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Scientific workflow is a valuable tool for various complicated large-scale data processing applications. In recent years, the in-
creasingly growing number of scientific processes available necessitates the development of recommendation techniques to
provide automatic support for modelling scientific workflows. In this paper, with the help of heterogeneous information network
(HIN) and tags of scientific workflows, we organize scientific workflows as a HIN and propose a novel scientific workflow
similarity computation method based on metapath. In addition, the density peak clustering (DPC) algorithm is introduced into
the recommendation process and a scientific workflow recommendation approach named HDSWR is proposed.+e effectiveness
and efficiency of our approach are evaluated by extensive experiments with real-world scientific workflows.

1. Introduction

Scientific workflow is an effective and important means to
deal with data-intensive, computation-intensive, and col-
laboration-intensive scientific issues in many large-scale
complex systems or applications from domains such as
physics, astronomy, chemistry, bioinformatics, and life
sciences [1–3]. In practice, many scientific workflows have
been successfully deployed and executed on clouds. Re-
cently, with the quick development of smart user devices and
edge computing, a number of studies have been carried out
to construct and execute workflows in a cloud-edge col-
laborative manner [4, 5].

Scientific workflow modelling plays an important role in
complex scientific workflow applications, which is a not only
complex but also error-prone process. In recent years, more
and more scientific workflows have been published onto the
Web and shared in some repositories such as CrowdLabs,
SHIWA, Galaxy, and the myExperiment [6, 7]. People can
leverage and repurpose a part of existing scientific workflows
for specific complex applications, rather than constructing
new ones from scratch. However, with the growth of the

amount of scientific workflows, finding suitable scientific
workflows from a sea of candidates becomes a new problem
for scientists and engineering personnel. +ough process
retrieval methods can help to handle this problem by re-
trieving similar scientific workflow fragments from repos-
itories, much manual work is still required. Consequently, to
provide better automatic support, it is necessary to build
effective scientific workflow recommendation techniques,
which is fundamental for the reuse and repurposing of
current scientific workflows.

In scientific workflow repositories, various types of data
can be used for recommendation, including scientific
workflow structure and annotation. However, the tags of
scientific workflows are usually neglected by existing sci-
entific workflow recommendation methods. In fact, the tags
of scientific workflows contain much valuable information
and different underlying logical relations among scientific
workflows which can be explored via them. For example,
many tags in the myExperiment repository are substantially
shared by multiple scientific workflows and there exist
partial similarity relations among these scientific workflows.
+erefore, integrating tags and other information of

Hindawi
Complexity
Volume 2020, Article ID 4129063, 16 pages
https://doi.org/10.1155/2020/4129063

mailto:ypwen_0@qq.com
https://orcid.org/0000-0002-0381-8460
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4129063


scientific workflows is promising to generate more accurate
recommendations.

On the other hand, heterogeneous information network
(HIN) has been proved to be a powerful modelling method
to incorporate various heterogeneous types of information
and it has been successfully applied in recommender systems
[8, 9]. Motivated by the HIN-based recommendation idea
and data characteristics of scientific workflow repository, we
plan to integrate multiple types of scientific workflow data
into the form of HIN and use a metapath-based technique to
measure similarity and calculate distance between scientific
workflows, by which multiple metapaths can be combined
with the semantic description information of scientific
workflows and more accurate similarity computation results
would be obtained.

With these observations, in this paper, we propose a
heterogeneous information network-based approach for
recommending scientific workflows to scientists and engi-
neering personnel. In our approach, different data objects
and underlying logical relations on scientific workflows are
organized as a HIN, according to which the similarity be-
tween scientific workflows is evaluated. In addition, to fa-
cilitate the reuse and repurposing of current scientific
workflows, the density peak clustering (DPC) algorithm [10]
is introduced and used to group candidates into clusters.
Our main contributions are summarized as follows:

(1) We propose a new representation form of scientific
workflow based on HIN, which is enriched through
incorporation of multiple types of data including
tags and logical relations of such data

(2) We build a metapath-based method to assess the
similarity between scientific workflows, where the
similarity is calculated according to objects of tag,
description, activity, and subscientific workflow in-
volved in scientific workflows

(3) We present a HIN- and DPC-based scientific
workflow recommendation approach named
HDSWR to generate more accurate recommenda-
tions and, on the basis of it, to facilitate the reuse and
repurposing of current scientific workflows for sci-
entists and engineering personnel

(4) We provide two real-world datasets with tags on
scientific workflows for experiments

+e remainder of this paper is organized as follows.
Section 2 describes the related studies. Section 3 introduces
some notations and basic definitions used in the paper.
Section 4 presents the scientific workflow similarity com-
putation method. In Section 5, we propose the HDSWR
approach. +en, we evaluate our method in Section 6.
Section 7 concludes this paper.

2. Related Work

In this section, we briefly review related work on the
workflow models, workflow recommendations, and HIN.

A workflow model is fundamental for various workflow
applications. In practice, workflows can be modelled by

different tools such as directed acyclic graphs (DAGs), Petri
nets, event-driven process chains (EPCs), the business
process execution language (BPEL), or the fairly complex
business process modelling notation (BPMN) language
which has over 100 symbols [11]. However, modelling
workflows is always a knowledge-intensive and laborious
task. To improve workflow modelling, methods such as
workflow mining [12] have been proposed to discover
workflow models from event logs. However, similar to
process retrieval, much manual work is still involved.

In recent years, some workflow recommendation ap-
proaches have been proposed. Current techniques can be
mainly classified into two types: business workflow (process)
recommendation and scientific workflow recommendation.

In the business process management domain, business
workflow is usually modelled with block structures including
sequential structures, alternative structures, parallel struc-
tures, and iterative structures. So far, only a limited number
of business workflow recommendation methods have been
proposed to serve different purposes, which can be classified
into complete process recommendation and process frag-
ments (nodes) recommendation [13]. For example, Zhang
et al. [14] leveraged workflow provenance to recommend a
set of nodes for a partial workflow. Li et al. [15] adopted
minimum depth-first-search codes and string edit distances
for representing and recommending business workflow
fragments. Deng et al. [13] developed a recommendation
system to generate a sorted candidate node sets, which used a
subgraph mining method to extract patterns from process
repositories. Wang et al. [16] utilized the properties of
business process repositories and proposed a representation-
learning-based recommendation method.

Scientific workflows are based on the automation of
scientific process which is typically composed of multiple
scientific programs or Web services. Compared with busi-
ness workflows, scientific workflows have a strong focus on
the dataflow to sufficiently support a variety of data-in-
tensive applications, in which the control structure just
simply describes the partial ordering of tasks. +erefore,
scientific workflows are usually modelled with unstructured
DAGs, which conceptually use a set of nodes and edges
instead of complex block structures. However, similar to
business workflow recommendation, there are two kinds of
work in scientific workflow recommendation. For instance,
Zhang et al. [17] used the term of unit of work (UoW) to
represent a collection of services (i.e., fragments of a sci-
entific workflow) chained together, based on which a UoW-
driven scientific workflow recommendation framework and
three algorithms for UoW mining and recommendation are
proposed. Cheng et al. [18, 19] converted a scientific
workflow into a lay hierarchy in terms of a tree style, where
the hierarchical relations specify the links between a sci-
entific workflow, its subworkflows, and activities. Based on
it, a semantic similarity computation algorithm considering
the lay hierarchy and description of scientific workflows is
proposed for clustering and recommending appropriate
scientific workflows. Krzywucki and Polak [20] utilized
semantic-type comparison to evaluate the similarity of
scientific workflows. Bergmann et al. [21] proposed a
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semantic workflow graph-based method for modelling
scientific workflow similarity and developed an A∗ search-
based algorithm for workflow similarity computation.
Starlinger et al. [7] presented a layer decomposition ap-
proach for the comparison and similarity search of scientific
workflow. Mohan et al. [22] developed several folksonomy-
based scientific workflow recommendation strategies and
implemented them in a prototype system.

HIN is a newly emerging direction in recommender
systems and a good candidate for improving the accuracy of
recommendations. However, to the best of our knowledge,
HIN is normally neglected in the workflow recommendation
literature. So far, most of the HIN-based recommendation
methods consider the metapath-based similarity. For ex-
ample, Sun et al. [8] investigated a similarity search problem
in HIN and introduced the concept of metapath-based
similarity. Zhao et al. [23] introduced the concept of
metagraph to incorporate more complex semantics for HIN-
based recommendation. Shi et al. [24] developed a meta-
path-based random walk strategy and proposed a HIN
embedding-based recommendation algorithm. On the other
hand, scientific workflows in repositories have rich tag in-
formation, which are seldom exploited by existing workflow
recommendation methods. Some research work related to
tags has been done in the domain of Service Computing [25]
and other related research work on service recommendation
was carried out in [26]. Our previous work in [27] has
preliminarily utilized scientific workflow tags for recom-
mendation. In this paper, we further organize scientific
workflows and their relations as a HIN to calculate the
similarity of scientific workflows and generate more accurate
recommendations.

3. Preliminaries

To make our approach well understood, we first introduce
HIN and relevant concepts in this section. +e notations we
will use throughout this paper are summarized in Table 1.

Definition 1 (Scientific Workflow [18]). A scientific work-
flow sw is a tuple (nm, sw_dsc, sw_D, sw_A, sw_L, and sw_T),
where nm and sw_dsc are the name and text description of
sw, respectively. sw_D is the set of subscientific workflows
that sw invokes. sw_A is the activity set of sw. sw_L denotes a
set of links connecting activities and subscientific workflows
in sw. sw_T is a set of tags on sw.

Generally, a subscientific workflow can be regarded as a
scientific workflow [7]. For example, in the myExperiment
repository, a subscientific workflow is stored as an inde-
pendent scientific workflow.

Definition 2 (Heterogeneous Information Network
[24, 28]). A heterogeneous information network is defined as
a direction graph G � (V, E) with an object-type mapping
function ϕ: V⟶ B and a link-type mapping function
ψ: E⟶ R, satisfying |B| + |R|> 2.

Definition 3 (HIN-Based Scientific Workflow Representa-
tion). +e scientific workflow can be organized and

represented as a heterogeneous information network, which
contains five object types: scientific workflow (denoted as
SW), tag (denoted as T), activity (denoted asA), subscientific
workflow (denoted as D), and description (denoted as dsc).
Each scientific workflow can link with a set of tags, a set of
activities, and a set of subscientific workflows, and a
description.

Example 1. An example of HIN-based scientific workflow
representation is shown in Figure 1, which consists of two
real-world scientific workflows namedChemical2URIs (https://
www.myexperiment.org/workflows/97.html) (denoted as sw1)
and DFCUAM (https://www.myexperiment.org/workflows/
4700.html) (denoted sw2).

+e sw1 links with a text description (ds c1), three tags
(annotation, chemspider and cheminformatics), two activities
(REST_Service and Xpath_Service), and two subscientific
workflows (CNTCI and workflow40).

+e sw2 links with a text description (ds c2), three tags
(cheminformatics, chemspider, and metabolomics), and two
activities (SearchByMass and GetCompoundDetails).

Besides, sw1 and sw2 are linked by two tags (chem-
informatics and chemspider), which are shared by sw1 and
sw2. Similarly, if some objects of subscientific workflow,
activity, or description are shared by two scientific work-
flows, there exists some link relation between these two
scientific workflows.

Definition 4 (Network Schema [24, 28]). +e network
schema is a meta template for a heterogeneous information
network G � (V, E) with the object-type mapping function
ϕ: V⟶ B and the link-type mapping function ψ: E⟶ R,
which is a directed graph S � (B, R) defined over object
types B and link types R.

According to Definition 4, we can construct a HIN-based
scientific workflow representation schema, which is shown
in Figure 2. +ere are five types of objects: scientific
workflow (SW), tag (T), activity (A), subscientific workflow
(D), and description (dsc). Besides, there exist four types of
links between objects to represent different relations:

(1) A link relation between a scientific workflow and a
tag.

(2) A link relation between a scientific workflow and an
activity.

(3) A link relation between a scientific workflow and a
subscientific workflow.

(4) A link relation between a scientific workflow and a
description. Such link relation is single-way, because
a specific text description belongs to a specific sci-
entific workflow.

Definition 5 (Metapath [8, 24]). A metapath p is a path
defined on a network schema S � (B, R) and is represented
in the form of B1⟶ B2⟶ · · ·⟶ Bl+1 and thus defines
a composite relationship R � R1°R2°· · · °Rl between two
object types B1 and Bl+1, where ° denotes the composition
operator on relations R.
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According to Definition 5 and the HIN-based scientific
workflow representation schema, we can construct four
types of metapaths, which are shown in Figure 3:

(1) Metapath p1: if a tag is shared by two scientific
workflows sw1 and sw2, we can use the metapath
SWTSW (Scientific Workflow⟶ Tag⟶ Scientific
Workflow) to indicate a cotag relation between sw1 and
sw2.

(2) Metapath p2: if an activity is shared by two scientific
workflows sw1 and sw2, we can use the metapath
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Figure 1: An example of HIN-based scientific workflow representation.
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Figure 2: HIN-based scientific workflow representation schema.

Table 1: Notations and explanations.

Notation Explanation
SW A list of scientific workflows
dsc A description type of object
D A subscientific workflow type of object
A An activity type of object
T A tag type of object
p1, p2, p3, p4 Different types of metapaths
SWT, SWA,
SWD Adjacent matrices on the objects of tag, activity, and subscientific workflow, respectively

vT
i , vA

i , vD
i Feature vectors of scientific workflow swi in the adjacent matrices SWT, SWA, and SWD, respectively

C
p1,T

i,j , C
p2,A

i,j ,
C

p3,D
i,j

+e similarity strength of scientific workflows swi and swj on metapaths p1, p2, and p3, respectively

α, β, c, δ Weight coefficients
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Figure 3: Four types of metapaths under the HIN-based scientific
workflow representation schema.
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SWASW (Scientific Workflow⟶ Activity⟶
Scientific Workflow) to denote a coactivity relation
of sw1 and sw2.

(3) Metapath p3: if a subscientific workflow is shared by
two scientific workflows sw1 and sw2, we can use the
metapath SWDSW (Scientific Workflow⟶ Sub-
Scientific Workflow⟶ Scientific Workflow) to
denote a relation between sw1 and sw2 on a sub-
scientific workflow.

(4) Metapath p4: if a description is shared by two scientific
workflows sw1 and sw2, we can use the meta-path
SWdscSW (ScientificWorkflow⟶ dsc⟶ Scientific
Workflow) to denote a relation between sw1 and sw2 on
a description.

4. Similarity Computation for
Scientific Workflows

Based on the basic definitions mentioned above, we propose
a novel scientific workflow similarity computation method
in this section. It mainly consists of four steps.

Step 1: construct three adjacent matrices on the objects
of tag, activity, and subscientific workflow.
According to the objects of tag, activity, and sub-
scientific workflow involved in the scientific workflows,
we can construct three adjacent matrices, respectively,
denoted as SWT, SWA, and SWD.A row of the adjacent
matrices corresponds to a specific scientific workflow.
A column of the adjacent matrices SWT, SWA, and
SWD corresponds to a specific object of tag, activity,
and subscientific workflow, respectively. +e values in
these three adjacent matrices can be 1 or 0, which
denotes whether a specific object belongs to a specific
scientific workflow.
Besides, for computational convenience, we use the
feature vector vT

i , to represent the relation between the
scientific workflow swi and all the objects of tag in-
volved, which corresponds to a row in the adjacent
matric SWT. Likewise, we use the feature vector vA

i and
vD

i to represent the relations between the scientific
workflow swi and the objects of activity and sub-
scientific workflow involved, respectively, which cor-
respond to a row in the adjacent matrices of SWA and
SWD, respectively.
Step 2: Calculate the similarity on the metapaths.
As mentioned in Section 3, there exist four types of
metapaths. +erefore, the similarity strength of swi and
swj on meta-path p1 can be calculated by the following
equation:

C
p1,T

i,j � v
T
i · v

T
j 

t
. (1)

In equation (1), vT
i and vT

j are two feature vectors of
scientific workflow swi and swj on tags, respectively.
(vT

j )t is the transpose of the feature vector vT
i . +e

higher the number of common tags between swi and
swj, the greater the inner product of the vT

i and (vT
j )t,

and thus, the more the similarity between sw1 and sw2
on the tag. +e meaning of notations in equations (2)
and (3) is similar to these in equation (1).
Likewise, the similarity strength of swi and swj on
metapaths p2 and p3 can be obtained by equations (2)
and (3), respectively, where the meaning of notations is
similar to these in the following equation:

C
p2,A

i,j � v
A
i · v

A
j 

t
, (2)

C
p3,D

i,j � v
D
i · v

D
j 

t
. (3)

Based on equation (1), we can also obtain the values of
C

p1,T
i,i and C

p2,A
j,j . To normalize the similarity strength

effectively, we utilize the ratio between the C
p1,T
i,j and

the max one in the C
p1,T
i,i and C

p1,T
j,j to represent the

similarity between scientific workflows swi and swj

with respect to metapath p1, which is described as
follows:

simp1(i, j) �
C

p1,T

i,j

max C
p1,T
i,i , C

p1,T
j,j 

. (4)

Analogously, the similarity between scientific work-
flows swi and swj with respect to metapaths p2 and p3
is described as follows:

simp2(i, j) �
C

p2,A
i,j

max C
p2,A
i,i , C

p2,A
j,j 

,

simp3(i, j) �
C

p3,D

i,j

max C
p3,D
i,i , C

p3,D
j,j 

.

(5)

Step 3: Calculate the similarity value on the descriptions
of scientific workflows.
+e doc2vec model can learn the fixed-length feature
from the variable-length text [29]. +erefore, we utilize
the doc2vec model to form the paragraph vectors vswi

and vswj for the descriptions of scientific workflows swi

and swj, respectively. Besides, the normalized cosine
similarity between vswi and vswj is calculated as the
similarity value on the descriptions of scientific
workflows swi and swj, which is described as:

simp4(i, j) �
vswi · vswj / vswi

����
���� ·

����vswj

����  + 1
2

. (6)

In equation (6), the notations vswi and vswj represent
the norm of the paragraph vectors vswi and vswj,
respectively.
Step 4: Summarize different similarity values.
To effectively fuse different similarities of scientific
workflows obtained by the above steps, we introduce
the weighting mechanism, which is described as:
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sim(i, j) � α × simp4(i, j) + β × simp1(i, j)

+ c × simp2(i, j) + δ × simp3(i, j).
(7)

In equation (7), α, β, c, and δ are the weight coefficients
satisfying α+ β+ c+ δ � 1.

5. HDSWR Approach

To improve the accuracy and efficiency of scientific
workflow recommendation, we propose an approach
named HDSWR. In this section, we provide an overview
of the HDSWR and introduce its related function algo-
rithms in detail.

5.1. Overview of the HDSWR Approach. +e proposed
HDSWR approach is shown in Algorithm 1, which consists
of four steps:

Step 1 (line 1): we construct a matrix to denote the
similarity values between scientific workflows in the list
SW, which may come from some scientific workflows
repository. All the scientific workflows in the list SW
are organized as a HIN for similarity computation.
Step 2 (line 2): we adopt the density peak clustering
(DPC) algorithm [10] to group all the scientific
workflows in the list SW into multiple different
clusters, where the similarity values in the matrix are
used as the distances between scientific workflows
and Clusters denotes a set of clusters on scientific
workflows.
Step 3 (lines 3-4): according to textual description in
the requirement of scientists and engineering per-
sonnel, i.e., requirement.dscs, we search and choose
appropriate objects of activity and subscientific
workflow involved in the list SW, where Dsmp and Asmp

denote a set of subscientific workflows and a set of
activities, respectively. +en, a HIN-based sample
scientific workflow swsmp can be constructed (Line 4).
Step 4 (line 5): according to the sample scientific
workflow swsmp, we firstly select an appropriate group
of scientific workflows in the set Clusters by the
similarity values between swsmp and different clusters.
+en, a list SWrec is generated for recommendation,
where the number of scientific workflows in the list
SWrec is related to the parameter of rec_K.

5.2. Similarity Computation. Assessing workflow similarity
is important for workflow recommendation. Its main pur-
pose is to measure the distances between workflows. Based
on the scientific workflow similarity computation method
introduced in Section 4, the function ComputeSimilarity is
described as Algorithm 2.

In Algorithm 2, three adjacent matrices on the scientific
workflow list SW are constructed first (lines 1–3). +en, the
feature vector of scientific workflows swi and swj is used to
compute the similarity strengths on metapaths by equations
(1)–(3) (lines 6-7), based on which the similarity between swi

and swj with respect to metapaths can be obtained by
equations (4)–(6) (line 8). Finally, the similarity values are
obtained by equation (7) (line 9) and stored in the matrix
Matrix for further clustering and recommendation (line
10).

Example 2. +e scientific workflows sw1 and sw2 in Figure 1
can be used as an example. As illustrated by Figure 1, there
are four tags (annotation, chemspider, cheminformatics, and
metabolomics) involved in the scientific workflows sw1 and
sw2. +erefore, as shown in Figure 4(a), the corresponding
value on these four tags in the adjacent matrix SWT is 1 or 0
with respect to the sw1 and sw2, where the value of 0 denotes
that such tag does not belong to some scientific workflow.
Similarly, the matrix SWA in Figure 4(b) shows the cor-
responding values on the activities of the scientific work-
flows sw1 and sw2, and the matrix SWD in Figure 4(c) shows
the corresponding values on the subscientific workflows.
Besides, the feature vectors of vT

i , vA
i , and vD

i are also il-
lustrated by Figure 4.

5.3. DPC-Based Clustering of Scientific Workflows. To im-
prove the efficiency of recommendation, we introduce the
clustering strategy proposed in [10, 30], by which the sci-
entific workflows are grouped and divided into different
clusters for further recommendation. Different from the
work in [10, 30], we choose the density peak clustering
(DPC) algorithm [10] as our clustering method, because it
can effectively identify clusters with different distribution
shapes and it is rarely affected by noise points. Based on the
DPC algorithm, the function DPCClustering can be de-
scribed as Algorithm 3.

In Algorithm 3, we first initiate the matrix dist according
to the matrix Matrix (line 1) and initiate the value of cutoff
distance dc according to the rule of thumb introduced in [10]
(line 2). +en, we calculate the local density values of sci-
entific workflows (lines 3–10) and their relative distances
values (lines 11–18). Finally, we can apply the DPC algo-
rithm to divide scientific workflows into different clusters
(line 19), where each cluster in the Clusters can be denoted
as a group of scientific workflows with a scientific workflow
as its cluster center.

5.4. Retrieval of Appropriate Activities and Subscientific
Workflows. According to the modelling requirement of
scientists and engineering personnel, we can search in the
scientific workflow list and get appropriate activities and
subscientific workflows, which can be used to construct a
sample scientific workflow and guide the recommendation
process. Such procedure is performed by the function
GetActivity_SubWF, which is described as Algorithm 4.

In Algorithm 4, because the descriptions requir-
ement.dscs provided in the requirement are related to ac-
tivities or subscientific workflows, the best matching result
on each description in requirement.dscsmay be an activity or
a subscientific workflow. +erefore, we calculate the simi-
larity values on activities and subscientific workflows,
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Input:
(i) SW: a list of scientific workflows.
(ii) requirement: a modelling requirement, denoted as (dscsmp, Tsmp, dscs).
(iii) α, β, c, δ: parameters for similarity computation.
(iv) rec_K: a parameter on the number of recommended scientific workflows.
Output:
(i) SWrec: a list of recommend scientific workflows.
(1) Matrix⟵ ComputeSimilarity (SW, α, β, c, δ)
(2) Clusters⟵ DPCClustering (Matrix, SW)
(3) Dsmp, Asmp⟵ GetActivity_SubWF (requirement.dscs)
(4) swsmp⟵ Construct a sample scientific workflow with Dsmp, Asmp, requirement. ds csmp and requirement. Tsmp

(5) SWrec⟵ RecommendSWs (swsmp, Clusters, rec_K, α, β, c, δ)
(6) return SWrec

ALGORITHM 1: HDSWR (SW, requirement, rec_K, α, β, c, and δ).

Input:
(i) SW: a list of scientific workflows.
(ii) α, β, c, δ: weight coefficients.
Output:
(i) Matrix: the final similarity matrix of SW.
(1) SWT⟵construct the adjacency matrix of SW on tag objects
(2) SWA⟵ construct the adjacency matrix of SW on activity objects
(3) SWD⟵ construct the adjacency matrix of SW on sub-scientific workflow objects
(4) for each scientific workflow swi in SW do
(5) for each scientific workflow swj in SW do
(6) obtain vA

i , vT
i , vD

i , vA
j , vT

j , vD
j from SWT, SWA, SWD

(7) calculate C
p1,T

i,j , C
p2,A

i,j , C
p3,D

i,j

(8) calculate simp1(i, j), simp2(i, j), simp3(i, j), simp4(i, j)

(9) calculate sim(i, j)

(10) Matrixi,j⟵ sim(i, j)

(11) end for
(12) end for
(13) return Matrix

ALGORITHM 2: Function ComputeSimilarity (SW, α, β, c, δ).
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Figure 4: An example of three adjacent matrices and feature vectors. (a) SWT. (b) SWA. (c) SWD.

Input:
(i) Matrix: a similarity matric of scientific workflows.
(ii) SW: a list of scientific workflows.
Output:
(i) Clusters: the set of generated scientific workflow clusters.
(1) dist⟵ 1 − Matrix

(2) dc⟵ select a value from the dist so that the number of values below it is around 1 to 2% of the total number of values in the
dist

(3) for each scientific workflow swi in SW do
(4) ldi⟵ 0
(5) for each scientific workflow swj in SW do
(6) if disti,j <dc then
(7) ldi⟵ ldi + 1
(8) end if
(9) end for
(10) end for
(11) for each scientific workflow swi do
(12) rdi⟵max(dist)
(13) for each scientific workflow swj do
(14) if ldi < ldj and rdi < disti,j then
(15) rdi⟵ disti,j
(16) end if
(17) end for
(18) end for
(19) Clusters⟵ clustering scientific workflows by the DPC algorithm with the local density values such as ldi and relative

distances values such as rdi

(20) return Clusters

ALGORITHM 3: Function DPCClustering (Matrix, SW).
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respectively, where the working procedure of the function
cosine_sim in lines 6 and 13 is similar to that of equation (6).

Besides, for each description in requirement.dscs, we
search the best matching activity (lines 5–11) and the best
matching subscientific workflow for it (lines 12–18), then we
choose the better one for constructing a sample science
workflow (lines 20–24).

5.5. Generation of Scientific Workflow Candidate List.
Once a sample science workflow is constructed, we can
generate a list of scientific workflows that are most relevant
to it, the whole procedure of which is described as
Algorithm 5.

+e Algorithm 5 mainly consists of three steps.

Step 1 (line 1): as introduced before, we can construct
the feature vectors of the sample scientific workflow
swsmp on the objects of activity, subscientific workflow,
and tag.
Step 2 (lines 3–14): we compute the similarity between
the sample scientific workflow swsmp and the cluster
center scientific workflow first (lines 4–8), where the
procedure is performed according to the method in-
troduced in Section 4. +en, a cluster is selected as
clustersmp if the similarity value between its cluster

center and swsmp is the largest among all the clusters
(lines 9–13).
Step 3 (line 15): after the cluster clustersmp is deter-
mined, the rec_K% scientific workflows of the
clustersmp which are most related to swsmp in similarity
values are chosen as candidate scientific workflows and
recommended in a list.

5.6. An Example on Textual Descriptions. So far, research
studies for recommending whole scientific workflows typ-
ically adopt the scientists’ requirements for recommenda-
tion. For example, Cheng et al. [18] used a layer hierarchy
with respect to the scientist’s requirement. In our approach,
we mainly adopt textual descriptions with respect to the
scientist’s requirement. For ease of illustration, the scientific
workflow sw1 in Figure 1 is used as an example on textual
descriptions.

Example 3. As illustrated by Figure 1, there exists a sub-
scientific workflow named CNTCI, which is short for
Chemical_Name_To_Chemspider_ID, and a subscientific
workflow namedWorkflow40 in the scientific workflow sw1.
We can get the textual descriptions of the sw1, i.e., “Ais
workflow will map a chemical name or identifier to uniform

Input:
(i) requirement.dscs: a list of descriptions on activities and subscientific workflows.
(ii) SW: a list of scientific workflows.
Output:

Dsmp: a set of subscientific workflows
Asmp: a set of activities
(1) Dsmp⟵∅, Asmp⟵∅
(2) for each dsc in dscs do
(3) simtmp1⟵ 0, simtmp2⟵ 0
(4) for each sw in SW do
(5) for each activity a in sw do
(6) sim⟵ cosine_sim (doc2vec (dsc), doc2vec (a))
(7) if sim> simtmp1 then
(8) simtmp1⟵ sim

(9) atmp⟵ a

(10) end if
(11) end for
(12) for each sub-scientific workflow d in sw do
(13) sim⟵ cosine_sim (doc2vec (dsc), doc2vec (d))
(14) if sim> simtmp2 then
(15) simtmp2⟵ sim

(16) dtmp⟵ d

(17) end if
(18) end for
(19) end for
(20) if simtmp1 > simtmp2 then
(21) append atmp to Asmp

(22) else
(23) append dtmp to Dsmp

(24) end if
(25) end for
(26) return Asmp, Dsmp

ALGORITHM 4: Function GetActivity_SubWF (requirement.dscs, SW).
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resource identifiers (URIs). First the ChemSpider web service
is used to map the chemical name to a ChemSpider identifier,
then the ChemSpider identifier is mapped to URIs via the
Open PHACTS platform.”

According to the textual descriptions of the sw1, we
can use the doc2vec model to learn the sequence rela-
tionship between the subscientific workflows of CNTCI
and Workflow40. Furthermore, by this way, similar
structural information involved in scientific workflows
can also be obtained and used for retrieval of appropriate
activities and subscientific workflows, some of which can
be performed with the function cosine_sim in Algorithm 4.
Similarly, logical relationships involved in the compo-
nents of scientific workflows can also be clearly described
in the scientist’s requirement. +erefore, though these
structural features are not explicitly expressed in the form
of HIN, they are implicitly considered and used in our
proposed approach for generating more accurate
recommendations.

6. Experiments

In this section, a series of experiments are performed to
answer two questions: (1) Compared with the state-of-the-
art scientific workflow recommendation techniques, does
our approach have better performance? (2) What is the
performance of our HDSWR approach in the presence of
different parameters and datasets used for
recommendation?

All experiments are performed on a computer with Intel
(R) Core (TM) i5-7300HQ CPU@ 2.50GHz 2.50GHz and
8GB memory running Window 10, JDK 1.8.0 and python

3.5. Next, we focus on experimental evaluations of these two
questions.

6.1. Datasets. +e myExperiment is a widely used scientific
workflow repository supporting the publication and sharing
of scientific workflows. It also allows scientists to search
scientific workflows related to their research and then reuse
and repurpose scientific workflows according to their dis-
tinct needs [31]. +ere are various types of scientific
workflows in the myExperiment, such as Tarvena1 and
Tarvena2. We crawled related data on the Tarvena2 type of
scientific workflows from themyExperiment and created two
datasets named SW#80 and SW#236 accordingly. +e
datasets used in our experiments are publicly accessible from
GitHub via the website: https://github.com/yixinxunwu/
myExperiment.

As Table 2 shows, the SW#80 dataset includes 80
scientific workflows with 229 activities, 125 tags, and 85
subscientific workflows, where the number of activities
contained in each scientific workflow is in the range of 3
to 20. +e SW#236 dataset includes 236 scientific
workflows with 430 activities, 310 tags, and 243 sub-
scientific workflows, where the number of activities
contained in each scientific workflow is in the range of 2
to 30.

6.2. Evaluation Metrics. To evaluate the efficiency of sci-
entific workflow recommendations, we adopt the precision
and recall measures used in [18] and the F1 score used in [16]
as our evaluation metrics, which are described as equations
(8)–(10), respectively:

Input:
(i) swsmp: a sample scientific workflow.
(ii) Clusters: the set of scientific workflow clusters.
(iii) rec_K: a hyper-parameter to control the number of recommend scientific workflows.
(iv) α, β, c, δ: weight coefficients.
Output:
(i) SWrec: a list of recommended scientific workflows.
(1) vA

smp, vT
smp, vD

smp⟵ construct the feature vector on the activities, tags and sub-scientific workflows of swsmp.
(2) simsmp⟵ 0 and clustersmp⟵∅
(3) for each cluster ∈ Clusters do
(4) swct⟵ choose the cluster center scientific workflow of the cluster

(5) vA
ct, vT

ct, vD
ct⟵ construct the feature vector on the activities, tags and sub-scientific workflows of swct.

(6) calculate C
p1,T
smp,ct, C

p2,A
smp,ct, C

p3,D
smp,ct

(7) calculate simp1(smp, ct), simp2(smp, ct), simp3(smp, ct), simp4(smp, ct)

(8) calculate sim(smp, ct)

(9) simtmp⟵ sim(smp, ct)

(10) if simsmp < simtmp then
(11) simsmp⟵ simtmp

(12) clustersmp⟵ cluster

(13) end if
(14) end for
(15) SWrec⟵ choose the top rec_K% most similar scientific workflows in clustersmp

(16) return SWrec

ALGORITHM 5: Function RecommendSWs (swsmp, Clusters, rec_K, α, β, c, δ).
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precision �
SWept ∩ SWrec



 

SWrec



, (8)

recall �
SWept ∩ SWrec



 

SWept




, (9)

F1 �
2 × precision × recall
(precision + recall)

. (10)

In equations (8)–(10), the notation SWrec represents a list
of scientific workflows which are generated by recom-
mendation algorithms, and the notation SWept represents an
expected list of scientific workflows. Similar to the work in
[18], we adopt a means to generate SWept, by which the top
exc_K% most similar scientific workflows involved in a
dataset are selected. Besides, the symbols |SWrec| and |SWept|

denote the numbers of scientific workflows in the SWrec and
SWept, respectively.

6.3. Methods Used for Experiments. +e scientific workflow
recommendation methods used for experiments are as
follows:

(i) LH [18]: this method converts a scientific workflow
into a hierarchy incipiently, which manifested as the
relationship between scientific workflows and
subscientific workflows and activities. +us, the
similarity assessment between scientific workflows
becomes the similarity assessment between the
hierarchies.

(ii) LHWT [27]: this method transforms a scientific
workflow into a hierarchy incipiently, as described
in [18]. Considering tag information of scientific
workflow enables labeling of the functional se-
mantics of the scientific workflow in similarity
computation. Hence, the tag information utilized
the scientific workflow recommendation in this
method.

(iii) HDSWR: it is our proposed recommendation ap-
proach. In our experiments, some parameters for
HDSWR are set as follows: α � 0.55, β � c � 0.2,
and δ � 0.05.

6.4. Comparison with Related Scientific Workflow
Recommendation. As described in Section 6.2, the evalua-
tion metrics are based on SWrec and SWept, which are af-
fected by parameters rec_K% and exc_K% for our approach.
+erefore, we study the impact of rec_K% and exc_K% on
different recommendation methods with the SW#80 dataset.

To investigate the impact of rec_K% on scientific
workflow recommendation precision and recall, the exc_K%
is set to 10% and rec_K% is set to 4%, 6%, . . ., 30%, re-
spectively (step size is 2%). As shown in the Figures 5(a) and
5(b), methods HDSWR and LHWT perform higher preci-
sion and recall than LH. +is is due to some functions being
implemented in some scientific workflows, which does not
mention in the description of scientific workflows, but in
tags [27]. As a result, it is challenging for these scientific
workflows to gather into the appropriate clusters. When tag
information is considered, these scientific workflows are
reaggregated into the appropriate cluster. +is demonstrates
that function semantics of tags have a great impact on
scientific workflow recommendation. Besides, we also dis-
cover that HDSWR is superior to LHWT in precision and
recall because the HDSWR approach applies metapaths to
capture the weak semantics between scientific workflows
and thus achieves high-level semantics recommendation,
compared to the LHWT method.

When rec_K% is set to be a relatively small value (e.g.,
4%, 6%), we detect that the precision and recall of several
methods are extremely close. +is indicates that these
scientific workflows particularly similar to the sample
scientific workflow are recommended to scientists nat-
urally, whatever recommendation methods they are.
When rec_K% sets to a relatively large value, the pre-
cision of several methods is reduced greatly in
Figure 5(a). +is is due to the fact that many unrelated
scientific workflows are recommended, which do not
exist in SWept. Meanwhile, the recall of several methods is
relatively stable in Figure 5(b), for SWept determined by
the exc_K%, and exc_K% is a fixed value. Furthermore,
when the rec_K% is 14%, the recall of HDSWR is stable.
+is manifests that most expected scientific workflows in
SWept were identified and recommended to scientists
through HDSWR. When the rec_K% is 18%, the recall of
LHWT is stable, and the recall of LH is stable until the
rec_K% is 22%.

Studying the impact of exc_K% on scientific workflow
recommendation precision and recall, the rec_K% is set to
10%, exc_K% is set to 4%, 6%, . . ., and 30%. In Figures 5(c)
and 5(d), we discovered that the precision and recall of
HDSWR are higher than LH and LHWT. Due to the above
reason, when exc_K% sets a relatively large value, the sci-
entific workflows in SWept are abundant, while scientific
workflows in SWrec are fixed. +erefore, the precision of
several methods is stable. However, due to the increasing
discrepancy between SWept and SWrec, the recall of all
methods has been declining.

To display the difference in scientific workflow recom-
mendation efficiency intuitively, F1 is applied to achieve this
target. Studying the impact of rec_K% or exc_K% on the
recommendation efficiency in Figures 6(a) and 6(b), the

Table 2: Statistics of datasets.

#Datasets #Scientific workflows #Activities #Tags #Sub-scientific workflows #Activities per workflow
SW#80 80 229 125 85 3–20
SW#236 236 430 310 243 2–30
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Figure 5: Precision and recall of different recommendation methods on the dataset SW#80.
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Figure 6: Efficiency comparison of different recommendation methods on the dataset SW#80.
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differences between HDSWR, LHWT, and LH are small in
the first two groups (i.e., the value of rec_K% is 4% and 6%,
respectively); this indicates that scientific workflows most
similar to the sample scientific workflow are recommended
easily.With the increase of rec_K% or exc_K%, the difference
between several methods becomes distinct and the differ-
ences between HDSWR and other methods are obvious.
Hence, this demonstrates that HDSWR can capture the
similarity semantics between scientific workflows effectively
and thus promote the reasonable clustering of scientific
workflows. When rec_K% exceeds 24% and exc_K% exceeds
22%, the difference of several methods becomes stable, and
this indicates that recommendation performance of all
methods cannot play a role while excess scientific workflows
are recommended.

6.5. Detailed Analysis of the Proposed Approach. In this part,
we conduct a series of experiments to analyse the details of
our proposed method.

6.5.1. Impact of Clustering Method. As described in Section
5.3, HDSWR requires the DPC clustering algorithm to group
scientific workflows into appropriate scientific workflow
clusters and assist the scientific workflow recommendation.
+erefore, the impact of clustering algorithms on scientific
workflow recommendation is worth studying. In our pre-
vious work [27], the SNN (Shared Nearest Neighbour)
clustering algorithm [30] is used for the clustering of sci-
entific workflows. In our study, the DPC clustering algo-
rithm is utilized to cluster scientific workflows to the
appropriate scientific workflow clusters. In Figure 7, the
performance comparison of two clustering algorithms DPC
and SNN on the dataset SW#80 is displayed.

+e overall recommendation performance ranking is as
follows: DPC> SNN, shown in Figure 7. SNN has poor
performance, because it takes some data points below the

density threshold and points within its domain as noise.
Meanwhile, the DPC performs better recommendation
performance than SNN.

6.5.2. Impact of the Size of Datasets. To study the impact of
the size of datasets on the recommendation efficiency of
several recommendation methods, we conduct a series of
experiments with three methods on the dataset SW#236
which has a relatively larger amount of data. +e experiment
setting is the same with that of the dataset SW#80.

As shown in Figures 8(a) and 8(b), the HDSWR ap-
proach has better recommendation performance than other
methods, both in the dataset SW#80 with a small amount of
data and in the dataset SW#236 with a relatively large
amount of data. +is proves that the HDSWR approach has
good robustness, and the recommendation performance can
be effectively improved considering the attribute informa-
tion of scientific workflows. Besides, we find that the dis-
tinction between the recommendation efficiency of the
LHWT and HDSWR approaches on the dataset SW#236 is
lower than that on the dataset SW#80.

6.5.3. Comparison of the Time Efficiency. To evaluate the
time efficiency of the HDSWR approach, we conduct a series
of experiments with the datasets of SW#236 and SW#80.
Table 3 shows the experiment results of three methods on
their average running time (in seconds) with two datasets.

As shown in Table 3, the HDSWR approach has better
running time performance than other methods. In fact, the
operations of similarity computation occupy most of the
running time of three methods, while their operations of
clustering need little time. +e LHWTmethod is proposed
based on the LHmethod, which simply appended extra label
information for similarity computation. +erefore, the
LHWT method needs more running time than the LH
method. In contrast, the similarity computation operation
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Figure 7: Efficiency comparison of different clustering methods on the dataset SW#80.
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adopted by the HDSWR approach is based on the HIN,
which is totally different from that of other methods.
+erefore, it effectively reduces the running time of handling
various information for similarity computation.

7. Conclusion

In this paper, we aim to provide automatic support for the
reuse and modelling of scientific workflows. Specifically, we
utilize heterogeneous information network as a means of
organizing and representing the relations between scientific
workflows and consider the objects of tag, description, ac-
tivity, and subscientific workflow for scientific workflow
recommendation. We propose a novel scientific workflow
similarity computation method based on metapath. In ad-
dition, we present a scientific workflow recommendation
approach named HDSWR, where the density peak clustering
algorithm is adopted for grouping scientific workflows into
clusters and a list of scientific workflows is ranked and rec-
ommended according to the requirements of scientists and
engineering personnel. As future work, we tend to consider
how to applymachine learningmethods to automatically tune
some parameters on the [32–35] HDSWR and yield better
performance. Furthermore, we will handle related privacy
problems in view of the newest research studies [36–41].
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