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This correspondence deals with the joint cognitive design of transmit coded sequences and instrumental variables (IV) receive
filter to enhance the performance of a dual-function radar-communication (DFRC) system in the presence of clutter disturbance.
The IV receiver can reject clutter more efficiently than the match filter. The signal-to-clutter-and-noise ratio (SCNR) of the IV
filter output is viewed as the performance index of the complexity system. We focus on phase only sequences, sharing both a
continuous and a discrete phase code and develop optimization algorithms to achieve reasonable pairs of transmit coded se-
quences and I'V receiver that fine approximate the behavior of the optimum SCNR. All iterations involve the solution of NP-hard
quadratic fractional problems. The relaxation plus randomization technique is used to find an approximate solution. The
complexity, corresponding to the operation of the proposed algorithms, depends on the number of acceptable iterations along
with on and the complexity involved in all iterations. Simulation results are offered to evaluate the performance generated by the

proposed scheme.

1. Introduction

Radar and wireless communication systems have always
been researched independently. On the one hand, the radar
system attempts to gain better target detection performance
in the presence of noise interference. On the other hand, the
aim of the wireless communication technique is to achieve
the maximum information capacity over a noisy channel
[1-3]. The works of [4-9] showed a possibility of employing
the radar-communications integration concept to solve the
lack of radio frequency (RF) spectrum. Efficient utilization of
shared bandwidth between wireless communications and
radar can be achieved by using dynamic frequency alloca-
tion. Ahmed at al. presented a joint radar-communication
scheme to embed quadrature amplitude modulation-
(QAM-) based communication data in the radar pulses. In
[10, 11], the authors developed a dual-function complexity
system capable of performing radar and communication
tasks. The complexity system performs both tasks by opti-
mizing the power allocation of the diverse transmitters. The

proposed technique serves manifold communication re-
ceivers positioned in the vicinity of the complexity system.
Numerous recent studies [12-14] considered that the de-
veloping concept of DFRC is secondary as the main radar
task. Communication source embedding into the illumi-
nation of the radar system is realized using waveform di-
versity, sidelobe control, or time modulated array technique,
which was studied in [13]. Hassanien et al. presented a
signaling strategy for communication source embedding
into the illumination of an FH-based MIMO radar system
[15]. The main principle behind the signaling strategy is to
embed phase modulation (PM)-based symbols by using
phase rotating the FH pulses. The phase shift is implemented
to each transmit FH pulse waveform of the radar system. The
PM-based symbol embedding does not influence the
function of the radar system, which uses the FH waveforms.

The performance of a radar system is prominently en-
hanced by sensibly optimizing receive filter and transmitted
waveform. This optimization strategy generally copes with
some problems containing the existence of signal-dependent


mailto:1057604987@qq.com
https://orcid.org/0000-0003-1132-592X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4134851

clutter along with signal-independent noise at the receiving
end and radar signal constraint, such as similarity to a
particular coded sequence. For a nonextended target hidden
in the clutter interference environment, joint design of the
transmission waveform and radar receiver to optimizing the
signal-to-interference-and-noise ratio (SINR) were studied,
considering a transmit power and a similarity constraints
[16] on the transmission signal. The work of [17] developed a
novel cognitive design method for the joint optimization of
the phase-modulated (PM) pulse sequence and receive filter,
representing a similarity between transmit waveform and a
prearranged coded sequence. In [18], the authors developed
novel approaches for maximizing the mean-square error of
target feature estimation in the presence of clutter inter-
ference. For a nonmoving object, in [19], the authors used a
frequency domain method to find an optimum energy
spectral density (ESD) of the transmitted waveform and
corresponding suitable receive filter and presented a syn-
thesis technique to offer the time domain waveform. In [20],
the authors considered a joint design problem to that of [19]
subject to peak-to-average power ratio (PAR) and transmit
power constraint. The work of [21] dealt with the joint
design of constant-modulus transmit waveform and receive
filter under a transmit power constraint. Some studies
considered the joint optimization problem in signal-de-
pendent and signal-independent disturbance scenarios (see,
for example, [22-26]). In [24, 26], for a moving object, the
unknown Doppler shift has been considered in the transmit
waveform design. De Maio et al. discussed the problem of
Doppler robust waveform optimization for signal-inde-
pendent disturbance environment under similarity and
transmit power constraint. In a signal-dependent interfer-
ence environment, the work of [24] was generalized in [26]
where the PAR and transmit power constraints are forced as
well.

The usage of a matched filter can be considered as an
ideal choice only when signal-dependent disturbance does
not exist in the radar environment. The abovementioned
problem can be tackled by utilizing an instrumental variables
(IV) filter instead of the matched filter. The usage of the IV
receive filter estimates in pulse compression radar has been
distinctly presented many years ago( see, for example,
[27, 28] and the references therein). The IV receiver can
reject clutter more efficiently than the match filter. Fur-
thermore, the radar waveform design related with the IV
receive technique is a motivating research direction.

In this paper, we discuss the joint design problem of the
probing coded sequence and IV filter for a DFRC system in
the presence of signal-dependent interference, focusing on
either continuous or discrete phase codes. Different from a
transmit power constraint, we impose a similarity constraint
to regulate several characteristics of the transmit waveform,
for instance, variations in the waveform modulus and peak
sidelobe level. The SCNR is considered as figure of merit.
Thus, we present a reasonable coded sequence and IV receive
filter, under a similarity constraint between the wanted
coded sequence and a given waveform [29-31].

We develop constrained optimization techniques that
consecutively enhance the SCNR. All iterations involve the
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solution of NP-hard quadratic fractional problems. The
relaxation plus randomization technique [30] is used to find
an approximate solution. The complexity, corresponding to
the operation of the proposed algorithms, depends on the
number of acceptable iterations along with on and the
complexity involved in all iterations. The performance of the
proposed scheme is evaluated in signal-dependent inter-
ference surroundings, presenting that remarkable SCNR
enhancements are achieved jointly designing the transmitted
coded sequences and IV receive filter.

The organization of this paper is as follows. In Section 2,
we describe the dual-function complexity system and the
PM-based FH signal model. In Section 3, we introduce an IV
filter for sensing receiver design. In Section 4, we formulate
the constrained optimization problems for the joint design
of the transmitted coded sequence and the IV filter.
Moreover, we develop two successive optimization processes
to produce a suitable coded sequence and IV receive filter to
these problems. The simulation results demonstrating the
proposed algorithms are presented in Section 5. Finally, our
conclusions and directions for possible future work are
drawn in Section 6.

1.1. Notation. Throughout this paper, the following nota-
tions will be used. We use boldface lowercase letters and
boldface uppercase letters to denote vectors ¢ and matrices
C, respectively. The ith element of ¢ and the (i, k)th entry of
C are denoted by ¢; and C, respectively. We use (.)* to
denote the conjugate operation, (.)” to denote the transpose
operation, () to denote the Hermitian operation, E[-] to
denote statistical expectation, tr(-) to denote the trace of
the square matrix argument, and 0 and I to indicate the
matrix with zero entries and the identity matrix, respec-
tively. A>B means that A - B is an Hermitian positive
semidefinite matrix. The set of real and complex numbers is
denoted by R and C, respectively. The real parts of x is
denoted by R (x). The argument and the modulus of x are
denoted by arg(x) and |x|, respectively. [x| is the Euclidean
norm of the vector x. |.| denotes the determinant of a matrix.
Finally, the letter j = V-1 indicates the imaginary unit.

2. Dual-Function System Configuration

We introduce the configuration for the DFRC system and
the PM-based FH signal model [14]. The signal model is the
special case of the quadrature amplitude modulation-
(QAM-) based approach [6]. The key objective of the dual-
function transmitter is to embed communication source
toward the direction(s) of the communication receiver(s) as
a subordinate mission without disturbing the primary
mission, i.e., the radar function. We denote the FH wave-
form during one radar pulse as

Q
$(t) = Y My (t - Ar). (1)
g=1

In (1), cpq=1..Q describes the FH code and Q de-
notes the length of the FH code. A f and At are the frequency
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step and the hopping interval duration, respectively, and
£ = 1, O<t<At
&)= 0, otherwise
written as the multicarrier model [32]. The duration of a
radar pulse can be given by T\, = QAt. Consider that the FH
code g € {1,...,J}, where ] describes a predefined value.
Next, we discuss the PM-based information embedding
strategy. Let {Qq € [0, 271]},61 =1,..,Q be a set of Q phase
symbols. Then, PM-based FH waveform can be defined as
Q
s(t) = Y &/l (- ). ()
g=1

. Notice that the FH code can also be

During a certain radar pulse, the PM-based FH transmit
waveform is shown in Figure 1.

We consider that a phase symbol signifies B bits of binary
sequence. During the ith radar pulse, the binary commu-
nication information that desires to be embedded is utilized
to choose phase symbols Q,(i),q = 1,..,Q from a preas-
signed constellation of K =28 symbols. We consider the
constellation is uniformly distributed between 0 and 27,
which can be expressed by Cpgx = {0, (271/K), ..., (K -1)
271/K)}. The PM-based FH waveform can be rewritten as

Q
s(ti) = ) /NPty (1 — Ap). (3)
g=1

The term Q, (i) € Cpgk. To simplify the discussion, we
consider that a communication receiver is located at a
known direction 0.. Therefore, the received signal at the
output of the communication receiver is expressed as

y(t,i) = a.s(t,i) +n(t,i), (4)

where o, describes the propagation channel coefficient. We
assume that the coefficient &, remain unchanged during the
whole processing interval. n(t,7) is the zero-mean white
Gaussian noise with covariance 8-. At the communication
receiver, it has full knowledge of the FH code c, and the FH
step A f. Notice that we assume the communication receiver
is the privacy breach for the radar system. Hassanien et al.
stated similar assumption as well. Therefore, the received
signals observed at the output of the communication re-
ceiver are match-filtered to the FH waveform yielding

At )
7, (i) J (t,i)e 2Bty (+ — Ar)dt,
A T (5)

Cinsing. Q. (
e jmsin (i

=a ce )+nq(i).

This implies that the communication receiver has the
ability to undo e™ /"% before it estimates the symbol Q_ (i).
As aresult, the embedded symbol Q, (i) can be restored from
g (i) at the output of the matched filter. It facilitates the
receiver to update its direction with respect to the dual-
function transmitter as well. The phase symbols that desire to
be embedded can be estimated as

ﬁq (i) = Angle(rq (i)) — Angle(a.) + 27sin 6. (6)

Once the phase shift keying (PSK) symbol has been
estimated, then the receiver compares the estimates to the

Dual-function
transmit platform

Frequency-hopping PSK
waveform generator " | modulation

y
A

F1GURE 1: Illustrative diagram of a dual-function transmitter using
FH waveform and PSK modulation.

preassigned constellation Cpgg. It allows the receiver to
determine the PM-based symbols and convert the symbols
into the original binary data. Several papers proposed the
PM-based DFRC system and corresponding waveform de-
sign approach (see [13] and references therein).

Since target detection is the main task of the proposed
DFRC system, transmit waveform should be considered
primarily based on the requirements of the radar function.
Let s = [s(0),s(1),...,s(N-1)]" € CN be the FH-coded
sequences. Let «, be a factor that is relative to the radar cross
section (RCS) of the range bin of interest irradiated by the
proposed DFRC system. Let{a,}1'_y,; .o be the factors for
the adjacent range bins or clutter patches. Notice that targets
might exist at the adjacent range bins. Vi € {-(N —-1),...,
N —1}. J; denotes the N x N “shift” matrix that takes into
account the fact that the clutter returning from adjacent
range bins need different propagation times to reach the
DFRC system receiver:

L, ifm-I=n

]i(l,m)={ >

I,m) € {1,.. N}~ 7
0, ifm—-1#n (hm) €1 } @

The target scattering signals that arrive at the receiving
end of the proposed DFRC system are demodulated and
analog-to-digital converted. Then, the received FH coded
sequences can be denoted as

N-1

Y = &S + Z

i=—N+1,n#0

a;J;s +n, (8)

wherey = [y(0), y(1),..., y(N — D" e CN. To simplify the
analysis, we consider perfect synchronization between di-
verse dual-function complexity systems. The dual-function
radar-communication operation is shown in Figure 2.

3. IV Receive Filter

The technique of IV can be utilized in sensing system
recognition and array processing [33-36]. It is also used for
sensing receiver filter design. Let an N x 1 vector x be the IV
receive filter. Thus, the IV receive filter calculates
N-1
X'y =ax's+ Z
i=-N+1,n#0

ax'Js. 9)

The signal-to-clutter ratio (SCR) at the output of the IV
receive filter can be defined as

2 2 2 2
|(xo| (xTs) _ |oc0| (xTs)

N-1 T 2 T
i=—N+1,1£0 (ax"J;s) x Rx

In (10), R = Y\, ol PT;ssT!. Generally, [R|#0 as
presented in [37]. Let RY? be a symmetric square root of
R. Based on the Cauchy-Schwartz inequality

SCRyy = (10)
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FIGURE 2: The joint communication-radar operation.

(x"R2R %) < (x"Rx) (s"R™!'s), we have SCRY, =
max SCRyy = s'R™'s. The maximizing IV receive filter xcan
bé expressed by x=Rls. Clearly, we can
obtainSCRy;z = SCRy (x = s) <SCR},, and the equality
holds if and only if R is equivalent to I.

The IV receive filter method is referred to as the mis-
matched filtering (MMF) method as well ([34, 36] and the
references therein). An important phenomenon about the
IV receive filter method is that SCR}, increases monoton-
ically as the length of radar codes N increases [34]; prec1sely,
SCRYy (s) <SCRY, (s'), where transmit waveform s’ denotes
any coded sequence of length longer than N, which com-
prises s among its codes. The phenomenon is exploited to
increase the value of SCRY,, prominently, without increasing
complexity of the dual- functlon transmitter, by just adding
zeros to coded sequence s; the IV receive filter method
suggests selecting coded sequence s as the solution to
maxs/R™'s. Notice that, without solving max,s’R™'s, we
utilize the IV receive filter instead of the matched filter to
obtain a greater value of SCRfor any s. If the signal-inde-
pendent disturbance is considered, equation (9) is rewritten
as follows:

N-1
X'y=ax's+2 Z ax'J;s+n. (11)
i=1

In (11), n denotes the N x 1 vector of the filtered signal-
independent disturbance samples, which is assumed to be a
zero-mean colored noise E[n] =0 and E[nnf] = W>0.
Hence, the SCR in (10) is revised to present the signal-to-
clutter-and-noise ratio (SCNR) as follows:

Joo|* (")’ (12)

SCNRy = ,8) = .
v = f (%) xT'Rx + xTWx

It is worth noting that the maximum value of (12) ac-
quired by maximizing with regard to x is larger than or equal
to the SCNR value using a match filter [34].

4. Problem Formulations

We consider that the prior knowledge of signal-dependent
and signal-independent disturbance is known on the
transmitting terminal via cognitive approaches [38]. The
SCNR in (12) is considered as the performance index of the
proposed DFRC system [39]. Then, we intend to obtain a
joint design of the transmitted waveform and the IV receive
filter. As to the shape of the code, the focus is on both

continuous phase codes [s(k)|=1,k=0,1,..,N -1 and
discrete phase code s(k) € {1,e/2"M,  e2n(M-LIM}
k=0,1,..,N - 1. Along with the shape constraint, a simi-
larity constraint is imposed on the coded sequence:

”s—sO"ZSS. (13)

In (13), § > 0 denotes the size of the similarity region, and
s, signifies a specified coded sequence. By doing this, we can
search for the good quality solution, which is similar to a
given coded waveform s,. The constrained optimization of
SCNR led to a coded sequence with constant modulus
variations, desired range resolution, and peak sidelobe levels.
Assuming that the vector of observations y is filtered
through x, the objective function f(x,s) = (IocOI2 (xT's)?/
xRx + xI Wx) is the SCNR at the output of the receive filter
(obviously, we assume that x#0). Thus, we can formulate
the joint design problem of the transmit coded sequence and
the IV receive filter as the joint optimization problem:

2 2
max 7|0c0| (x's)
$,X x'Rx + XTWX’
st s(I=1 k=01.,N-1, (14)
Js-sil <5
for a continuous phase code and
2 2
o L
$,X x'Rx + XTWX’
s.t. s(k) € {1,e/2M,, ei2n(M-1IM} (15)
k=0,1,..,N -1,
Js-s <6,

for a discrete phase code. The joint design problems (14) and
(15) are nonconvex optimization problems because the
objective function is a nonconvex function and the con-
straints ls(k)]=1,k=0,1,..,N -1, and
s(k) € {1,e/2M ef2nM-DIM} o = 0,1,..,N —1, define
nonconvex sets. We develop sequential optimization pro-
cesses, providing excellent approximate solutions for (14)
and (15) with a polynomial time operational cost. The
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fundamental way is to repeatedly enhance the SCNR in (12).
Precisely, particularly for the IV receive filter x"~Vat the
(n—1)th iteration, we find a suitable coded sequence s at
the nth iteration enhancing the SCNR with respect to x "~ 1)
and s at the (n — 1)th iteration. When s is obtained, we
update the sequence and find the IV receive filter x at nth
iteration which enhances the SCNR with respect to s and
x"=1 and so on. Otherwise stated, we use x™ and s as the
initial point at the (n + 1)th iteration. To initiate the process,
the initial filter x*) to a suitable coded sequence s'? is given.
From the perspective of analysis, x" denotes the optimum
solution to an optimization problem, which can be expressed
as
max _|“0|2 (XT—S(H))Z .
x xTRWx + xTWx
In (16), R™ = ZZfiIllailst(”)s(”)T]iT. According to lit-
erature [17], problem (16) is solvable. Then, for any feasible
s we can obtain a closed form optimum solution x™,
Precisely, an optimum solution to problem (14) can be
written as follows:

(16)

o (R
i) e

(17)

from which the influence of phase coded sequence s on IV
receive filter x™ is obvious. Moreover, phase coded se-
quence s can be expressed as

(n)

2 T \2
|0c0| (x(” ) s)
s = argmax

se{s(“‘“,s<*)} X(n—l)TRX(n—l) +X(n—1)TWX(n—1).

(18)

In (18),s™) isa good solution of problem (19) if the focus
is on (14) and a good solution of problem (19) if the focus is
on (15), respectively, given by:

eaf (< 's)

s x (=D Rx (-1 4 x (=1 W (n-1)’
s.t. Is(k)] =1, k=0,1,..,N -1,
2
fo- sl <,
T2
|%|2(X<n_1>’s)
max T T >
. XD Rx (1) 4 x (-1 W (n-1)
s.t. s(k) € {1,e/27M  e2nM=DIM} - je = 0,1,..,,N - 1,

||s - s0||2 <é.

(19)

Based on [14], the sequential optimization technique has
some properties presented in Proposition 1.

Proposition 1: Let {(s™, w™)} denote a sequence of points
gained based on the sequential optimization technique, either
for the continuous or the discrete phase code constraints; let
SCNR™ denote the value of SCNR with respect to the point
(s™, w™) at the nth step. We obtain the following:

(1) The sequence SCNR™ is a monotonic increasing se-
quence and finally converges to an optimal value
SCNR™

(2) Starting from the sequence {(s™,w™)}, it is possible
to construct another sequence {(E(”),W(”))} that
converges to a feasible point (8, w*)) of problems
(14) or (15), such that the SCNR evaluated in
W, W) is equal to SCNR™

In practical terms, the sequential design process needs a
situation to stop the iterations. We can find some methods
to impose it, such as imposing an iteration gain constraint
ISCNR™ — SCNR™ V| < or setting the maximum number
of acceptable iterations or both use a two method, where
indicates the given threshold. In the following subsections,
we are going to devote to the research of problems (19) and
(20) in order to realize the sequential optimization
processes.

4.1. Coded Sequence Design: Solution of (19). Based on [21],
the SCNR in (12) can be expressed equivalently by
(oo (sTx*)?)/ (s"Rxs* + x Wx). Then, a novel approach to
obtain in polynomial time an approximate optimal solution
to the NP-hard problem (19) is presented. We can equiv-
alently reformulate problem (19) as follows:

ool (s7x )’
max

s sTRx(Dg* + x(n-1)" ' Wx (-1

20
s.t. [s(k)) =1, k=0,1,..,N -1, (20)

”s - s0||2 <é.

Observe that problem (20) is a nonconvex fractional
quadratic  problem [21]. Because |[s(k)| = |s, (k)| =
1,k=0,1,..,N -1, an equivalent expression of the simi-
larity constraint maxy.(; njls(k) = s, (k)| <0 is expressed
by RI[s* (k)s, (k)] =1 - (8*/2)for k=0,1,..,N — 1, which
can be equivalent to enforcing arg(s(k)) € [yi, yi + 0.1
where  y, = arg(s,(k)) —arccos (1 — (8*/2)) and 6. =
2 arccos(1 — 82/2) fork =0,1,...,N — 1 [30]. Therefore, NP-
hard problem (20) can be rewritten as

Jao (51"

max

s sTRx (" Dg* 4 x (=D 'Wx (-1’
s.t. ls(k)[ =1, k=0,1,..,N -1,
arg(s(k)) € [yoye +6.),k=0,1,.., N - L.
(21)



Noting that (21) is generally an NP-hard problem, it is
difficult to find optimal solutions for (21) with a polynomial
time calculation burden. We present approximate optimi-
zation approaches and develop a semidefinite programming
(SDP) relaxation and randomization technique that offers an
expected feasible solution to (21). Let Y = x(*~ Vx (- D" and
M =R(x"D)* 4+ (6fl/N)||x(”‘1)||21. Therefore, the relaxed
version of NP-hard problem (21), acquired ignoring the
similarity constraint arg(s(k)) € [y yx +90.,k=0,1,..,
N —1, can be expressed as

Jao " (s"x- ")’

max T ,
s STRX(n—l)s* + X(n—l) Wx(n—l) (22)
s.t. ls(k)[ =1, k=0,1,..,N - 1.

The fractional quadratic problem (22) can be expressed
equivalently as

tr (YS)

e tr (MS)’

(23)

s.t. S(k, k)| =1, k=0,1,..,N—-1,

S =ssT.

The SDP [40] of (23), acquired dropping the rank-one
constraint S = ss’, can be denoted as

max tr (YS)

Xs tr (MS)’

st IS(kKl=1, k=01,..N—1, (24)
S>0.

According to literature [41], to find an optimal solution
to (24), it is sufficient to solve the equivalent SDP problem:

max tr (YS),
X,s
s.t. tr(MS) = 1 (25)
S(k,k)=u
S>0.

Let us observe that both (24) and (25) are solvable and
have equivalent optimal solution; actually, if (S,7) solves
(25), then we can easily and clearly find out S/# is an optimal
solution of (24); similarly, if S solves (24), then
(S/tr (MS), 1/tr (MS)) is an optimal solution of (25). Con-
sequently, resorting to the scheme as presented in [30], we
can find an expected feasible solution s* to (19) by using
Algorithm 1 where the parameter L indicates the number of
Randomizations.

The complexity, corresponding to the operation of Al-
gorithm 1, is relative to the complexity required to solve a
SDP problem O(N?>?), whereas all randomizations involve
O(N?) [21].
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4.2. Coded Sequence Design: Solution of (20). At present,
many sensing systems transmit phase coded sequences,
where the phases are chosen from a finite alphabet. Con-
sequently, we present a novel approach to obtain in poly-
nomial time approximate optimal solutions to the NP-hard
problem (20). We consider that s,(k) € {1,e"M,
e @2TM=DIMY e — 0 1 N -1 where M>2 , if M =2
and 0 <2 and the optimal solution to (20) is the trivial one
s* =s,. Thus, based on [21], (20) can be expressed equiv-
alently as follows:
2( T (=12
max ] (S x )

s sTRx (" Dg* + x (=) ' Wx (n-1)’
s.t. s(k) € {1,e/2M,, ei2n(M-1/M} (26)
k=0,1,..,N -1,
- s <o

Let us observe that problem (26) is a nonconvex frac-

tional quadratic problem as well.  Since {s(k),
so(k)} € {1,e/27M ) e2n(M-DIMY" 1 f = 0,1,..,N~1, an
equivalent expression of the similarity constraint

maxgc;  njls(k) = sp(k)[<8,k=0,1,..,N -1 is denoted
by R[s* (k)s, (k)] =1 - (6%/2) for k =0, 1,..., N — 1, which

imposing  s(k) € {eJZH(ﬁk/M)’
/2 (BaIM) | gizn((frrod=DIM)Y where B, = Marg(s, (k))/

27 — Marccos(1 — 8%/2)2n  for k=0,1,.,N—-1 and
1+ 2|(arccos (1 — 8%/2)/2m)], 6 € [0,2)

in turn equals to

o4 = M, 5-2 Therefore,
NP-hard problem (26) can be rewritten as
2 C1y*\2
|| (sTX(n 1) )
max T >
s STRX(n—l)S* +X(n—1) Wx(n—l)
2m
s.t. arg(s(k)) € i (BB + 1o B + 64— 1]
[s(k)| =1, k=0,1,...,N - 1.
(27)

Notice that (21) is generally NP-hard problem as well,
subsequently it is difficult to obtain polynomial time pro-
cedures for calculating optimal solutions to (21). We present
approximate optimization approaches and develop a sem-
idefinite programming (SDP) relaxation and randomization
technique that offers an expected feasible solution to (27).
Therefore, based on Y and M discussed above, making use of
the similar relaxation technique as stated in (22)-(25) and
resorting to the similar stages as presented in [30], we can
obtain an expected feasible solution s* to (20) by using
Algorithm 2.

Similar to Algorithm 1, the function of the L random-
izations is to enhance the approximate capacity;
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Input: The parameters M, Y, L, {y;},0.
Output: An approximation solution s* to Problem (19)

Step 2: Define S = §*/u*

z, = [e/M,...,elN]T

Step 4: Let (s(k)); = y¢ (K)6((&)y) k= 1,...,
Step 5: Calculate ¢; = (s/ Ys;/s!Ms;),i=1,..., L

Step 1: Calculate the optimal solution (S*,u*) of SDP Problem (25)
Step 3: Produce random vectors (§); € CN,i=1,.., L, from the normal distribution N¢(0,Z) where Z = gozcch and
N,i=1,...,L, where §(x) = eU8)2md. » ¢ C

Step 6: Choice the greatest value over {t,....,f;} say {,, output s* ='s,

ALGORITHM 1: An approximation algorithm for the continuous phase code using the SDP relaxation technique.

Input: The parameters M, Y, L, {B,}, 6,,M
Output: An approximation solution s* to Problem (20)

Step 2: Define S = $*/u*

Step 3: Produce random vectors (§),
2, = [/ @M i My T

Step 5: Calculate ¢; = (siTYs,-/siTMs,-),i =1,..,L

Step 1: Let (S*,u*) be an optimum solution to SDP Problem (25)

e CN,i=1,...,L, from the normal distribution N¢ (0, W) where W = §Ozdz£ and

Step 4: Let (s(k)); = y5; (K)8((&)),k =1,..,N,i=1,.., L, where u(x) =

Step 6: Choice the greatest value over {t,,....,t;} say t;, output s* ='s;

1, ifargx € [0,27(1/8,))
e/2m(UIM) | ifargx € [2m(1/8,),2m(2/8,))

e/ Q= DIM) - if arg x € [210(8, — 1/8,), 27)

ALGORITHM 2: An approximation algorithm for the discrete phase code using the SDP relaxation technique.

furthermore, the overall complexity of Algorithm 2 is rel-
ative to the approximation solution of SDP relaxation
O( N3.5)_

4.3. Coded Sequence-1V Receive Filter Design. We summarize
the sequential optimization techniques for the coded se-
quence and the IV receive filter, separately, as Algorithm 3
for the continuous phase constraint and Algorithm 4 for the
discrete phase constraint. To generate the iteration, an initial
coded sequence s?, from which we can acquire the suitable
I\(/)receive filter w(%, is necessary; a regular set is apparently
s =g,

The complexity, corresponding to the operation of Al-
gorithms 3 and 4, depends on the maximum number of
acceptable iterations N along with on and the computational
complexity involved in all iterations. Specifically, the overall
computational complexity is linear in regard to N, while in
all iterations, they contain the computation of the inverse of
R + 8’1 and the complexity effort of Algorithms 1 and 2,
separately. The former is in the order of O (N?). The latter,
for a reasonable number of randomizations, is relative to the
complexity required to solve a SDP O (N>?) [21].

5. Performance Analysis

In this section, the capability provided by the constrained
optimization techniques for the design of the coded se-
quence and the IV receiver is evaluated. Numerical results
based on Monte Carlo simulations are offered to verify the
effectiveness of the constrained optimization techniques. We

assume a DFRC system operating in the X-band with carrier
frequency f. = 8.2 GHz and bandwidth B = 500 MHz. The
sampling frequency is f; = 10° sample/sec. Furthermore, we
assume the length of the coded sequence N = 20 and choose,
as similarity coded sequence s, the N-dimensional gener-
alized Barker codes and the M-quantized coded sequence for
Algorithms 3 and 4, separately. Precisely, prearranging the
coded sequence s, we generate the M-quantized coded se-
quence s, which is given by s9(k) =pu(s(k)),k=1,..,N,
where Ji (x) is the nonlinearity, which is denoted as follows:

- ] 1
1, ifargx € [0,271—),
M

e2m(1IM), ifargx € [271 , 27 >
M M

Il
A

p(x)

27 (M= 1)/M)

. M-1
ifargx € [27‘[—, 27'[).
M
(28)

In regard to the continuous phase code, the use of the
similarity coded sequence is primarily owing to its auto-
correlation properties. The explanation of the generalized
Barker code has been presented in [21], which contains
various length values. We consider that the randomizations
in Algorithms 1 and 2 is L = 150. The exit condition in
Algorithms 3 and 4 assumes ¢=107°, viz
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Input: The parameters s, L, J, «f,&f’

Step 2: do
Step3:n=n+1

Step 7: Construct R™ sefst,s)}

Step 9: Let SCNR™ = SCNR
Step 10: until [SCNR™ — SCNR® V| <¢
Step 11: Obtain s* = s; x* = x®

Output: An approximate solution (s*,x*) of Problem (14)
Step 1: Initialize 7 = 0, s = 59, ™ = ((R® + §21) s,/ (R + 821)?s,]|*), SCNR™ = SCNR

Step 4: Let Y = x""Vx=D'; M = R(x" V)" + 8, |x" V| L Set {y;}, 6,
Step 5: Obtain an approximate optimal solution s* to (19) using Algorithm 1
Step 6: Calculate s = argmax (Jap|* (x*~ 1V s)?/x 1 Rx (=D 4 x (=" wx (=)

Step 8: Calculate x™ = ((R™ + 821)" s/ (R™ + 621)"2s||*) and the SCNR value for (s, x™)

ALGoRITHM 3: The sequential optimization Algorithm 3.

Input: The parameters s, L, &, &, 831, M

Step 2: do
Step3:n=n+1

Step 7: Construct R™ sef{st,s1}

Step 9: Let SCNR™ = SCNR
Step 10: until [SCNR™ — SCNR®™ V| <¢
Step 11: Obtain s* = s; x* = x®

Output: An approximate solution (s*,x*)of Problem (15)
Step 1: Initialize 7 = 0, s = s, x® = (R + &21) 'sy/[ (R + 821) 25, |I>, SCNR™ = SCNR

Step 4: Let Y = x" Dx( D' M = R(x*D)* + 82|x" V|’L; Set {B}, 0,
Step 5: Obtain an approximate optimal solutioTn s* to (ZTO) using Algoritpm 2
Step 6: Calculate s = arg max (|0c0|2 (x= D7 g)2x (=1 Rx (1= 1) x (1= 1) g (n-1))

Step 8: Calculate x™ = (R™ + (Sfll)*ls(")/ﬂ (R™ 4 8311)71/25(”) |* and the SCNR value for (s,x®)

ArLGoriTHM 4: The sequential optimization Algorithm 4.

ISCNR™ — SCNR "~ V| <1075, Furthermore, we assume the
presence of a radar target with |a|* = 10dB. The perfor-
mance evaluation is performed in terms of the achievable
SCNR, with respect to the optimal coded sequence and IV
filter, as well as the target detection probability. The convex
optimization problems and SDP relaxation are solved via the
MATLAB toolbox [42].

Figure 3 illustrates the value of the SCNR averaged over
250 independent repeated experiments of Algorithm 3
versus the number of acceptable iterations, for diverse
values of the parameter § = [0.1,0.4, 1, 1.5, 1.7]. In Figure 3,
as the similarity constraint parameter ¢ increases, the
maximum SCNR value enhances since the feasible set of the
joint design scheme becomes greater and greater. In fact, for
0 = 1.7, performance gains generated by Algorithm 3 is
15dB, as compared with 13 dB offered by the joint design
approach as presented in [21], 11dB by the cognition on
transmitter only, and 10 dB by the cognition on receive filter
only. Evidently, these are just theoretical results. In practical
terms, the smaller value of the SCNR is observed because of
various imprecisions in the obtainable observation.

20

SCNR (dB)

20 30 40

Iterations
....... 5=0.1 —— 5=15
—-— 0=04 — 0=17
d=1

FiGure 3: SCNR vs. number of iterations for continuous phase
waveform.
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Performance gains offered by Algorithm 3 converge after
fifteen iterations, yielding 15dB at § = 1.7 as compared with
—2dB at the beginning of the iteration. The performance
gains of Algorithm 3 are improving as the number of it-
erations increases. However, there is an inappreciable
amount of performance improvement after ten iterations.

Figure 4 demonstrates the value of the SCNR averaged
over 250 independent repeated experiments of Algorithm 4
versus the number of acceptable iterations, for diverse values
of §=10.1,0.4,1,1.5,1.7,2] and the quantization levels
M = 16. To discuss the results, we can use the similar ex-
planations as in Figure 3. As can be seen from Figure 4, as the
similarity constraint parameter § increases, the bigger and
bigger SCNR values are obtained through iterative opera-
tions, due to the enlargement of the feasible set of the joint
optimization scheme. Indeed, for § = 2, performance gains
generated by Algorithm 4 is 4dB, as compared with 2 dB
offered by the joint design approach as presented in [21],
1 dB by the cognition on transmitter only, and 0.5 dB by the
cognition on receive filter only.

Figure 5 shows the attained average SCNR versus the
number of acceptable iterations for § = 2 and several values
of the number of quantization levels M (M €
{2, 4,8, 16, 32}). We study the impacts of M on the optimized
coded sequence for § = 2. As we can see from Figure 5, the
result demonstrates that the greater the number of quan-
tization levels is, the better the attained average SCNR will be
until M >32. That is to say, the better the cardinality of the
alphabet, the larger the degrees of freedom obtainable in the
selection of the PM-based FH codes. These results can be
expected, and this is the saturation effect. The performance
gains of the phase-quantized sequence offered by Algo-
rithm 4 end up consistent with that produced by
Algorithm 3.

We analyze detection performance of the optimal coded
sequence and IV receive filter generated by Algorithm 3. The
probability of target detection P, versus SCNR, for some
values of §=1[0.1,0.5,1,1.5,2,2.5], is demonstrated in
Figure 6. Figure 6 displays that greater the parameter & leads
to better detection performance. The result can be expected,
since increasing the parameter ¢ results in less restriction on
coded sequence and IV receive filter design, which amounts
to increasing the size of the optimal solutions of the joint
optimization problem.

Figure 7 describes the detection levels P; versus SCNR,
for § = 1 and the values of the number of randomizations
L € {1,10,20,40}. We analyze the impact of L on P, of the
optimal coded sequence and IV receive filter offered by
Algorithm 3. In Figure 7, P, is importantly improved by
enlarging the parameter L. The result is explicated through
Algorithm 1, which finds the optimal coded sequence and IV
receive filter assuring the excellent detection ability among
all the L simulations. An indiscernible amount of capability
enhancement is observed when L > 10. The detection ability
is viewed acceptable. Consequently, we choose suitable value
of L resulting in advisable enhancements in the detection
levels.

In Figure 8, we analyze the similar performance stated in
Figure 6 with regard to the detection levels P, of the optimal
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phase quantized sequence and IV receive filter provided by
Algorithm 4. Figure 8 explains P, of Algorithm 4 versus
SCNR for some values of ¢ € {0.1,0.5,1,1.5,2,2.5} and
quantization levels M = 8. Similar to Algorithm 3, as the
value of § becomes greater, P; of the optimal phase-
quantized sequence and IV receive filter provided by Al-
gorithm 4 improved.

Figure 9 displays the performance of target detection P,
versus SCNR for § = 1 and several values of the number of
quantization levels M (M € {4,8,16,32}). We analyze the
performance of the optimal phase-quantized coded se-
quence and IV receive filter generated by Algorithm 4 and
discuss the impact of the parameter M on the probabilityP,.
In Figure 9, this result demonstrates that the larger the
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FIGURE 6: Detection probability vs. SCNR. Algorithm 3: continuous
phase sequence.
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FIGURE 7: Detection probability versus SCNR. Algorithm 3 for
same values of randomizations.

parameter M is, the improved the performance of target
detection will be until M > 8. This conclusion is considered
as the saturation effect. The performance of the optimal
phase quantized coded sequence and IV receive filter gen-
erated by Algorithm 4 ends up consistent with that provided
by Algorithm 3.

To implement the communication function, we assume
that the FH step is A f = 10 MHz, the length of the FH code
is Q = 20, and the FH interval duration is At = 0.1 us. We
generate a 16 FH coded sequence. The parameter J = 50 is
used. Therefore, the 320 FH code is generated randomly
from the set {1,2,..., J}, where J = 50.

In Figure 10, we compare the symbol error rate (SER)
performance for the optimized waveform offered by Algo-
rithm 3 with a random waveform using BPSK, QPSK, 16-
PSK, and 256-PSK constellations. The data rates of the
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F1GuRre 8: Detection probability versus SCNR. Algorithm 4: phase-
quantized sequence.
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abovementioned four types of signals are 1.2, 2.4, 4.8, and
9.6 Mbps, respectively. To investigate the SER performance,
14 x 10’random PM-based FH symbols have been gener-
ated. Figure 10 illustrates the SER performance versus SNR
for BPSK, QPSK, 16-PSK, and 256-PSK constellation.
Figure 10 indicates that the SER performance of BPSK
random waveform is enhanced by about 5dB, 16 dB, and
33dB as compared with QPSK, 16-PSK, and 256-PSK
random waveform, respectively. Meanwhile, as we can see
from Figure 10, for BPSK, QPSK, and 16-PSK, the SER
performances of the optimized waveform offered by Algo-
rithm 3 are as good as those of random waveform. However,
for the 256-PSK, the SER performance of the optimized
waveform is poor relatively. As the size of constellations
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FIGURE 10: Comparative SER performance of BPSK, QPSK, 16-PSK, and 256-PSK.
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increases, the cross correlation levels between the optimized
waveform offered by Algorithm 3 becomes higher. As a
result, to meet the more reasonable requirement mentioned
above, we select suitable constellation size leading to a
tradeoff between communication SER performance and data
rate.

Transmit waveform design under a detection constraint
is stated in some works [43, 44]. The problem of code op-
timization for target recognition in the presence of clutter
interference is addressed. The purpose of the objective
function is to optimize the Euclidean distance between the
theoretical radar return from diverse target feature models.
Moreover, the detection constraint involves that the at-
tainable SCNR for all target feature models are greater than
the given threshold.

Figure 11 indicates the detection variation of Algo-
rithm 3 under the similarity constraint. We assume a radar
scene, which has three targets. The target scattering signals
derived from the radar scene is normalized and the dual-
function complexity system intends to discriminate the
scatterers by using a particular detection threshold.

With subsequent iterations of Algorithm 3, the detection
performance of the multiple targets is enhanced. As can be
seen from Figure 11, by suppressing noise, the dual-function
complexity system could discriminate three scatterers ef-
fectively at the end of 20 iterations. The constrained joint
optimization technique is superior to the waveform opti-
mization scheme in [43]. By increasing the number of it-
erations, we can obtain more accurate estimates of the target
responses, which are used to improve detection of the
multiple targets.

6. Conclusions

In this paper, we developed the joint optimization design of
cognitive radar waveform and IV receivers for the DFRC
system. We presented a novel scheme trying to maximize the
SCNR while accounting for a similarity constraint on the
transmission phase code. At all iterations, the proposed
processes involve the solution of both convex and NP-hard
problems. In order to obtain an optimal solution, we turned
to relaxation and randomization methods. The usefulness of
the constrained optimization techniques was verified by
offering simulation results. The capability of the proposed
approaches in terms of achieved SCNR, detection levels, and
detection variation of the coded sequence and IV filter pair
was evaluated. In addition, pertaining to the discrete phase
code, the influence of the quantization level on the radar
capability was investigated. The complexity, corresponding
to the operation of the proposed Algorithms, depends on the
maximum number of acceptable iterations along with on
and the computational complexity involved in all iterations.
The dual-function complexity system could create an inte-
grated platform for unmanned vehicle applications for
which both situational awareness and construction of in-
formation links are important. Potential future study will
focus on the joint design of the probing coded sequence and
the corresponding IV filter bank optimizing the worst-case
SCNR over the unknown number of lost return echo
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samples (eclipsing conditions), under an energy constraint
and a similarity constraint.
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