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Real-world complex systems inevitably suffer from perturbations. When some system components break down and trigger
cascading failures on a system, the system will be out of control. In order to assess the tolerance of complex systems to per-
turbations, an effective way is to model a system as a network composed of nodes and edges and then carry out network robustness
analysis. Percolation theories have proven as one of the most effective ways for assessing the robustness of complex systems.
However, existing percolation theories are mainly for multilayer or interdependent networked systems, while little attention is
paid to complex systems that are modeled as multipartite networks. 0is paper fills this void by establishing the percolation
theories for multipartite networked systems under random failures. To achieve this goal, this paper first establishes two network
models to describe how cascading failures propagate on multipartite networks subject to random node failures. Afterward, this
paper adopts the largest connected component concept to quantify the networks’ robustness. Finally, this paper develops the
corresponding percolation theories based on the developed network models. Simulations on computer-generated multipartite
networks demonstrate that the proposed percolation theories coincide quite well with the simulations.

1. Introduction

It is universally acknowledged that complex systems are
ubiquitous in our lives [1]. Complex systems like city
transportation systems [2] and power supplier systems [3]
are indispensable infrastructures to human life. In order to
better understand complex systems so as to facilitate better
service providing, an effective way is to model a complex
system as a complex network composed of nodes and edges
with the nodes denoting the system components and the
edges representing the interactions between system com-
ponents [4]. For example, a power grid system can be
represented by a network in which a node denotes a power
station and an edge denotes the transmission line between
two stations. Complex network modeling and analysis have

proven as a potent instrument for system control [5–7] and
have received great popularity in the last two decades [8, 9].

Note that complex systems in reality will inevitably suffer
from external and/or internal unpredictable perturbations
which can trigger cascading failures wreaking havoc on
system structures and functionalities [5, 10]. A dramatic
event in history was the Italian blackout that happened in
2003 [11]. It had been reported that the blackout was
triggered by the breakdown of several power lines caused by
a storm. It was until the seminal work done in [11] that the
science underlying the event had been disclosed from the
perspective of network robustness analysis. Network ro-
bustness analysis now has proven to be an effective approach
to evaluating the robustness of complex systems so as to help
prevent unseen system disasters [12–14]. Due to its
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significant economical values, many efforts have been made
towards networked system robustness analysis. Existing
studies can be roughly categorised into two classes, i.e.,
simulation-based studies [15–17] and theoretical studies
[11, 18, 19]. Simulation-based studies investigate the ro-
bustness of networked systems by carrying out computer
simulations. 0eir main drawback is that they cannot un-
cover the governing principles for system robustness. To
overcome this drawback, theoretical studies came out and
amongst which are the percolation theories [1, 20].

Percolation on networks can not only measure the
systems’ robustness but also provide the mathematical ex-
planations for the systems’ robustness behaviours. Note that
real-world systems are not independent but are organized in
a layer-layer interdependent way, which are widely modeled
as multilayer networks [18, 21, 22]. 0e component failures
in one layer of a multilayer networked system can induce the
failures in other layers and cascading failures could even-
tually occur. 0e work in [11] indicates that multilayer
networked systems are vulnerable to perturbations and have
sparked the research enthusiasm on the percolation theories
for multilayer networked systems. Albeit the maturity of
percolation theories for multilayer networked systems, little
attention is paid to multipartite networked systems. Many
complex systems like ecosystems [23, 24], certain control
systems [1], and metabolic systems [25] can be modeled as
multipartite networks. To explore the robustness of multi-
partite networked systems is also of great significance.

0e structure difference between multilayer and multi-
partite networks renders the applications of existing per-
colation theories to multipartite networked systems
infeasible. With regard to this, for a given multipartite
networked system, this paper first establishes two network
cascading models to prescribe the way how cascading fail-
ures propagate on multipartite networks when initial node
failures occur. Afterward, this paper develops the percola-
tion theories for assessing the robustness of multipartite
networked systems under random node failures based on the
largest connected component concept.

0e remainder of this paper is structured as follows.
Section 2 provides related preliminaries including basic
network notations, network robustness evaluation metrics,
and percolation theory for single-layer networked systems.
Section 3 presents the research problem and motivation.
Section 4 delineates in detail the proposed percolation
theories for analyzing the robustness of multipartite net-
worked systems subject to random node failures. Section 5
validates the correctness of the proposed theories through
simulations on random multipartite networks with Poisson
degree distributions. Section 6 concludes the paper.

2. Preliminaries

2.1. Network Notations. Generally, a network is mathe-
matically denoted by G � V, E{ }, where V and E represent
the sets of nodes and edges, respectively. 0e edges between
nodes can be depicted by the adjacency matrix AN×N of G

with N being the number of nodes in G. 0e matrix A is
usually symmetric and binary. Let eij be the entry of A. If

there is an edge between nodes i and j, then eij � 1; oth-
erwise, it is equal to 0.

Regarding complex network analytics, one of the most
concerned properties is the node degree. For a network G,
the degree ki of node i is defined as the number of edges
attached to it. Generally, ki can be calculated as ki � 􏽐

N
j�0 eij.

Another property is the degree distribution P(k) of G which
specifies the probability for a node to have degree k. With ki

and P(k), we have the mean degree 〈k〉 of G, which can be
calculated as 〈k〉 � (1/N) 􏽐

N
i�1 ki � 􏽐

N− 1
k�0 kP(k).

2.2. Multipartite and Multilayer Networked Systems

Definition 1. Let us consider a complex system that can be
modeled as a network G whose node set V consists of L

subsets, i.e., V � S1, S2, . . . , SL􏼈 􏼉. If ∀a, b ∈ [1, L], G satisfies
the following conditions:

Sa ∩ Sb � ∅, if a≠ b,

eij ∈ 0, 1{ }, if i ∈ Sa ∧ j ∈ Sb ∧ b ∈ a − 1, a + 1{ },

eij ≡ 0, if i ∈ Sa ∧ j ∈ Sa±k,∀k ∈ [2, L − 1],

eij ≡ 0, if i, j ∈ Sa.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

0en, we say this system is a multipartite networked system
and the network G is called a multipartite network.

Remark 1. 0e node set Sa of a multipartite networked
system can also be called a partite set. Equation (1) indicates
that an edge of a multipartite network only happens between
two nodes with one coming from partite set Sa and the other
one from partite set Sa+1 or Sa− 1.

Definition 2. Let us consider another system which can be
modeled as a network G, and G is composed of L sub-
networks, i.e., G � G1, G2, . . . , GL􏼈 􏼉. 0e node set V ⊂ G can
also be divided into L subsets with Si being the node set for
network Gi. If G satisfies the following conditions:

Sa ∩ Sb � ∅, if a≠ b,

eij ∈ 0, 1{ }, if i ∈ Sa ∧ j ∈ Sb ∧ b ∈ a, a − 1, a + 1{ },

⎧⎨

⎩

(2)

then we call this system a multilayer networked system and
the network G is called a multilayer network [26, 27].

Remark 2. In the literature, a multilayer network can also be
called an interdependent network or a network of networks
[21, 28]. We can see from the above definitions that the only
structural difference between a multilayer network and
a multipartite network is that parallel edges (edges between
nodes from the same node set) are not allowed in a multi-
partite network.

2.3. Networked System Robustness Evaluation. Network ro-
bustness analysis has proven as an effective tool for assessing
the robustness of networked systems under disturbances
[29, 30]. Regarding system robustness analysis, the foremost
issue is how one defines or quantifies the robustness of
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a networked system. Hitherto, a handful of robustness
metrics have been proposed by researchers, and most of
them share the common idea as delineated in Figure 1.

In the left panel of Figure 1 is a multilayer network G.
Assume that G is under node perturbations and 1 − p

fraction of nodes is removed (marked in red in the figure).
0e node removals will trigger the cascading breakdown of
other nodes and edges. Based on a prescribed cascading
model which defines the way how cascading failures
propagate on G, G finally reaches a stable stage (the final
remaining part of G ) in which no node/edge removal is
possible.0en, one counts fp, the fraction of effective nodes,
in the stable stage. One then gets the robustness curve drawn
in the right panel of Figure 1 in which fp is shown with
respect to p under different values.

In the literature,fp is widely defined as the fraction of non-
zero-degree nodes in the stable stage of G [15, 16, 24] after
removing 1 − p fraction of nodes. Based on this kind of def-
inition for fp, the robustness of a network G then can be
quantified by the node robustness indexRn devised in [16] or by
the area index RA used in [15, 24].0e Rn index is calculated as
Rn � 􏽐

1
p�0 fp, while theRA index ismeasured as the area of the

region covered by the robustness curve and theX-Y axis (see the
dark region in the right panel of Figure 1). 0e larger the value
of Rn or RA is, the higher robustness the focal network has.

0e above definition for fp is effective for network
robustness analysis. However, scientists argue that this kind
of definition may not reflect the real robustness of networks.
In reality, the breakup of some components of a complex
system will fragment the system into pieces and it is argued
that only the largest piece will keep functioning. As per this
assumption, scientists suggest the definition of fp as the
fraction of nodes in the largest connected component (LCC,
the subnetwork that contains the most nodes) in the stable
stage G. 0e LCC-based definition for fp has been widely
recognized [11, 21, 31], and this paper also adopts this kind
of definition for network robustness analysis.

Note that how to select the 1 − p fraction of nodes to be
removed from a network depends on how one models the
perturbations on the network [32–34]. Figure 1 only illustrates
network robustness under node failures. In reality, failures can
occur to the edges of a network. Meanwhile, many networks
have been reported to possess community structures [35, 36];
therefore, failures can also occur to network communities.
Related works can be found in [37, 38].

2.4. Percolation on Single-Layer Networked Systems.
Percolation theories have gained large popularity for ana-
lyzing the robustness of networked systems [32, 39]. In the
following we will illustrate the percolation theory for ana-
lyzing the robustness of single-layer networked systems.

Given that a fraction 1 − p of nodes from a given single-
layer network G is randomly removed, the node removal
breaks G into small parts and there exists the largest one, i.e.,
the LCC. Percolation theory aims to mathematically figure
out the fraction of nodes in the LCC, hereafter denoted by
P∞, with respect to p and the degree distribution P(k) of G

[18, 40, 41], i.e., it aims to derive the relation
P∞ � F(p, P(k)) with F(·) being amap or a function. Before
presenting the mathematical derivations, we first present in
the following some related definitions.

Definition 3 (generating function). A generating function
for a degree distribution P(k) is defined as

G0(x) � 􏽘

∞

k�0
x

k
P(k), (3)

where k is the degree of a node and x is an arbitrary
placeholder.

Definition 4 (excess degree distribution). Following a ran-
domly chosen edge we reach a node s. Define the excess
degree distribution PE(k) as the probability for node s to
have k extra neighbours.

Remark 3. 0e excess degree distribution practically denotes
the probability for a randomly chosen node to have degree
k + 1. In the literature [1, 42], PE(k) is widely calculated as

P
E
(k) �

(k + 1)P(k + 1)

〈k〉
. (4)

Remark 4. Analogous to equation (3), the generating
function for PE(k) is formulated as

G1(x) � 􏽘
∞

k�0
x

k
P

E
(k) �

G0′(x)

G0′(1)
, (5)

with G0′(x) being the first-order derivative of G0(x).
With the above definitions, the percolation theory for

calculating P∞ for a single-layer network G can be math-
ematically written as

P
∞

� p 􏽘
∞

k�0
P(k) 1 − u

k
􏼐 􏼑 � p 1 − G0(u)􏼂 􏼃, (6)

with u being the probability for node s (reached by following
a randomly chosen edge) not to be connected to the LCC via
its neighbouring node d.

0e probability variable u is calculated by the following
transcendental equation:

u � 􏽘
∞

k�0
1 − p + pu

k
􏼐 􏼑P

E
(k) � 1 − p + pG1(u). (7)
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Figure 1: An illustration to the common idea shared by most
existing metrics for quantifying the robustness of a networked
system under node perturbations.
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0ere exists a critical value of p, denoted by pc. Once the
fraction of node removal surpasses 1 − pc, then the focal
network G will break down, i.e., P∞ � 0. 0e critical value
appears when the right and left panels of equation (7) meet
with each other tangentially at u � 1. By calculating the
derivative of equation (7), we have

du

du
�
d pcG1(u)( 􏼁

du
u�1

􏼌􏼌􏼌􏼌 , (8)

which further leads to

pc �
〈k〉

〈k2〉 − 〈k〉
, (9)

in which 〈k2〉 � 􏽐 k2P(k) is the second moment of P(k).
Generally, the smaller the value of pc is, the more robust the
focal network is.

3. ProblemDefinition and ResearchMotivation

3.1. Problem Definition. 0is paper is dedicated to mathe-
matically investigating the robustness of multipartite net-
works. Below we present the mathematical definition for our
studied problem.

Definition 5 (research problem). Consider a system that is
modeled as an L-partite network G. Denote Gij, Gij ⊂ G, as
the bipartite network composed of node sets Si and Sj with
j ∈ i − 1, i + 1{ }. Assume that G is under random attack and
1 − pi fraction of nodes is randomly removed from Si ⊂ G for
all i ∈ [1, L] and pi ∈ [0, 1]. For a given network cascading
model which specifies how cascading failures propagate on G,
G then reaches a stable stage. Consider the LCC in the stable
stage of G.0en, the research problem is to derive the relation

P
∞
i � F pi, P12(k), . . . , Pij(k), . . . , PL,L− 1(k)􏼐 􏼑, (10)

with P∞i being the fraction of nodes remaining in Si ⊂ G

which also belongs to the LCC and Pij(k) being the degree
distribution for the nodes in Si ⊂ Gij.

3.2. Research Motivation. From the definitions given in
Section 2.1, onemay argue that amultipartite network can be
regarded as a simplified multilayer network and in turn
a multilayer network can be regarded as a relaxation of
a multipartite network. 0erefore, one may think that
models and theories developed for multilayer networks will
work for multipartite networks. In what follows, we elab-
orate in detail our research motivations for proposing the
percolation theories for multipartite networks.

(M1) Limitation of Percolation 0eory for Multilayer
Networks with One-to-One Correlations

0e percolation theory introduced in Section2.4 is for
single-layer networks and therefore does not work for
multilayer networks. In view of this, the authors in [11] first
investigated the robustness of multilayer networks with one-
to-one (O2O) correlations, i.e., each node in one subnetwork
depends on one and only one node in its coupled sub-
network. Similar network models can be found in [18, 21].

Figure 2 exhibits the dynamic cascading model estab-
lished in [11] for analyzing the robustness of multilayer
networks with O2O correlations. 0is model assumes that for
each subnetwork contained in a multilayer network, only the
nodes that belong to the LCC will survive perturbations and
cascading failures will not stop until a mutual LCC is reached.

Based on the model illustrated in Figure 2, the authors
further devised the corresponding percolation theory. Ob-
viously, the model shown in Figure 2 together with its
corresponding theory is not applicable to multipartite
networks. 0e reason is obvious as a multipartite network
does not obey the O2O correlation hypothesis.

(M2) Limitation of Percolation 0eory for Multilayer
Networks with One-to-Many Correlations

Real-world multilayer networks are often one-to-many
(O2M) correlated, i.e., each node in one subnetwork de-
pends on more than one node in its coupled subnetwork.
With regard to this, studies on the robustness of multilayer
networks with O2M correlations came out [31, 43, 44].

Figure 3 shows the dynamic cascading model proposed
in [18] for analyzing the robustness of multilayer networks
with O2M correlations. Given a two-layer network con-
sisting of subnetworks A and B, let 􏽥PA(k) (and 􏽥PB(k)) be the
degree distribution of the nodes in A (and B) that have
correlations with nodes in B (and A). Assume that a fraction
1 − pA and a fraction 1 − pB of nodes are randomly removed
from A and B, respectively. With the model shown in
Figure 3 the authors then have devised the corresponding
percolation theory which is mathematically written as

P∞A � uA 1 − GA0 1 − uA 1 − fA( 􏼁( 􏼁􏼂 􏼃,

P∞B � uB 1 − GB0 1 − uB 1 − fB( 􏼁( 􏼁􏼂 􏼃,
􏼨 (11)

where 􏽥GA0 and 􏽥GB0 are, respectively, the generating func-
tions of 􏽥PA(k) and 􏽥PB(k). 0e corresponding variables fA,
fB, uA, and uB are calculated as

fA � GA1 1 − uA 1 − fA( 􏼁􏼂 􏼃,

fB � GB1 1 − uB 1 − fB( 􏼁􏼂 􏼃,

uA � pA 1 − 􏽥GA0 1 − P∞B( 􏼁􏽨 􏽩,

uB � pB 1 − 􏽥GB0 1 − P∞A( 􏼁􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

Note that a multipartite network can be regarded as
a simplified multilayer network with O2M correlations.
However, the model shown in Figure 3 still does not work
for multipartite networks. 0e reasons are twofold. On the
one hand, the model shown in Figure 3 considers the LCC
of the network in each layer, while the nodes in each
“layer” of a multipartite network are disconnected from
each other, and thus the LCC does not exist. On the other
hand, the percolation theory based on the model shown in
Figure 3 involves the degree distributions PA(k) and
PB(k). Bear in mind that PA(k) denotes the degree dis-
tribution of the nodes in network A that have connections
with each other. 0us, we have PA(k) � PB(k) � · · · ≡ 0
for a multipartite network, and the substitution of this
condition into equation (11) will lead to the following
result:
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P∞A � pA 1 − GA0 1 − P∞B( 􏼁􏼂 􏼃,

P∞B � pB 1 − GB0 1 − P∞A( 􏼁􏼂 􏼃.
􏼨 (13)

For one thing, the above equation only works for bi-
partite networks. For another thing, the extension of the
above equation definitely does not fit for multipartite net-
works because equation (11) is based on the dynamic model
shown in Figure 3 which is not applicable to multipartite
networks. One more thing is that the derivations of equation
(11) are very complicated. 0erefore, new models and
theories for analyzing the robustness of multipartite net-
works are desirable, and this is the very motivation of this
work.

4. Proposed Models and Theories

4.1. Global Model for Robustness Analysis. Although the
models exhibited in Figures 2 and 3 are not feasible for
multipartite networked systems, their ideas could provide us
inspirations. Equipped with the concept of LCC, we first
establish a simple cascading model, which we call it the
global model, for multipartite networks.

Definition 6 (global model). Consider an L-partite network
G with Si being its i-th node set. Assume that G is under
random attack and 1 − pi fraction of nodes is randomly
removed from Si ⊂ G for ∀i ∈ [1, L] and pi ∈ [0, 1]. 0e
edges attached to the removed nodes are also removed. 0e
removal of nodes and edges fragments G into small parts,
and the largest one is regarded as the LCC of G and only the
LCC will survive in the final stable stage.

Example 1. Figure 4 gives a graphical example of the global
model for defining the way how failures propagate on
multipartite networks. We can observe from Figure 4 that
the global model practically takes a multipartite network as
a whole. When a multipartite network is under attack, the
global model directly calculates the LCC in the network.

4.2. LocalModel for Robustness Analysis. 0e global model is
simple and straightforward. However, it may not reflect the
dynamics of all types of multipartite networks. Inspired by
the models proposed in [11, 18], we further develop another
cascading model which we call it the local model.

Definition 7 (local model). Consider an L-partite network G

with Si being its i-th node set. Assume that G is under
random attack and 1 − pi fraction of nodes is randomly
removed from Si ⊂ G for ∀i ∈ [1, L] and pi ∈ [0, 1]. 0e
edges attached to the removed nodes are also removed. 0e
removal of nodes and edges fragments G12 ⊂ G into small
parts, and the nodes outside the LCC of G12, together with
their edges, are removed. 0e removal of nodes and edges
further fragments G23 ⊂ G into small parts, and nodes
outside the LCC of G23 are removed. 0e node removal and
network fragmentation processes repeat recursively on
Gij ⊂ G for all i ∈ [1, L − 1] until G reaches a stable stage in
which no node/edge removal and network fragmentations
are possible. 0en, the remaining subnetwork in the stable
stage is the LCC of G.

Example 2. Figure 5 presents a graphical example of the
proposed local model for depicting the dynamic process on
a multipartite network under node failures. It can be noticed
from Figure 5 that the local model considers the LCC in each
bipartite network contained in a multipartite network. In the
final stable stage, the local model focuses on the LCC that
contains nodes from every partite set of the multipartite
network in question.

4.3. Variables and Notations. Before starting depicting our
proposed theories for analyzing the robustness of
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multipartite networks, we first list out related variables and
notations that will be heavily used in our later derivations.

Given an L-partite networkG with Si being its i-th partite
set and ni � |Si| being the number of nodes in Si, let Pi(k) be
the degree distribution of the nodes in Si. Denote Gij ⊂ G as
the bipartite network consisting of partite sets Si and Sj with
j � i − 1, i + 1{ }. Let Pij(k) be the degree distribution of the
nodes in Si ⊂ Gij that have connections with nodes in
Si ⊂ Gij.

Based on the definition of excess degree distribution, we,
respectively, define the excess degree distributions of Pi(k)

and Pij(k) as PE
i (k) and PE

ij(k). 0en, based on the defi-
nition of generating function, we define
G0

i (x) � 􏽐
∞
k�0 xkPi(k) and G0

ij(x) � 􏽐
∞
k�0 xkPij(k),

respectively, as the generating functions for Pi(k) and
Pij(k). Analogously, we define G1

i (x) � 􏽐
∞
k�0 xkPE

i (k) and
G1

ij(x) � 􏽐
∞
k�0 xkPE

ij(k), respectively, as the generating
functions for PE

i (k) and PE
ij(k).

4.4. Percolation 8eory Based on the Global Model. With all
the above defined variables, for an L-partite networked
system, we propose the following percolation theory for
calculating P∞i with respect to the global model presented in
Definition 6.

Definition 8 (probability vector u). Consider the situation
that 1 − pi fraction of nodes is randomly removed from Si of
an L-partite network G for ∀i ∈ [1, L] with pi ∈ [0, 1]. For
j ∈ i − 1, i + 1{ }, define a probability vector
u � u12, u21, . . . , uij, . . . , uL,L− 1􏽮 􏽯, with uij being the proba-
bility for a node in Si not to be connected to the LCC of G via
a node in Sj.

Theorem 1 (percolation theory based on the global model).
Consider an L-partite network G with L≥ 3; we randomly
remove 1 − pi fraction of nodes from Si for ∀i ∈ [1, L] with
pi ∈ [0, 1]. Based on the global model given in Definition 4, G

reaches a stable stage. Define the probability vector u. In the
limit of ni⟶∞, the fraction P∞i of nodes in Si that also
belongs to the LCC in the stable stage of G is calculated as

P∞1 � p1 1 − G0
12 u12( 􏼁􏼂 􏼃,

P∞i � pi 1 − 􏽑
j�i− 1,i+1{ }

G0
ij uij􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, ∀i ∈ [2, L − 1],

P∞L � pL 1 − G0
L,L− 1 uL,L− 1􏼐 􏼑􏽨 􏽩,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

with the variable uij ∈ u being calculated as
u21 � 1 − p1 + p1G

1
12 u12( 􏼁,

uij � 1 − pj + pjG
1
ji uji􏼐 􏼑G1

j,j+δ uj,j+δ􏼐 􏼑,

uL− 1,L � 1 − pL + pLG1
L,L− 1 uL,L− 1􏼐 􏼑,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

where δ � − 1, if j � i − 1, and δ � 1, if j � i + 1.

Proof. We start by considering P∞1 . As the probability for
a node a ∈ S1 not to be connected to the LCC via a node
b ∈ S2 is u12, the probability ϕ12 for nodes in S1 not to be
connected to the LCC via nodes in S2 is calculated as

ϕ12 � 􏽘

n2

k�0
P12(k)u

k
12. (16)

In the limit of ni⟶∞, we have

lim
n2⟶∞

ϕ12 � 􏽘
∞

k�0
P12(k)u

k
12 � G

0
12 u12( 􏼁. (17)

Note that 1 − pi fraction of nodes is removed from Si for
∀i ∈ [1, L]; thus, pi fraction of nodes is remaining in Si.
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Figure 5: An example of the local model for describing the cas-
cading failures on multipartite networked systems subject to node
failures. Initially, node 2 from partite set B is removed. In Stage 1,
the local model considers the LCC of the bipartite network GAB
containing the nodes in A and B. In Stage 2, the nodes that are not
in the LCC of GAB are removed. In Stage 3, the local model
considers the LCC of the bipartite network GBC containing the
nodes in B and C. In Stage 4, the nodes that are not in the LCC of
GBC are removed. 0e above process continues until no further
node removal is possible. 0e remaining subnetwork in the stable
stage is considered as the LCC of the focal network.
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Figure 4: An example of the global model for describing the
cascading failures on multipartite networked systems subject to
node failures. Initially, node 2 from partite set B of a tripartite
network is removed. In Stage 1, the removal of node 2 breaks the
focal network into two clusters, and all the nodes that are not in the
LCC are removed. In the final stage, only the nodes in the LCC are
remaining.
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0erefore, in the LCC of G, the remaining fraction of nodes
in S1 is calculated as

P
∞
1 � p1 1 − ϕ12( 􏼁 � p1 1 − G

0
12 u12( 􏼁􏽨 􏽩. (18)

Analogously, we can prove the correctness of the ex-
pression of P∞L as given in 0eorem 1. Now, let us consider
P∞i .

Note that a node a ∈ Si can simultaneously have
neighbours in Si− 1 and Si+1. If nodes in Si do not belong to
the LCC, then the nodes in Si should not be connected to the
LCC via their neighbours. Based on the above analysis, we
know that the probability ϕi,i− 1 for nodes in Si not to be
connected to the LCC via nodes in Si− 1 is

ϕi,i− 1 � 􏽘

ni− 1

k�0
Pi,i− 1(k)u

k
i,i− 1. (19)

Analogously, the probability ϕi,i+1 for nodes in Si not to
be connected to the LCC via nodes in Si+1 is

ϕi,i+1 � 􏽘

ni+1

k�0
Pi,i+1(k)u

k
i,i+1. (20)

0en, the probability ϕi for nodes in Si not to be con-
nected to the LCC via their neighbours is ϕi � ϕi,i− 1 · ϕi,i+1.
0erefore, in the limit of ni⟶∞, we further have

lim
ni⟶∞

ϕi � G
0
i,i− 1 ui,i− 1􏼐 􏼑G

0
i,i+1 ui,i+1􏼐 􏼑, (21)

based on which we can figure out P∞i as

P
∞
i � pi 1 − ϕi( 􏼁 � pi 1 − G

0
i,i− 1 ui,i− 1􏼐 􏼑G

0
i,i+1 ui,i+1􏼐 􏼑􏽨 􏽩.

(22)

To this end, the first part of 0eorem 1, i.e., the part
regarding P∞i , is proved. Next, we give the proof for the
second part regarding the probability vector u.

We start by analyzing u21, which denotes the probability
for the event that a node b ∈ S2 is not connected to the LCC
of G via a node a ∈ S1 to happen. Note that if node a is
removed, which happens with a probability 1 − p1, then the
above event obviously happens. Now, consider the situation
that node a is not removed. 0en, the aforementioned event
happens if a is not connected to the LCC via its neighbours.
As a consequence, in the limit of ni⟶∞, we have

u21 � 1 − p1 + p1 􏽘

n2

k�0
P

E
12(k)u

k
12 � 1 − p1 + p1 · G

1
12 u12( 􏼁.

(23)

Analogously, we can prove the correctness of the ex-
pression of uL− 1,L. Next, we consider uij with j � i + 1.

Note that nodes in Si have connections with nodes in Sj.
0e event that a node a ∈ Si is not connected to the LCC via
a node b ∈ Sj, which happens with the probability uij, can
happen under two situations: (S1) node b has been removed;
(S2) node b is not removed and b itself is not connected to
the LCC via its own neighbours. Situation S1 happens with
the probability ψS1 � 1 − pj. 0us, the key step for working

out uij then lies in the calculation of the probability ψS2 for
situation S2 to happen.

Because a node b ∈ Sj can simultaneously have neigh-
bours in Si and Sj+1, if b is not connected to the LCC via its
neighbours, then b should neither be connected to the LCC
via nodes in Si nor via nodes in Sj+1. Assume that node b has
k neighbours in Si; then, the probability φji for node b not to
be connected to the LCC via nodes in Si is

φji � u
k
ji. (24)

Analogously, when node b has k neighbours in Sj+1, the
probability φj,j+1 for node b not to be connected to the LCC
via nodes in Sj+1 is

φj,j+1 � u
k
j,j+1. (25)

Recall the definition of excess degree distribution; the
probabilities for node b to, respectively, have k neighbours in
Si and k neighbours in Sj+1 are PE

ji(k) and PE
j,j+1(k). As

a consequence, the probability ψS2 can be calculated as

ψS2 � pj 􏽘

ni

k�0
P

E
ji(k)φji 􏽘

nj+1

k�0
P

E
j,j+1(k)φj,j+1. (26)

Note that situations S1 and S2 are two independent
events; therefore, in the limit of ni⟶∞, the probability uij

is calculated as

uij � ψS1 + ψS2

� 1 − pj + pjG
1
ji uji􏼐 􏼑G

1
j,j+1 uj,j+1􏼐 􏼑.

(27)

0e proof of uij for j � i − 1 is omitted as it is analogous
to that of uij for j � i + 1 as presented above. To this end,
0eorem 1 is proved. □

Remark 5. Note that when analyzing ψS2, it is easy to derive
the wrong expression of ψS2 in the following way:

ψS2 � pj 􏽘

∞

k�0
P

E
j (k) 􏽘

k

m�0

k

m
􏼠 􏼡u

m
ji u

k− m
j,j+1

� pjG
1
j uji + uj,j+1􏼐 􏼑.

(28)

0e idea of the above derivations is that m out of k

neighbours of a node b ∈ Sj are not connected to the LCC via
nodes in Si, and the remaining k − m neighbours of b are not
connected to the LCC via nodes in Sj+1. However, the event
that node b has k neighbours in Si and the event that node b

has k neighbours in Sj+1 are independent.0erefore, variable
m does not need to run over k for k ∈ [0,∞).

Remark 6. From 0eorem 1, one can easily derive the
percolation theory for L-partite networked systems with
L � 2, i.e., bipartite networked systems. Specifically, one can
have

P∞1 � p1 1 − G0
12 u12( 􏼁􏼂 􏼃,

P∞2 � p2 1 − G0
21 u21( 􏼁􏼂 􏼃,

⎧⎨

⎩ (29)

with u12 and u21, respectively, being calculated as
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u12 � 1 − p2 + p2G
1
21 u21( 􏼁,

u21 � 1 − p1 + p1G
1
12 u12( 􏼁.

⎧⎨

⎩ (30)

4.5. Percolation 8eory Based on the Local Model. When
calculating the LCC, the global model takes a multipartite
network as a whole while the local model by contrast an-
alyzes its subnetworks.0e local model requires that the final
LCC should encompass nodes from every partite set.
0erefore, the above proposed percolation theory does not
work for multipartite networked systems with respect to the
local model. In what follows we elucidate our proposed
percolation theory based on the local model.

Theorem 2 (percolation theory based on the local model).
Consider an L-partite network G with L≥ 3; we randomly
remove 1 − pi fraction of nodes from Si for ∀i ∈ [1, L] with
pi ∈ [0, 1]. Based on the local model given in Definition 5, G

reaches a stable stage. Define the probability vector u. In the
limit of ni⟶∞, the fraction P∞i of nodes in Si which also
belongs to the LCC in the stable stage of G is calculated as

P∞1 � p1 1 − G0
12 u12( 􏼁􏼂 􏼃,

P∞i � pi 􏽑
j� i− 1,i+1{ }

1 − G0
ij uij􏼐 􏼑􏽨 􏽩, i ∈ [2, L − 1],

P∞L � pL 1 − G0
L,L− 1 uL,L− 1􏼐 􏼑􏽨 􏽩,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(31)

with the variable uij being calculated as
u21 � 1 − p1 + p1G

1
12 u12( 􏼁,

uij � 1 − pj 1 − G1
ji uji􏼐 􏼑􏽨 􏽩 1 − G1

j,j+δ uj,j+δ􏼐 􏼑􏼔 􏼕,

uL− 1,L � 1 − pL + pLG1
L,L− 1 uL,L− 1􏼐 􏼑,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

where δ � − 1, if j � i − 1, and δ � 1, if j � i + 1.

Proof. We only present the proof for P∞i , since the proofs
for P∞1 and P∞L are exactly the same as that presented in
0eorem 1. As mentioned earlier, a node a ∈ Si can si-
multaneously have neighbours in Si− 1 and Si+1. Based on the
local model given in Definition 5, we see that as long as there
exists one neighbour of node a that connects a to the LCC,
then node a definitely belongs to the LCC. According to the
proof of 0eorem 1, we know that in the limit of ni⟶∞,
the probability ϕi,i− 1 for nodes in Si not to be connected to
the LCC via nodes in Si− 1 is

ϕi,i− 1 � G
0
i,i− 1 ui,i− 1􏼐 􏼑. (33)

Analogously, we have ϕi,i+1 � G0
i,i+1(ui,i+1). 0erefore, the

probability for node a to be connected to the LCC via at least
one neighbour in Si− 1 is 1 − ϕi,i− 1. Analogously, the proba-
bility for node a to be connected to the LCC via at least one
neighbour in Si+1 is 1 − ϕi,i+1. Consequently, the probability
ϕi for nodes in Si to be connected to the LCC via their
neighbours is calculated as

ϕi � 1 − ϕi � 1 − ϕi,i− 1􏼐 􏼑 1 − ϕi,i+1􏼐 􏼑. (34)

0erefore, in the limit of ni⟶∞, P∞i is calculated as

P
∞
i � piϕi � pi 1 − ϕi,i− 1􏼐 􏼑 1 − ϕi,i+1􏼐 􏼑

� pi 􏽙
j� i− 1,i+1{ }

1 − G
0
ij uij􏼐 􏼑􏽨 􏽩.

(35)

To this end, the correctness of P∞i as given in0eorem 2
is proved. Next, we give the proof for the probability variable
uij.0e proofs for variables u21 and uL− 1,L are omitted as they
are the same as that given in the proof for 0eorem 1. We
first analyze uij with j � i + 1.

Recall that the variable uij denotes the probability that
a node a ∈ Si is not connected to the LCC via a node b ∈ Sj.
Analogous to what are analyzed in the proof for 0eorem 1,
the event that a ∈ Si is not connected to the LCC via b ∈ Sj

also happens under two situations: (S1) node b is removed,
which happens with the probability ψS1 � 1 − pj; (S2) b

remains and b is not connected to the LCC via its neigh-
bours. Note that the probability ψS2 for situation S2 to
happen cannot be calculated in the way demonstrated in the
proof of 0eorem 1. 0e reason is that the local model
requires that the LCC contains nodes from Si for ∀i ∈ [1, L],
while the global model does not require this condition.

Because node b ∈ Sj has neighbours in Si and Sj+1, the
probabilities φji and φj,j+1 are, respectively, calculated as
φji � uk

ji and φj,j+1 � uk
j,j+1. 0erefore, the probability φj for

b ∈ Sj neither to be connected to the LCC via neighbours in
Si nor via nodes in Sj+1 is

φi � 􏽘

ni

k�0
P

E
ji(k)φji + 􏽘

nj+1

k�0
P

E
j,j+1(k)φj,j+1

− 􏽘

ni

k�0
P

E
ji(k)φji 􏽘

nj+1

k�0
P

E
j,j+1(k)φj,j+1.

(36)

In the limit of ni⟶∞, φi can be further calculated as

lim
ni⟶∞

φi � G
1
ji uji􏼐 􏼑 + G

1
j,j+1 uj,j+1􏼐 􏼑

− G
1
ji uji􏼐 􏼑G

1
j,j+1 uj,j+1􏼐 􏼑.

(37)

As ψS2 � pjφi, in the limit of ni⟶∞, the probability
uij is calculated as

uij � ψS1 + ψS2 � 1 − pj + pjφi

� 1 − pj 1 − G
1
ji uji􏼐 􏼑􏽨 􏽩 1 − G

1
j,j+1 uj,j+1􏼐 􏼑􏽨 􏽩.

(38)

Based on the same token shown above, we can work out
uij for j � i − 1 as

uij � 1 − pj 1 − G
1
ji uji􏼐 􏼑􏽨 􏽩 1 − G

1
j,j− 1 uj,j− 1􏼐 􏼑􏽨 􏽩, (39)

and therefore 0eorem 2 is proved. □

5. Numerical Simulations

5.1. Random Multipartite Networks. 0e proposed theories
exhausted in Section 4 theoretically investigate the robust-
ness of multipartite networks with arbitrary degree distri-
butions in face of random node failures. Here we generate
multipartite networks with Poisson degree distributions to
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validate the correctness of the proposed theories. 0e rea-
sons for doing so are twofold. First, generating multipartite
networks with Poisson degree distributions is easy to im-
plement. Second, a Poisson distribution has very good
mathematical properties. To be specific, for a Poisson dis-
tribution P(k) � e− 〈k〉(〈k〉k/k!) with 〈k〉 being its expec-
tation, it is easy to prove that

G0(x) � 􏽘
∞

k�0
x

k
P(k) � 􏽘

∞

k�0
x

k
e

− 〈k〉〈k〉k

k!
� e

〈k〉(x− 1)
, (40)

G1(x) �
G0′(x)

G0′(1)
� e

〈k〉(x− 1)
� G0(x). (41)

Given an empty L-partite networkG, for all i ∈ [1, L − 1],
we construct G by connecting each pair of nodes with one
from Si and the other one from Si+1 with a predefined
probability ri � (di/N), where di is a constant. 0en, it is
easy to figure out that the degree distributions Pij(k) and
Pji(k) for nodes in Si, Sj ⊂ Gij comply with the following
Poisson distributions:

Pij(k) �
nj

k

⎛⎝ ⎞⎠r
k
i 1 − ri( 􏼁

nj − k ≈ e
− 〈kij〉
〈kij〉

k

k!
, (42)

Pji(k) �
ni

k
􏼠 􏼡r

k
i 1 − ri( 􏼁

ni− k ≈ e
− 〈kji〉
〈kji〉

k

k!
, (43)

where 〈kij〉 � njri � (nj · di/N) and 〈kji〉 � nirj � (ni·

di/N).

5.2. Validation for8eorem 1. Without loss of generality, in
the simulations, we consider L-partite networks with L � 3,
i.e., tripartite networks. For a tripartite network G generated
in the way illustrated in the previous section, when 1 − pi

fraction of nodes is randomly removed from Si ⊂ G for all
i ∈ [1, 3] and the cascading failures propagate on G based on
the defined global model, then 0eorem 1 leads to the
following simplified equations:

P∞1 � p1 1 − e〈k12〉 u12 − 1( )􏽨 􏽩,

P∞2 � p2 1 − e〈k23〉 u23 − 1( )e〈k21〉 u21− 1( )􏽨 􏽩,

P∞3 � p3 1 − e〈k32〉 u32 − 1( )􏽨 􏽩,

(44)

u21 � 1 − p1 + p1e
〈k12〉 u12 − 1( ),

u23 � 1 − p3 + p3e
〈k32〉 u32 − 1( ),

u12 � 1 − p2 + p2e
〈k23〉 u23 − 1( )e〈k21〉 u21− 1( ),

u32 � 1 − p2 + p2e
〈k23〉 u23 − 1( )e〈k21〉 u21− 1( ).

(45)

For simplicity, in the simulations, we set the parameters
of a tripartite network to be n1 � n2 � n3 � 5 × 104,
d1 � d2 � d, and d � 3, 6, 9, 12, 15{ }. As a consequence, we
have 〈k12〉 � 〈k21〉 � 〈k23〉 � 〈k32〉 � 〈k〉 � d/3.

Because the parameter pi affects the robustness of
multipartite networks, in order to better demonstrate the
simulation results, here we consider two simple cases: (C1)

p1 � p2 � p3 � p, i.e., we randomly remove the same
fraction of nodes from each partite set; (C2) p1 � p,
p2 � p3 � 1, i.e., we only remove nodes from partite set S1.

Under case 1, the critical value pc becomes

pc �

��������������������
1

〈k23〉〈k32〉 +〈k21〉〈k12〉

􏽳

. (46)

Under case 2, the critical value pc � 0. Interested readers
are encouraged to discover this conclusion by themselves.

Figure 6 shows the simulation and theoretical results
on the robustness of tripartite networks based on the
global model. 0e theoretical results shown in Figure 6
are obtained by solving equations (44) and (45).
During the simulations, p ranges from 0 to 1 at an in-
terval of 0.025. It can be clearly seen from Figure 6 that
the theoretical results coincide quite well with the
simulations. Under case 1, the critical value pc given in
equation (46) has the simplified form of pc � (3/

�
2

√
d).

Under case 2, pc � 0, which indicates that the focal
networks are extremely robust to random node failures.
It can be observed from Figure 6 that the values of pc are
in accordance with that of the simulations. 0e results
shown in Figure 6 indicate that multipartite networks are
robust to node failures when the global model is of
concern.

5.3. Validation for 8eorem 2. For a tripartite network with
Poisson degree distributions, 0eorem 2 leads to the fol-
lowing simplified equations:

P∞1 � p1 1 − e〈k12〉 u12− 1( )􏽨 􏽩,

P∞2 � p2 1 − e〈k23〉 u23− 1( )􏽨 􏽩 1 − e〈k21〉 u21− 1( )􏽨 􏽩,

P∞3 � p3 1 − e〈k32〉 u32− 1( )􏽨 􏽩,

(47)

u21 � 1 − p1 + p1e
〈k12〉 u12− 1( ),

u23 � 1 − p3 + p3e
〈k32〉 u32− 1( ),

u12 � u32 � 1 − p2 + p2 e
〈k23〉 u23− 1( ) + e

〈k21〉 u21− 1( )􏼔

− e
〈k23〉 u23− 1( )e

〈k21〉 u21 − 1( )􏼕.

(48)

Figure 7 shows the simulation and theoretical results on
the robustness of tripartite networks based on the local
model.0e theoretical results shown in Figure 7 are obtained
by solving equations (47) and (48) with the same parameter
settings presented in the previous section. 0e results
recorded in Figure 7 also demonstrate that the proposed
theory coincides quite well with the simulations.

By comparing Figures 6 and 7, we can see that the
robustness of multipartite networks with respect to the
local model shows first-order phase transition, which
indicates that multipartite networks with the local model
are vulnerable to perturbations. Both Figures 6 and 7 show
that larger mean degrees will enhance the networks’
robustness.
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Figure 6: Robustness of tripartite networks based on the global model. Lines denote the theoretical results while symbols represent the
simulation results. 0e first and second rows of the figure, respectively, represent the case that the node removal occurs to Si for all i ∈ [1, 3]

and for i � 1. Simulation results are averaged over 1000 trials.
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Figure 7: Continued.
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6. Conclusion

Investigating the robustness of complex systems under
perturbations is pivotal. Network robustness analysis
provides a potent instrument towards that purpose.
While the majority of existing studies on network ro-
bustness analysis focus on multilayer networked systems,
this paper theoretically studied the robustness of multi-
partite networked systems. 0is paper first established
two network models for depicting the cascading failures
on multipartite networked systems in face of node fail-
ures. Equipped with the established network models
together with the largest connected component concept,
this paper then developed the corresponding percolation
theories for analyzing the robustness of multipartite
networked systems under random node failures. 0e
proposed theories uncovered the second-order and first-
order phase transition phenomena on the robustness of
multipartite networked systems. 0e correctness of the
proposed theories had been validated through simula-
tions on multipartite networks with Poisson degree
distributions.

Note that complex systems in reality can suffer from
target attacks. Although this paper only investigates the
robustness of multipartite networked systems under random
perturbations, the proposed models and theories provide
scientific insights for the target attack scenarios. Meanwhile,
the proposed theories could shed new lights on the optimal
structure design of robustness network and/or networked
systems.
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