+1) into the following subinterval
[tk, tk+1) � ∪lm − 1

l�0 Ik(l), where Ik(l) � [tk + lh, tk + (l + 1)h).
Define a function:

η(t) � t − tk + lh( , t ∈ Ik(l). (8)

Note that η(t) is a linear piecewise function and satisfies
0≤ η(t)≤ η, _η(t) � 1, and∀t ∈ Ik(l). For simplifying some
notations, denote Br(t) � Bi, Ar(t) � Ai, Dr(t) � Di, and
Cr(t) � Ci when r(t) � i. *en, combining with (5) and (8),
system (2) can be rewritten as

_x(t) � − Bix(t) + Aif(x(t)) + Dif(x(t − δ(t))) + Cix(t − η(t)) − Cie(t − η(t)), t ∈ tk, tk+1( ,

x(t) � 1 + qk( x t−( ), t � tk, k ∈ N,

ϕ(θ) � x t0 + θ( , r(0) � r0, θ ∈ [− max δ, η , 0].

⎧⎪⎪⎨

⎪⎪⎩
(9)
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*e following definition and lemmas need to be recalled,
which play a key role to demonstrate our main results.

Definition 1 (see [9]). System (9) is said to be stochastically
exponentially stable in the mean square sense with con-
vergence rate α> 0, if there exist scalar M> 0 for ∀t≥ t0 such
that

E ‖x(t)‖
2

 ≤Me
− α t− t0( )E sup

θ∈[− max δ,η{ },0]

‖ϕ(θ)‖
2
, ‖ _ϕ(θ)‖

2
 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(10)

Lemma 1 (see [22]). For a given matrix Ξ ∈Rn
+, scalars

a< b, α> 0, and a differentiable vector function
ξ(s): [a, b]⟶ Rn, the following inequality holds:

− 
b

a
e
α(s− b)ξT

(s)Ξξ(s)ds≤ −
α

eα(b− a) − 1


b

a
ξ(s)ds 

T

Ξ 
b

a
ξ(s)ds .

(11)

Remark 3. Clearly, when φ(s) � _x(s), one can obtain from
(11) that

− 
b

a
e
α(s− b)

_x
T
(s)Ξ _x(s)ds≤ −

α
eα(b− a) − 1

[x(b) − x(a)]
T

Ξ[x(b) − x(a)].

(12)

Furthermore, when α⟶ 0, EII (11) will reduce to the
well-known Jensen’s integral inequality in [32]. Besides, it
has been shown in [22] that a more tighter bound for EIQT
can be derived by using EII (11). Very recently, some more
accurate EIIs have been proposed in [23]; however, the
FMEII that can enhance the flexibility of EII to some extent
has not been found in the existing literature so far.*erefore,
inspired by the ideas in [19, 23], we attempt to establish a
simple kind of FMEII to further estimate the bound of EIQTs
in this paper.

Lemma 2. For given matrices Ξ ∈Rn
+, N ∈ Rmn×n, any

vector ζ ∈ Rmn, m ∈ N, scalars a< b and a differentiable
vector function φ(s): [a, b]⟶ Rn, and there exist scalar
auxiliary function w(s)≥ 0 with s ∈ [a, b] such that the
following inequality holds:

− 
b

a
φT

(s)Ξφ(s)w(s)ds≤ 〈1, 1〉wζ
T
NΞ− 1

N
Tζ + 2ζT

N〈1, φ〉w.

(13)

Proof. Note the fact that, for given matrices Ξ ∈Rn
+,

N ∈ Rmn×n, any vector ζ ∈ Rmn, m ∈ N, scalars a< b, and
scalar auxiliary function w(s)≥ 0 with s ∈ [a, b], one has

− 2φT
(s)N

Tζw(s)≤ ζT
NΞ− 1

N
Tηw(s) + φT

(s)Ξφ(s)w(s).

(14)

Integrating both sides of (14) from a to b, we have

− 
b

a
φT

(s)Ξφ(s)w(s)ds ≤ 
b

a
ζT

NΞ− 1
N

Tζw(s)ds

+ 2
b

a
ζT

Nφ(s)w(s)ds.

(15)

*en, inequality (13) can be obtained after expanding the
right side of inequality (15). □

Remark 4. Clearly, when φ(s) � w− 1(s)ξ(s), w(s) �

e− α(s− b), N � Ξ, ζ � − (c0/α) 
b

a
ξ(s)ds, and c0 � eα(b− a) − 1,

inequality (13) will reduce to inequality (11), which implies
that Lemma 1 can be regarded as a special case of Lemma 2.
On the contrary, when φ(s) � w− 1(s) _x(s) andw(s) �

e− α(s− b), inequality (13) can be rewritten as follows:

− 
b

a
e
α(s− b)

_x
T
(s)Ξ _x(s)ds≤

c0

α
ζT

NΞ− 1
N

Tζ

+ 2ζT
N[x(b) − x(a)].

(16)

Due to the existence of vector ζ and free matrix N, the
flexibility of (13) can be enhanced to some degree. For
example, if ζ � col x(b), _x(b), x(a), _x(a){ } and N � col N1,

N2, N3, N4}, one can obtain that

− 
b

a
e
α(s− b)

_x
T

(s)Ξ _x(s)ds≤
c0

α
ζT

NΞ− 1
N

Tζ + ζT Nζ, (17)

where

N �

H N1  NT
2 − N1 + NT

3 NT
4

∗ 0 − N2 0

∗ ∗ H N3  − NT
4

∗ ∗ ∗ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

It is easy to see that some connections between vectors
x(b) and x(a) and other augment vectors are established,
which may facilitate the estimation for the bounds of
EIQTs.

3. Main Results

In this section, our purpose is to establish new stochastic
exponential stabilization conditions for systems (9) via the
AEIC scheme (5). Before presenting the main results, the
following vectors are defined for convenience:
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ξ(t) � col x(t), f(x(t)), x(t − δ(t)), f(x(t − δ(t))), x t − δ1( , x t − δ2( , x(t − η(t)), x(t − η), e(t − η(t)),


t− δ1

t− δ(t)

x(s)

δ(t) − δ1
ds 

t− δ(t)

t− δ2

x(s)

δ2 − δ(t)
ds, 

t

t− η(t)

x(s)

η(t)
ds, 

t− η(t)

t− η

x(s)

η − η(t)
ds, _x(t),

ζ21 � col e5 − e3, e5 + e3 − 2e10 ,

ζ22 � col e3 − e6, e3 + e6 − 2e11 ,

ζ31 � col e1 − e7, e1 + e7 − 2e12 ,

ζ32 � col e7 − e8, e7 + e8 − 2e13 .

(19)

Theorem 1. For given positive scalars δ1, δ2, μ, η, α, and σm,
system (9) is said to be stochastically exponentially stable in
the mean square sense, if there exist matrices Pi, Si, Q1, Q2,
Q3, Q4, Q5, Q6, R1, R2, R3 ∈R

n
+, X1 ∈ R6n×n, X2,

X3 ∈ R2n×2n, Ni, Ki ∈ Rn×n and diagonal matrix M1,
M2 ∈R

n
+ such that

1 + qk( 
2λmax Pi + Si(  − λmin Pi( > 0, k ∈ N, (20)

inf tk+1 − tk  � β>
ln q

α
, k ∈ N, (21)

R2 X2

∗ R2
 > 0,

R3 X3

∗ R3
 > 0, (22)

Φ1i +Φ2i +Φ3i +Φ4i +Φ5i ζT
1 X1

∗ −
α
c0

R1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠< 0, (23)

where q � (1 + qk)2λmax(Pi + Si)/λmin(Pi),, c0 � eαδ1 − 1,
and

Φ1i � H e1
T
Pie14  + e

T
1 αPi + Π Pj  e1 + e7 − e9( 

T αSi + Π Sj   e7 − e9( ,

Φ2i � e
T
1 Q1 + Q3 + Q4 + Q5 + Q6( e1 + e

T
2 Q2e2 − e

− αδ2(1 − μ)e
T
3 Q1e3

− e
− αδ2(1 − μ)e

T
4 Q2e4 − e

− αδ1e
T
5 Q3e5 − e

− αδ2e
T
6 Q4e6 − e

− αη
e

T
8 Q6e8,

Φ3i � e
T
14 δ1R1 + δ2 − δ1( 

2
R2 + η2R3 e14 + H ζT

1 X1 e1 − e5(  

− e
− αδ2

ζ21

ζ22

⎛⎜⎝ ⎞⎟⎠

T
R2 X2

∗ R2

⎛⎜⎝ ⎞⎟⎠
ζ21

ζ22

⎛⎜⎝ ⎞⎟⎠ − e
− αη

ζ31

ζ32

⎛⎜⎝ ⎞⎟⎠

T
R3 X3

∗ R3

⎛⎜⎝ ⎞⎟⎠
ζ31

ζ32

⎛⎜⎝ ⎞⎟⎠,

Φ4i � σme
T
7Ωe7 − e

T
9Ωe9 + H e14 + e1( 

T
Ki e7 − e9(   + H e14 + e1( 

T
Ni − e14 − Bie1 + Aie2 + Die4(  ,

Φ5i � − H e2 − Λ1e1( 
T
M1 e2 − Λ2e1(  + e4 − Λ1e3( 

T
M2 e4 − Λ2e3(  ,

Π Pj  � 
N

j�1
πijPj, Π Sj  � 

N

j�1
πijSj,

Rl � diag Rl, 3Rl , (l � 2, 3).

(24)

In addition, the control gain is designed by
Ci � N− 1

i Ki, i ∈ N.
Proof. Consider the following stochastic Lyapunov–Kra-
sovskii Functional (LKF):

Complexity 5



V(x(t), r(t)) � V1(x(t), r(t)) + V2(x(t), r(t))

+ V3(x(t), r(t)),
(25)

where

V1(x(t), r(t)) � x
T
(t)P rt( x(t) + x

T
tk( S(r)tx tk( ,

V2(x(t), r(t)) � 
t

t− δ(t)
e
α(s− t)

x
T
(s)Q1x(s) + f

T
(x(s))Q2f(x(s)) ds

+ 
t

t− δ1
e
α(s− t)

x
T
(s)Q3x(s)ds + 

t

t− δ2
e
α(s− t)

x
T
(s)Q4x(s)ds

+ 
t

t− η(t)
e
α(s− t)

x
T
(s)Q5x(s)ds + 

t

t− η
e
α(s− t)

x
T
(s)Q6x(s)ds,

V3(x(t), r(t)) � 
0

− δ1


t

t+u
e
α(s− t)

_x
T
(s)R1 _x(s)ds du

+ δ2 − δ1(  
− δ1

− δ2


t

t+u
e
α(s− t)

_x
T
(s)R2 _x(s)ds du

+ η
0

− η


t

t+u
e
α(s− t)

_x
T
(s)R3 _x(s)ds du.

(26)

Let L be the week infinitesimal operator acting on LKF
(25), i.e.,

LV(x(t), r(t)) � lim
Δ⟶0+

E V(x(t + Δ), r(t + Δ) � j) | x(t), r(t) � i  − V(x(t), i)

Δ
, (27)

then along with the solution of systems (9), we have

LV1(x(t), i) � 2 _x
T
(t)Pix(t) + x

T
(t)Π Pj x(t) + x

T
tk( Π Sj x tk( 

� ξT
(t)Φ1iξ(t) − αV1(x(t), i),

(28)

LV2(x(t), i)≤ x
T
(t) Q1 + Q3 + Q4 + Q5 + Q6( x(t) + f

T
(x(t))Q2f(x(t))

− (1 − μ)e
− αδ

x
T
(t − δ(t))Q1x(t − δ(t))

− (1 − μ)e
− αδ

f
T

x(t − δ(t))Q2f(x(t − δ(t)))( 

− e
− αδ1x

T
t − δ1( Q3x t − δ1(  − e

− αδ2x
T

t − δ2( Q4x t − δ2( 

− e
− αη

x
T
(t − η)Q6x(t − η) − αV2(x(t), i)

� ξT
(t)Φ2iξ(t) − αV2(x(t), i),

(29)

LV3(x(t), i)≤ _x
T
(t) δ1R1 + δ2 − δ1( 

2
R2 + η2R3  _x(t)

− 
t

t− δ1
e
α(s− t)

_x
T
(s)R1 _x(s)ds − ηe

− αη


t

t− η
_x
T
(s)R3 _x(s)ds

− δ2 − δ1( e
− αδ2 

t− δ1

t− δ2
_x
T
(s)R2 _x(s)ds − αV3(x(t), i).

(30)
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For vector ζ � col x(t), x(t − δ(t)), x(t − δ1), x(t − δ2),

x(t − η(t)), x(t − η)} and matrix X1 ∈ R6n×n, it follows from
Lemma 2 that

− 
t

t− δ1
e
α(s− t)

_x
T
(s)R1 _x(s)ds

≤ ξT
(t)

c0

α
ζT
1 X1R

− 1
1 X

T
1 ζ1 + 2ζT

1 X1 e1 − e5  ξ(t),

(31)

where ζ1 � col e1, e3, e5, e6, e7, e8 . Meanwhile, by utilizing
Lemmas 1 and 3 in [33], one can obtain that

− δ2 − δ1( e
− αδ2 

t− δ1

t− δ2
_x
T

(s)R2 _x(s)ds

≤ ξT
(t) − e

− αδ2
ζ21
ζ22

 

T
R2 X2

∗ R2
 

ζ21
ζ22

 
⎧⎨

⎩

⎫⎬

⎭ξ(t),

(32)

− ηe
− αη


t

t− η
_x
T

(s)R3 _x(s)ds

≤ ξT
(t) − e

− αη ζ31
ζ32

 

T
R3 X3

∗ R3
 

ζ31
ζ32

 
⎧⎨

⎩

⎫⎬

⎭ξ(t).

(33)

Combining (30)–(33), we have

LV3(x(t), i)≤ ξT
(t)

c0

α
ζT
1 X1R

− 1
1 X

T
1 ζ1 +Φ3i 

ξ(t) − αV3(x(t), i).

(34)

In addition, when the current data does not need to be
sent out, it is easy to know from the AEIC scheme (5) that

0< σmx
T
(t − η(t))Ωx(t − η(t)) − e

T
(t − η(t))Ωe(t − η(t))

� ξT
(t) σme

T
7Ωe7 − e

T
9Ωe9 ξ(t).

(35)

Furthermore, from (9), for any matrices Ni, Ki ∈ Rn×n,
we have

0 � 2[ _x(t) + x(t)]
T

Ni − Bix(t) + Aif(x(t))

+ Dif(x(t − d(t)))

+ 2[ _x(t) + x(t)]
T
Ki[x((t − η(t)) − e(t − η(t))]

� ξT
(t) H e14 + e1( 

T
Ki e7 − e9(  

+H e14 + e1( 
T
Ni − e14 − Bie1 + Aie2 + Die4(  ξ(t).

(36)

According to (3), there exist diagonal matrices
M1, M2 ∈R

n
+ such that

0≤ − 2 f(x(t)) − Λ1x(t) 
T
M1 f(x(t)) − Λ2x(t) 

� ξT
(t) − H e2 − Λ1e1( 

T
M1 e2 − Λ2e1(   ξ(t),

(37)

0≤ − 2 f(x(t − d(t))) − Λ1x(t − d(t)) 
T

· M2 f(x(t − d(t))) − Λ2x(t − d(t)) 

� ξT
(t) − H e4 − Λ1e3( 

T
M2 e4 − Λ2e3(   ξ(t),

(38)

where Λ1 � diag λ−
1 , . . . , λ−

n  andΛ2 � diag λ+
1 , . . . , λ+

n .
*erefore, combining with (28)–(38) and (22), one can

obtain

LV(t)≤ − αV(t). (39)

By utilizing Dynkin formula [10] and Grownwall in-
equality, one has

E V(t){ }≤ e
− α t− tk( )E V tk(  , ∀t ∈ tk, tk+1 . (40)

From (9), (19), and (23), it follows that

E V tk(  − V t
−
k(  ≤E x t

−
k(  1 + qk( 

2
Pi + Si( x t

−
k(   − E x t

−
k( Pix t

−
k(  

≤ 1 + qk( 
2λmax Pi + Si(  − λmin Pi(  E x t

−
k( 

����
����
2

 

≤ (q − 1)E x t
−
k( Pix t

−
k(  ≤ (q − 1)V t

−
k( ,

(41)

which implies that V(tk)≤ qV(t−
k ).

Hence, combining with (40) and (21), we have

E V(t){ }≤ q
k
e

− α t− t0( )E V t0(  

≤ e
− (α− (ln q/β)) t− t0( )E V t0(  ,∀t≥ t0.

(42)

It is easy to know from (25) that

E V(t){ }≥ λmin Pi( E ‖x(t)‖
2

 , (43)

E V t0(  ≤ c1 + c2 + c3( sup ‖ϕ(θ)‖
2
, ‖ _ϕ(θ)‖

2
 , (44)

where
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c1 � λmax Pi + Si( ,Λ � diag λ1, . . . , λn , λ] � max λ−

]


, λ+

]


 , ] � 1, 2, . . . , n,

c2 �
1 − e− αδ2

α
λmax Q1(  + λmax Q2( ‖Λ‖2 + λmax Q4(  

+
1 − e− αδ1

α
λmax Q3(  +

1 − e− αη

α
λmax Q5(  + λmax Q6(  ,

c3 �
e− αδ1 + αδ1 − 1( 

α2
λmax R1(  + η

e− αη + αη − 1( 

α2
λmax R3( 

+ δ2 − δ1( 
e− αδ2 − e− αδ1 + α δ2 − δ1( 

α2
λmax R2( .

(45)

From (42)–(44), one has

E ‖x(t)‖
2

 ≤Me
− c t− t0( )E sup ‖ϕ(θ)‖

2
, ‖ _ϕ(θ)‖

2
  , (46)

where M � (c1 + c2 + c3)/λmin(Pi) and c � α − (lnq/β).
*erefore, according to Definition 2, system (9) is said to

be stochastically exponentially stable in the mean square
sense with the convergence rate c> 0. In addition, the
control gain is designed by Ci � N− 1

i Ki, i ∈ N. *is com-
pletes the proof. □

Remark 5. It should be pointed out that the constructed LKF
V(x(t), i) plays a key role in deriving the stochastic expo-
nential stabilization result. Specifically, the impulsive signal
related to Markov jump parameters is considered in

V1(x(t), i), and the information about the lower bound and
upper bound of time-varying delay is taken into account in
V2(x(t), i), V3(x(t), i), which is more general than others
given in [16–18] and is helpful to obtain less conservative
stability criterion. Besides, in the proof of *eorem 1, we
utilize a new FMEII to estimate the bound of EIQT, which
was shown more tighter than the ones based on Jensen’s
integral inequality [32] and EII in [22]. Meanwhile, the
reciprocally convex approach is employed to consider the
relationship between the time-varying delay and its interval,
which is effective to reduce the conservatism.

In what follows, as a special case, when Markov jump
parameters are not considered, system (9) will be reduced to
the following equation:

_x(t) � − Bx(t) + Af(x(t)) + Cx tk(  + Df(x(t − δ(t))), t ∈ tk, tk+1( ,

x(t) � 1 + qk( x t−( ), t � tk, k ∈ N,

ϕ(θ) � x t0 + θ( , θ ∈ [− max δ, η , 0].

⎧⎪⎪⎨

⎪⎪⎩
(47)

Based on *eorem 1, the following criterion can be
readily derived.

Theorem 2. For given positive scalars δ1, δ2, μ, η, α, and σm,
system (47) is said to be exponentially stable, if there exist

matrices P, S, Q1, Q2, Q3, Q4, Q5, Q6, R1, R2, R3 ∈R
n
+,

X1 ∈ R6n×n, X2, X3 ∈ R2n×2n, N, K ∈ Rn×n and diagonal
matrix M1, M2 ∈R

n
+ such that

1 + qk( 
2λmax(P + S) − λmin(P)> 0, k ∈ N,

inf tk+1 − tk  � β>
ln q

α
, k ∈ N,

R2 X2

∗ R2

⎛⎜⎝ ⎞⎟⎠> 0,

R3 X3

∗ R3

⎛⎜⎝ ⎞⎟⎠> 0,

Φ1 + Φ2 + Φ3 + Φ4 + Φ5 ζT
1 X1

∗ −
α
c0

R1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0,

(48)
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where q � (1 + qk)2λmax(P + S)/λmin(P), c0 � eαδ1 − 1, and
Φ1 � H e

T
1 Pe14  + αe

T
1 Pe1 + α e7 − e9( 

T
S e7 − e9( ,

Φ2 � e
T
1 Q1 + Q3 + Q4 + Q5 + Q6( e1 + e

T
2 Q2e2 − e

− αδ2(1 − μ)e
T
3 Q1e3

− e
− αδ2(1 − μ)e

T
4 Q2e4 − e

− αδ1e
T
5 Q3e5 − e

− αδ2e
T
6 Q4e6 − e

− αη
e

T
8 Q6e8,

Φ3 � e
T
14 δ1R1 + δ2 − δ1( 

2
R2 + η2R3 e14 + H ζT

1 X1 e1 − e5(  

− e
− αδ2

ζ21
ζ22

 

T
R2 X2

∗ R2
 

ζ21
ζ22

  − e
− αη ζ31

ζ32
 

T
R3 X3

∗ R3
 

ζ31
ζ32

 ,

Φ4 � σme
T
7Ωe7 − e

T
9Ωe9 + H e14 + e1( 

T
K e7 − e9(  

+ H e14 + e1( 
T
N − e14 − Be1 + Ae2 + De4(  ,

Φ5 � − H e2 − Λ1e1( 
T
M1 e2 − Λ2e1(  + e4 − Λ1e3( 

T
M2 e4 − Λ2e3(  .

(49)

In addition, the control gain is designed by C � N− 1K.

4. Numerical Examples

In this section, we aim to demonstrate the feasibility and validity
of the obtained results in this paper by two numerical examples.

Example 1. Consider system (9) with the following pa-
rameters [34–36]:

B1 �
1 0
0 1

 ,

A1 �
2 − 0.1

− 5 3
 ,

D1 �
− 1.5 − 0.1
− 0.2 − 2.5

 ,

(50)

B2 �
0.8 0
0 1

 ,

A2 �
2 − 0.11

− 5 3.2
 ,

D2 �
− 1.6 − 0.1
− 0.18 − 2.4

 ,

(51)

πij  �
− 3 3
5 − 5

 ,

Λ1 � diag 0, 0{ },

Λ2 � diag 0.5, 0.5{ },

(52)

δ1 � 0.1,

δ2 � 0.3,

μ � 0.2,

α � 0.1,

σm � 0.05,

η � 0.1.

(53)

Under the above parameters, applying *eorem 1 and
using the MATLAB LMI toolbox, the impulsive intensity
and the control gains matrices can be derived, respectively,
as qk � − 0.7440 and

C1 �
− 0.6623 0.2442

0.9344 − 2.2286
 ,

C2 �
− 0.5964 0.2382

0.9783 − 2.2877
 .

(54)

Meanwhile, the weight matrix Ω in AEIC scheme and
other unknown matrices in *eorem 1 can be obtained:

Ω �
430.7870 − 9.5302

− 9.5302 141.3639
 ,

P1 �
138.9071 9.2309

9.2309 17.8354
 ,

P2 �
147.8332 9.5899

9.5899 18.2709
 ,

S1 �
118.8049 22.6922

22.6922 9.4962
 ,

S2 �
118.5344 23.2149

23.2149 9.2227
 ,

R1 �
60.9447 4.8261

4.8261 5.2283
 ,

R2 �
81.1484 − 0.7781

− 0.7781 22.8792
 ,

R3 �
126.4894 − 49.3995

− 49.3995 119.2005
 .

(55)

Let the neuron activation function
fi(x) � 0.5(|x + 1| − |x − 1|), the time-varying delay
δ(t) � 0.2 + 0.2 sin(t), the initial value x(0) � [− 0.2; 0.3],
and the parameters Δ1 � 1, Δ2 � 50 in adaptive rule (6);
Figures 1–4 are presented to show the feasibility and validity
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of the obtained result in this paper. Specifically, Figures 1
and 2 stand for the state response of system (9) with pa-
rameters (50) and (51) under no control and the well-
designed AEIC scheme (5), respectively. Clearly, AEIC
scheme (5) is effective. Furthermore, it is not hard to see
from Figure 3 that the frequency of impulsive control is
reduced to large extent, which means that more network
resources are saved by using the AEIC scheme. Moreover,
compared with Figure 4, one can find that the triggering
threshold adjusted adaptively by adaptive rule (6) is
varying with the evolution of the system state, i.e., the
threshold gradually decrease when the norm of the system
state goes up, which enhances the flexibility of the AEIC
scheme to some extent.

On the contrary, if the adaptive threshold σ(tk + lh) is a
constant, that is, Δ2 � 0, then the AEIC scheme (5) will
reduce to a EIC scheme (7). Without loss of generality, take
the threshold in EIC scheme as σm, and under the same
parameters with above mentioned, Figures 5 and 6 are given
to show the results of ECI control scheme. It is clear from
Figures 2 and 5 that both AEIC and EIC scheme can stabilise
the underlying system (9), while comparing Figures 3 and 6,
and the control frequency of AEIC scheme is 27/50 and the
control frequency of EIC scheme is 46/50, where 50 is the
number of sampling data. Clearly, AEIC scheme is better to
decrease the frequency of impulsive control than the EIC
scheme. *us, it is concluded that the control cost can be
saved more effectively by the AEIC scheme than the EIC
scheme.

Example 2. Consider system (47) with the following pa-
rameters [34–36]:

A �

0.9 +
π
4

19

0.11 0.9 +
π
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D �

− 1.2
�
2

√
π

4
0.3

0.2 − 1.2
�
2

√
π

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(56)

B � diag 1, 0.9{ },

Λ1 � diag 0, 0{ },

Λ2 � diag 0.4, 0.8{ },

(57)

δ1 � 0.1,

δ2 � 0.4,

μ � 0.2,

α � 0.2,

σm � 0.05,

η � 0.1.

(58)

Under the above parameters, applying *eorem 2 and
using the MATLAB LMI toolbox, one can derive that the
impulsive intensity qk � − 0.8884 and the control gains

matrix C �
− 2.5040 − 6.1983
− 0.1509 − 1.6798 . Meanwhile, the weight

matrix Ω in the AEIC scheme and other unknown matrices
in *eorem 2 can be obtained:
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Figure 1: Curve of x(t) for Example 1 without any control.
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Figure 2: Curve of x(t) for Example 1 under AEIC.
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Figure 4: Adaptive parameters of AEIC scheme for Example 1.
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Figure 3: Release instants and intervals for Example 1 under AEIC.
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Figure 5: Curve of x(t) for Example 1 under EIC.
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Figure 6: Release instants and intervals for Example 1 under EIC.
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Figure 7: Curve of x(t) without control for Example 2.
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Figure 8: Curve of x(t) with AEIC for Example 2.
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Ω � 104 ×
0.0424 − 0.0567

− 0.0567 1.4377
 ,

P � 103 ×
0.0514 − 0.1625

− 0.1625 2.5712
 ,

W �
24.3347 − 119.3639

− 119.3639 691.4778
 ,

R1 � 103 ×
0.0154 − 0.1028

− 0.1028 1.0734
 ,

R2 � 103 ×
0.0269 − 0.1600

− 0.1600 2.1631
 ,

R3 � 103 ×
0.2830 0.4031

0.4031 7.7438
 .

(59)

Let the neuron activation function fi(x) � tanh(x), the
time-varying delay δ(t) � 0.2 + 0.2 cos(t), the initial value
x(0) � [− 0.4; 0.7], and the parameters Δ1 � 1,Δ2 � 20 in
adaptive rule (6); Figures 7–10 are presented to reflect in-
tuitively the feasibility and validity of the obtained result in
this paper. Figures 7 and 8 show the state response of systems
(47) with parameters (56) and (57) under no any control and
the well designed AEIC scheme (5), respectively. Clearly,
AEIC scheme (5) is effective. Furthermore, it is not hard to
see from Figure 9 that the frequency of impulsive control is
reduced to a large extent, which means that more networks
resources are saved by using the AEIC scheme. Moreover,
compared with Figures 8 and 10, one can find that the
triggering threshold adjusted adaptively by adaptive rule (6)
is varying with the evolution of system state, i.e., the
threshold gradually decreases when the norm of the system
state goes up, which enhances the flexibility of the AEIC
scheme to some extent.

5. Conclusion

In this paper, we have studied the stochastic exponential
stabilization problem for MJNNs with TDs. A general LKF
involving more information about sample data, Markov
jump parameters, and TDs are constructed, and some ex-
ponential stabilization criteria for two kinds of NNs with
TDs are established by employing a novel FMEII and a new
AEIC scheme. *e feasibility and validity of the obtained
results are illustrated by two numerical examples. More
importantly, the methods proposed in this paper can be
employed to deal with other control issues for time delayed
systems in our future work.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Release instants

Re
le

as
e i

nt
er

va
ls

Figure 9: Release instants and intervals for Example 2.
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Figure 10: Adaptive parameters for Example 2.
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