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In this paper, we consider the nonlinear inverse-time heat problem with a conformable derivative concerning the time variable.
(is problem is severely ill posed. A new method on the modified integral equation based on two regularization parameters is
proposed to regularize this problem. Numerical results are presented to illustrate the efficiency of the proposed method.

1. Introduction

Partial differential equations (PDEs) with different types of
boundary conditions play an essential tool in modelling
natural phenomena. For time-dependent phenomena, one
usually adds an initial time condition or a final time con-
dition, which can be considered as the data. For the time-
inverse problem from the final data, the main goal is to re-
construct the whole structure in previous times. (ese
problems were widely studied in the papers by Tikhonov and
Arsenin [1], Glasko [2], and the references cited therein. An
example is the backward heat problem (BHP) where the goal
is to recover the previous status of a physical field from the
present information. It is well known that the BHP is a
classical ill-posed problem, and it is quite difficult to consider
since the solution does not always exist. Furthermore, even if
the solution does exist, the continuous dependence of the
solution on the data is not guaranteed. (e BHP has been
considered in the literature using different methods (see
[3–10] and the references cited therein). Fu et al. [3] applied a
wavelet dual least square method to investigate a BHP with
constant coefficients, in [4], Hao et al. gave an approximation
for this problem using a nonlocal boundary value problem
method, Hao and Duc [5] used the Tikhonov regularization
method to give an approximation for this problem in a

Banach space, and Tautenhahn in [6] established an optimal
error estimate for a backward heat equation with constant
coefficients. Using the stabilized quasireversibility method,
the final value problem for a class of nonlinear parabolic
equations is investigated by Trong and Tuan [7], and in [8],
the authors used the integral equation method to regularize
the backward heat conduction problem and they obtained
some error estimates. Tuan and Ngo [10] introduced the
truncation method for solving the BHP and presented new
error estimates for investigating the stability of the given
problem. Also, themodified integral equationmethod and the
modified quasiboundary value are extended to investigate
inverse-time problems for axisymmetric backward heat
equations in [11, 12] and the nonlinear spherically symmetric
backward heat equation in [13].

(e concept of the so-called conformable derivative was
proposed by Khalil et al. [14] and discussed by Atangana
et al. [15] and Abdeljawad [16]. Anderson and Ulness in [17]
provided a potential application of the conformable deriv-
ative in quantum mechanics, Hammad and Khalil [18] used
a conformable fourier series to interpret the solution of the
conformable heat equation, and Chung [19] employed the
conformable derivative concept to investigate the problem of
Newtonian mechanics, and the Euler–Lagrange equation
was also constructed. Eslami [20] employed the Kudryashov
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method to obtain the traveling wave solutions to the coupled
nonlinear Schrodinger equation with a conformable de-
rivative, Çenesiz et al. [21, 22] studied Burgers’ equation, the
modified Burgers’s equation, and the Burgers–Korteweg–de
Vries equation with a conformable derivative version,
Çenesiz et al. [23] investigated the stochastic solution of
conformable Cauchy problems where the space operators
may correspond to Brownian motion or a Levy process, and
Vu et al. [24] employed the quasiboundary value method to
regularize the inverse-time problem for the nonhomoge-
neous heat equation with a conformable derivative, and a
Hölder-type estimation error for the whole time interval was
obtained. In this paper, we consider the following backward
heat equations:

D
α
t u(x, t) − uxx(x, t) � f(x, t), (x, t) ∈ Ω ×(0, T],

(1)

u(x, t) � 0, (x, t) ∈zΩ ×(0, T], (2)

u(x, T) � g(x), x ∈ Ω, (3)

where Ω � [0, a], T is a positive number, the functions
f(x, t) and g(x) are given, and Dα

t is the conformable
derivative of order α with respect to t defined by

D
α
t u(t) � lim

h⟶0

u t + ht1− α( 􏼁 − u(t)

h
,

D
α
t u(0) � lim

t⟶0+
D

α
t u(t).

(4)

From the information given at final time t � T, the goal
of the problem is to recover the information u(x, t) for

0≤ t<T. Unfortunately, BHP (1)–(3) is ill posed in the sense
of Hadamard, i.e., it violates at least one of the following
conditions:

(1) Existence. (ere exists a solution of the problem.
(2) Uniqueness. (e solution must be unique.
(3) Stability. (e solution must depend continuously on

the data, i.e., any small error in given data must lead
to a corresponding small error in the solution.

Using(eorem 1 in Section 2, we see that the solution of
problems (1)–(3) is given by
u(x, t)

� 􏽘

∞

n�1
e

kn bα − tα/α( )
gn − 􏽚

b

t
s
α− 1

e
kn sα− tα/α( )

fn(u)(s)ds􏼠 􏼡sin
nπ
a

x􏼒 􏼓,

(5)

where the terms in the above equation are given in (eorem
1. We observe that exp(kn(bα − tα/α))⟶n ⟶∞∞, so
this yields an instability of the solution of problems (1)–(3).
(is violates condition (3), so problems (1)–(3) are ill posed.
In this paper, to stabilize problems (1)–(3), we shall apply the
modified integral equation method via a two-parameter
regularization to regularize problems (1)–(3). To do this, we
shall replace the above instability term by the term
(εkn + e− kn((bα+c)/α))((tα− bα)/(bα+c)), where t ∈ [0, b],
ε ∈ (0, (bα + c)/α), α ∈ (0, 1) is fixed, and c is a positive
constant. From the proposed term, we use the following
modified integral equation to approximate or to regularize
the solution of problems (1)–(3):

u
ε,c

(x, t) � 􏽘
∞

n�1
εkn + e

− kn bα+c( )/α( )􏼒 􏼓
tα− bα( )/ bα+c( )( )

gn − 􏽚
b

t
s
α− 1

e
kn sα− bα( )/α( )

fn u
ε,c

( 􏼁(s)ds􏼠 􏼡sin
nπx

a
􏼒 􏼓. (6)

In Section 2, we show that problems (1)–(3) can be
transformed into an integral equation (5). In Section 3.1, we
prove that the regularized problem (6) is well posed in the
sense of Hadamard in two cases, namely, α ∈ (1/2, 1) and
α ∈ (0, 1). In Section 3.2, the error estimates between the
regularized solution of problem (6) and the solution of
problems (1)–(3) with the prior condition on the solution in
two cases of exact data and nonexact data are presented. In
particular, we show that

u
ε,c

(x, t) − u(x, t)
����

����

≤Dε tα+c( )/ bα+c( ) bα + c

α 1 + ln bα + c( 􏼁/εα( 􏼁( 􏼁
􏼠 􏼡

bα− tα( )/ bα+c( )( )

,

(7)

where D is specified below, u(x, t) is a solution of problems
(1)–(3), and uε,c(x, t) is a solution of the regularized problem
(6). In Section 4, we provide numerical tests to illustrate the
theoretical results in the paper.

2. Statement of the Problem

(roughout this paper, we denote by L2(Ω), where
Ω � [0, a], the Hilbert space of Lebesgue measurable
functions v on Ω. 〈·, ·〉 and ‖·‖ represent the inner product
and norm on L2(Ω), respectively. Specifically, the norm and
inner product in L2(Ω) are defined as follows:

‖v‖ ≔ ‖v‖L2(Ω) � 􏽚
Ω

v
2
(x)dx􏼒 􏼓

1/2
,

〈v1, v2〉 � 􏽚
Ω

v1(x)v2(x)dx,

(8)

where v1, v2 ∈ L2(Ω). Denoting byC([0, b]; L2(Ω)) the space
of all continuous functions v: [0, b]⟶ L2(Ω) and denoting
by |‖ · ‖| the sup norm in C([0, b]; L2(Ω)) defined as

|‖v‖| ≔ ‖v‖C [0,b];L2(Ω)( ) � sup
t∈[0,b]

‖v(·, t)‖L2(Ω). (9)

(e following theorem establishes the formula of the
solution to problems (1)–(3).
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Theorem 1. Let g ∈ L2(Ω) and let f: Ω × [0, b]×

L2(Ω)⟶ L2(Ω). &en, the solution of the original problems
(1)–(3) has the following form:

u(x, t) � 􏽘
∞

n�1
e

kn bα− tα( )/α( )
gn − 􏽚

T

t
s
α− 1

e
kn sα− tα( )/α( )

fn(u)(s)ds􏼠 􏼡sin
nπ
a

x􏼒 􏼓, (10)

where kn � (nπ/a)2 and

un(t) �
2
a
〈u(x, t),φn(x)〉,

gn �
2
a
〈g(x),φn(x)〉,

fn(u)(t) �
2
a
〈f(x, t, u(x, t)),φn(x)〉.

(11)

Proof. By choosing the orthogonal basis
φn(x) ≔ sin(nπx/a), n � 1, 2, . . ., in the Hilbert space
L2(Ω) and by taking the inner product in L2(Ω) on the two
sides of (1), we obtain

D
α
t 〈u(x, t),φn(x)〉 − 〈uxx(x, t),φn(x)〉

�〈f(x, t, u(x, t)),φn(x)〉.
(12)

On the other hand, by using boundary conditions (2), we
also get

〈uxx(x, t), φn(x)〉 � 􏽚
a

0
uxx(x, t)sin

nπ
a

x􏼒 􏼓dx

� ux(x, t)sin
nπ
a

x􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

a

0

−
nπ
a

u(x, t)cos
nπ
a

x􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

a

0

−
nπ
a

􏼒 􏼓
2

􏽚
a

0
u(x, t)sin

nπ
a

x􏼒 􏼓dx

� − kn〈u(x, t),φn(x)〉.
(13)

(en, it follows from (11)–(13) that

D
α
t un(t) + knun(t) � fn(u)(t). (14)

Solving problem (14), we get

un(t) � exp − kn

tα

α
􏼠 􏼡 􏽚

t

0
s
α− 1 exp kn

sα

α
􏼠 􏼡fn(u)(s)ds + C􏼢 􏼣.

(15)

Basing on (3), we have that

C � gn exp kn

bα

α
􏼠 􏼡 − 􏽚

b

0
s
α− 1 exp kn

sα

α
􏼠 􏼡fn(u)(s)ds,

(16)

where gn � un(b). (en, (15) yields that

un(t) � gn exp kn

bα − tα

α
􏼠 􏼡 − 􏽚

b

t
s
α− 1 exp kn

sα − tα

α
􏼠 􏼡fn(u)(s)ds.

(17)

(erefore, the representation of solution of problems
(1)–(3) can be written as the infinite series:

u(x, t) � 􏽘
∞

n�1
un(t)sin

nπ
a

x􏼒 􏼓 � 􏽘
∞

n�1
gn exp kn

bα − tα

α
􏼠 􏼡􏼠

− 􏽚
b

t
s
α− 1 exp kn

sα − tα

α
􏼠 􏼡fn(u)(s)ds􏼡sin

nπ
a

x􏼒 􏼓.

(18)

□

Remark 1. As stated in Section 1, we observe from (18) that
when n tends to infinity, the term exp(kn(bα − tα)/α) is in-
creasing rather quickly. Hence, the exact solution given in (18)
of problems (1)–(3) is unstable. (us, problems (1)–(3) are ill
posed, and the above term is the unstable factor. So, to reg-
ularize the problem or to obtain a stable approximation for
problems (1)–(3), we shall replace this unstable factor by a
stable one. In this paper, the term exp(kn(bα − tα)/α) is
replaced by a stable term which depends on two regularization
parameters defined by (εkn + e− kn((bα+c)/α))((tα− bα)/(bα+c)),
where the first one (ε) captures the measuring error and the
second one (c) captures the regularity of the solution.
(erefore, in this paper, we shall use integral equation (6) to
approximate or to regularize problems (1)–(3).

3. Regularization and Error Estimates

Before investigating the uniqueness and stability of the solution
of problem (6), we present the following two inequalities, which
will be useful in the proof of the next theorems.

Lemma 1. Let α ∈ (0, 1) be fixed, and c≥ 0, 0< t≤ s≤ b,
ε ∈ D ≔ (0, (bα + c)/α), and z> 0. &en, the following in-
equalities hold:

εz + exp −
bα + c( 􏼁

α
z􏼠 􏼡􏼠 􏼡

tα− bα( )/ bα+c( )

≤ (αε) tα− bα( )/ bα+c( ) bα + c

1 + ln bα + c/αε( 􏼁( 􏼁
􏼠 􏼡

bα− tα( )/ bα+c( )( )

,

(19)

Complexity 3



and

exp
sα − bα

α
􏼠 􏼡z􏼠 􏼡 εz + exp −

bα + c( 􏼁

α
z􏼠 􏼡􏼠 􏼡

tα− sα( )/ bα+c( )( )

≤ (αε) tα− sα( )/ bα+c( )( ) bα + c

1 + ln bα + c/αε( 􏼁( 􏼁
􏼠 􏼡

sα− tα( )/ bα+c( )( )

.

(20)

Proof. Let b> 0, ε ∈ D, c≥ 0, and z> 0, and let α ∈ (0, 1) be
fixed, then we observe that the function

f(z) � εz + exp −
bα + c( 􏼁

α
z􏼠 􏼡􏼠 􏼡

− 1

, (21)

has the maximum value at
z � ln (((bα + c)/αε)/((bα + c)/α)). (is yields that

f(z)≤f ln
bα + c/αε( 􏼁

bα + c/α( 􏼁
􏼠 􏼡 �

bα + c

αε 1 + ln bα + c( 􏼁/αε( 􏼁( 􏼁
.

(22)

(en, we obtain the following inequality:

εz + exp −
bα + c( 􏼁

α
z􏼠 􏼡􏼠 􏼡

− bα− tα( )/ bα+c( )( )

≤ (αε) tα− bα( )/ bα+c( )( ) bα + c

1 + ln bα + c( 􏼁/αε( 􏼁( 􏼁
􏼠 􏼡

bα− tα( )/ bα+c( )( )

. (23)

Furthermore, we have

exp
sα − bα

α
􏼠 􏼡z􏼠 􏼡[f(z)]

− bα− tα( )/ bα+c( )( ) � exp
sα − bα( )

α bα + c( 􏼁
b
α

+ c( 􏼁z􏼠 􏼡[f(z)]
sα− bα( )/ bα+c( )( )[f(z)]

tα− sα( )/ bα+c( )( )

� εz exp
bα + c

α
􏼠 􏼡z􏼠 􏼡 + 1􏼠 􏼡

sα− bα( )/ bα+c( )( )

[f(z)]
tα− sα( )/ bα+c( )( )

≤ [f(z)]
tα− sα( )/ bα+c( )( ).

(24)

From (23), we obtain

exp
sα − bα

α
􏼠 􏼡z􏼠 􏼡[f(z)]

− bα− tα( )/ bα+c( )( ) ≤ (αε) tα− sα( )/ bα+c( )( ) bα + c

1 + ln bα + c/αε( 􏼁( 􏼁
􏼠 􏼡

sα− tα( )/ bα+c( )( )

. (25)

(is yields estimate (20). □

3.1. &e Well Posedness of Regularized Problem (6). In the
following theorem, we show that regularized problem (6) is
well posed in the sense of Hadamard, i.e., problem (6) has a
unique solution, and this solution continuously depends on
the given data.

Theorem 2. Let g ∈ L2(Ω), and let f: Ω×

[0, b] × L2(Ω)⟶ L2(Ω) satisfy the globally Lipschitz
property with respect to the third variable, i.e., there exists a
constant k> 0 independent of x, t, v1, v2 such that

f x, t, v1( 􏼁 − f x, t, v2( 􏼁
����

����≤ k v1 − v2
����

����, for all v1, v2 ∈ L
2
(Ω),

(26)

where ‖·‖ is the norm in L2(Ω). &en, regularized problem (6)
is well posed in the sense of Hadamard provided that
α ∈ ((1/2), 1).

Proof. To prove the theorem, we shall divide the proof into
two steps. (e first step shows that regularized problem (6)
has a unique solution uε,c ∈ C([0, b]; L2(Ω)) provided that
α ∈ ((1/2), 1). In the second step, the continuous depen-
dence of the solution on the data g will be verified.

Step 1. Consider the operator T : C([0, b];

L2(Ω))⟶ C([0, b]; L2(Ω)) given by

Tu
∗

( 􏼁(x, t) � 􏽘
∞

n�1
Tu
∗

( 􏼁n(t)sin
nπ
a

x􏼒 􏼓, (27)

where
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Tu
∗

( 􏼁n(t) � Λ1 ε, c, t, kn( 􏼁gn

− 􏽚
b

t
Λ2 ε, c, s, t, kn( 􏼁s

α− 1
fn u
∗

( 􏼁(s)ds,

(28)

Λ1 ε, c, t, kn( 􏼁 ≔ εkn + exp − kn

bα + c

α
􏼠 􏼡􏼠 􏼡

tα− bα( )/ bα+c( )( )

,

(29)

Λ2 ε, c, s, t, kn( 􏼁

≔ exp kn

sα − bα

α
􏼠 􏼡 εkn + exp − kn

bα + c

α
􏼠 􏼡􏼠 􏼡

tα− bα( )/ bα+c( )( )

.

(30)

We set

λ(ε, c) �
bα + c

α 1 + ln bα + c/αε( 􏼁( 􏼁
􏼠 􏼡. (31)

It follows from Lemma 1 that

Λ1 ε, c, t, kn( 􏼁≤
λ(ε, c)

ε
􏼠 􏼡

bα− tα( )/ bα+c( )( )

, (32)

Λ2 ε, c, t, kn( 􏼁≤
λ(ε, c)

ε
􏼠 􏼡

sα− tα( )/ bα+c( )( )

. (33)

(erefore, by Hölder’s inequality, one obtains, for
0< t≤ s≤ b and α ∈ (1/2, 1),

Tu
∗

( 􏼁n(t) − Tu
∗

( 􏼁n(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

� 􏽚
b

t
Λ2 ε, c, s, t, kn( 􏼁s

α− 1
fn u
∗

( 􏼁(s) − fn v
∗

( 􏼁(s)( 􏼁ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤
λ2(ε, c)

ε2
C(t) 􏽚

b

t
fn u
∗

( 􏼁(s) − fn v
∗

( 􏼁(s)􏼂 􏼃
2ds􏼠 􏼡,

(34)

where α ∈ (0, 1) is fixed, (sα − tα)/(bα + c) ∈ (0, 1), and
C(t) ≔ ((b2α− 1 − t2α− 1)/(2α − 1)). So, from Lipschitz
condition (26), one has that

Tu
∗

( 􏼁(·, t) − Tu
∗

( 􏼁(·, t)
����

����
2

�
a

2
􏽘

∞

n�1
Tu
∗

( 􏼁n(t) − Tv
∗

( 􏼁n(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

≤
a

2
λ2(ε, c)

ε2
C(t) 􏽚

b

t
􏽘

∞

n�1
fn u
∗

( 􏼁(s) − fn v
∗

( 􏼁(s)􏼂 􏼃
2ds

�
λ2(ε, c)

ε2
C(t)

≤C(t)k
2λ2(ε, c)

ε2
(b − t) u

∗
− v
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
����
2
.

(35)

We observe that the function C(t) is decreasing on
(0, b]. Hence, C(t)<C(0) for all t ∈ (0, b]. With the
same calculation, one also gets

T
2
u
∗

􏼐 􏼑(·, t) − T
2
v
∗

􏼐 􏼑(·, t)
�����

�����
2

≤
λ4(ε, c)

ε4
C
2
(0)k

4(b − t)2

2
u
∗

− v
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
����
2
,

(36)

where for m≥ 1,

T
m

u
∗

( 􏼁n(t) � Λ1gn − 􏽚
b

t
Λ2s

α− 1
fn T

m− 1
u
∗

􏼐 􏼑(s)ds. (37)

Using the mathematical induction method, for m≥ 3,
one obtains
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T
m

u
∗

( 􏼁(·, t) − T
m

v
∗

( 􏼁(·, t)
����

����
2

≤
λ2m(ε, c)

ε2m
C

m
(0)k

2m(b − t)m

m!
u
∗

− v
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
����
2
.

(38)

Now, if we assume that (38) holds for m � i, then by
Hölder’s inequality and from Lemma 1, for m � i + 1,
we have that

T
i+1

u
∗

􏼐 􏼑
n
(t) − T

i+1
v
∗

􏼐 􏼑
n
(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

≤
λ2(ε, c)

ε2
C(t) 􏽚

b

t
fn T

i
u
∗

􏼐 􏼑(s) − fn T
i
v
∗

􏼐 􏼑(s)􏽨 􏽩
2
ds.

(39)

(en, by (38) and Lipschitz condition (26), we have that

T
i+1

u
∗

􏼐 􏼑(·, t) − T
i+1

v
∗

􏼐 􏼑(·, t)
�����

�����
2

�
a

2
􏽘

∞

n�1
T

i+1
u
∗

􏼐 􏼑
n
(t) − T

i+1
v
∗

􏼐 􏼑
n
(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

≤
a

2
λ2(ε, c)

ε2
C(t) 􏽚

b

t
􏽘

∞

n�1
fn T

i
u
∗

􏼐 􏼑(s) − fn T
i
v
∗

􏼐 􏼑(s)􏽨 􏽩
2
ds

�
λ2(ε, c)

ε2
C(t) 􏽚

b

t
f T

i
u
∗

􏼐 􏼑(·, s) − f T
i
v
∗

􏼐 􏼑(·, s)
�����

�����
2
ds

≤
λ2(ε, c)

ε2
C(0)k

2C
i(0) a2i(ε, c)( 􏼁/ε2i( 􏼁k2i(b − t)i+1

(i + 1)!
u
∗

− v
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
����
2

�
λ2i+2(ε, c)

ε2i+2 C
i+1

(0)k
2i+2(b − t)i+1

(i + 1)!
u
∗

− v
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
����
2
,

(40)

which is inequality (38) for m � i + 1. (us, (38) is
satisfied for all m≥ 1. In addition, inequality (38) is
similar to the estimate as follows:

T
m

u
∗

( 􏼁 − T
m

v
∗

( 􏼁
����

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ k
m

������
Cm(0)

􏽰 λm(ε, c)

εm

bm/2
���
m!

√ u
∗

− v
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
����,

(41)

where λ(ε, c) is given by (31). Moreover, we have

lim
m⟶∞

bα + c

εα 1 + ln bα + c( 􏼁/εα( 􏼁( 􏼁
􏼠 􏼡

m
kmbm/2

������
Cm(0)

􏽰

���
m!

√ � 0,

(42)

where b> 0 is given and α ∈ (1/2, 1) is fixed. (erefore,
there exists m0 ∈ N such that Tm0 is a contraction.(us,
problem (6) has a unique solution.
Step 2. Let vε,c be a solution of (6) with the data g and
wε,c be a solution of (6) with the data h. From problem
(6), we set

v
ε,c

( 􏼁n(t) � Λ1gn − 􏽚
b

t
Λ2s

α− 1
fn v

ε,c
( 􏼁(s)ds,

w
ε,c

( 􏼁n(t) � Λ1hn − 􏽚
b

t
Λ2s

α− 1
fn w

ε,c
( 􏼁(s)ds,

(43)

where gn � (2/a)〈g(x), sin((nπ/a)x)〉, hn � (2/a)〈h(x),

and sin((nπ/a)x)〉. In view of the inequality (z1 + z2)
2 ≤

2z2
1 + 2z2

2, the estimates (32) and (33), and then by Hölder’s
inequality, we obtain

v
ε,c

( 􏼁n(t) − w
ε,c

( 􏼁n(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ 2 Λ1 hn − gn( 􏼁( 􏼁

2
+ 2 􏽚

b

t
Λ2s

α− 1
fn w

ε,c
( 􏼁(s) − fn v

ε,c
( 􏼁(s)( 􏼁ds􏼠 􏼡

2

≤ 2
λ(ε, c)

ε
􏼠 􏼡

2 bα− tα( )/ bα+c( )

gn − hn( 􏼁
2

+ 2C(t) 􏽚
b

t

λ(ε, c)

ε
􏼠 􏼡

2 sα− tα( )/ bα+c( )

fn w
ε,c

( 􏼁(s) − fn v
ε,c

( 􏼁(s)( 􏼁ds.

(44)

Using Lipschitz condition (26), we have that

v
ε,c

(·, t) − w
ε,c

(·, t)
����

����
2 ≤ 2

λ(ε, c)

ε
􏼠 􏼡

2 bα− tα( )/ bα+c( )

‖g − h‖
2

+ 2
λ(ε, c)

ε
􏼠 􏼡

− 2tα( )/ bα+c( )( )

C(t)k
2

􏽚
b

t

λ(ε, c)

ε
􏼠 􏼡

2sα/ bα+c( )( )

w
ε,c

(·, s) − v
ε,c

(·, s)
����

����
2ds.

(45)
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(en, by setting H(t) � (λ(ε, c)/
ε)(2tα/(bα+c))‖vε,c(·, t) − wε,c(·, t)‖2 and by using Gronwall’s
inequality, one gets the following estimate:

v
ε,c

(·, t) − w
ε,c

(·, t)
����

����

≤
�
2

√ bα + c

εα 1 + ln bα + c( 􏼁/εα( 􏼁( 􏼁
􏼢 􏼣

bα− tα( )/ bα+c( )( )

· exp k
2
C(0)􏼐 􏼑‖g − h‖.

(46)

(is verifies that the solution of (6) depends continu-
ously on the given data. (erefore, the proof is completed.

As stated in (eorem 2, problem (6) is well posed with
the condition α ∈ (1/2, 1). In the following theorem, we shall
extend the restriction of α from the subinterval
(1/2, 1) ⊂ (0, 1) to the interval α ∈ (0, 1). To achieve our
aim, we replace the global Lipschitz condition in (eorem 2
with a new Lipschitz condition in the next theorem. □

Theorem 3. Let g ∈ L2(Ω), and let
f: Ω × [0, b] × L2(Ω)⟶ L2(Ω) satisfy the following Lip-
schitz condition:

f x, t, v1( 􏼁 − f x, t, v2( 􏼁
����

����≤ kt
η

v1 − v2
����

����, ∀v1, v2 ∈ L
2
(Ω),

(47)

where α ∈ (0, 1) is fixed, η≥ (1 − α), k> 0 is a constant, and
(x, t) ∈ Ω × (0, b]. &en, regularized problem (27) is well
posed in the sense of Hadamard.

Proof. We follow the ideas in the proof of (eorem 2. We
reconsider the operator T : C([0, b]; L2(Ω))⟶
C([0, b]; L2(Ω)) given by (27). By Hölder’s inequality,
Lipschitz condition (47), and from (28), we have that, for
0< t≤ s≤ b and α ∈ (0, 1),

Tu
∗

( 􏼁(·, t) − Tu
∗

( 􏼁(·, t)
����

����
2 ≤

a

2
λ2(ε, c)

ε2
(b − t) 􏽚

b

t
s
2α− 2

􏽘

∞

n�1
fn u
∗

( 􏼁(s) − fn v
∗

( 􏼁(s)􏼂 􏼃
2ds

�
λ2(ε, c)

ε2
(b − t) 􏽚

b

t
s
2α− 2

f u
∗

( 􏼁(·, s) − f v
∗

( 􏼁(·, s)
����

����
2ds

≤
λ2(ε, c)

ε2
k
2
b 􏽚

b

t
s
2(α− 1+c)

u
∗
(·, s) − v

∗
(·, s)

����
����
2ds

≤Dk
2
b
λ2(ε, c)

ε2
(b − t) u

∗
− v
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
����
2
,

(48)

where α ∈ (0, 1) is fixed, η> 1 − α, and D ≔ b2(α− 1+η). With
the same calculation and using the mathematical induction
method, one also gets

T
m

u
∗

( 􏼁(·, t) − T
m

v
∗

( 􏼁(·, t)
����

����
2

≤
λ2m(ε, c)

ε2m
D

m
k
2m

b
m(b − t)m

m!
u
∗

− v
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
����
2
.

(49)

Indeed, if we assume that (49) holds for m � i, then by
using Lemma 1, the Hölder’s inequality, and Lipschitz
condition (47), for m � i + 1, we have that

Complexity 7



T
i+1

u
∗

􏼐 􏼑(·, t) − T
i+1

v
∗

􏼐 􏼑(·, t)
�����

�����
2

�
a

2
􏽘

∞

n�1
T

i+1
u
∗

􏼐 􏼑
n
(t) − T

i+1
v
∗

􏼐 􏼑
n
(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

≤
a

2
λ2(ε, c)

ε2
(b − t) 􏽚

b

t
s
2(α− 1)

􏽘

∞

n�1
fn T

i
u
∗

􏼐 􏼑(s) − fn T
i
v
∗

􏼐 􏼑(s)􏽨 􏽩
2
ds

�
λ2(ε, c)

ε2
(b − t) 􏽚

b

t
s
2(α− 1)

f T
i
u
∗

􏼐 􏼑(·, s) − f T
i
v
∗

􏼐 􏼑(·, s)
�����

�����
2
ds

≤
λ2(ε, c)

ε2
k
2
b

Di+1 a2i(ε, c)/ε2i( 􏼁k2ibi(b − t)i+1

(i + 1)!
u
∗

− v
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
����
2

�
λ2i+2(ε, c)

ε2i+2 D
i+1

k
2i+2

b
i+1(b − t)i+1

(i + 1)!
u
∗

− v
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
����
2
,

(50)

which is inequality (49) for m � i + 1.(us, inequality (49) is
satisfied for all m≥ 1. Furthermore, inequality (49) yields
that

T
m

u
∗

( 􏼁 − T
m

v
∗

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
����

����

≤ k
m

���
Dm

√ bα + c

εα 1 + ln bα + c( 􏼁/εα( 􏼁( 􏼁
􏼠 􏼡

m
bm

���
m!

√ u
∗

− v
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
����.

(51)

Hence,

lim
m⟶∞

bα + c

εα 1 + ln bα + c( 􏼁/εα( 􏼁( 􏼁
􏼠 􏼡

m
kmbm

���
Dm

√

���
m!

√ � 0, (52)

where b> 0 is given and α ∈ (0, 1) is fixed. So, there exists
m0 ∈ N such that Tm0 is a contraction.(us, problem (6) has
a unique solution uε,c ∈ C([0, b]; L2(Ω)) in the case of
α ∈ (0, 1). Finally, in order to show that the solution of
problem (6) depends continuously on g, we assume that vε,c

and wε,c are two solutions of problem (6) corresponding to
the final values g and h, respectively. Similar to Step 2 in the
proof of(eorem 2, by using Lipschitz condition (5), we also
obtain

v
ε,c

(·, t) − w
ε,c

(·, t)
����

����
2 ≤ 2

λ(ε, c)

ε
􏼠 􏼡

2 bα− tα( )( )/ bα+c( )

‖g − h‖
2

+ 2
λ(ε, c)

ε
􏼠 􏼡

− 2tα( )/ bα+c( )

k
2
b 􏽚

b

t
s
2(α− 1+η) λ(ε, c)

ε
􏼠 􏼡

2sα( )/ bα+c( )

w
ε,c

(·, s) − v
ε,c

(·, s)
����

����
2ds.

(53)

By putting H(t) � (λ(ε, c)/ε)(2tα/(bα+c))

‖vε,c(·, t) − wε,c(·, t)‖2 and l(t) � s2(α− 1+η) and by Gronwall’s
inequality, we get

H(t)≤ 2
λ(ε, c)

ε
􏼠 􏼡

2bα/ bα+c( )( )

exp 2k
2
b

b2α+2η− 1 − t2α+2η− 1

2α + 2η − 1
􏼠 􏼡‖g − h‖

2
. (54)

(is yields

v
ε,c

(·, t) − w
ε,c

(·, t)
����

����≤
�
2

√ bα + c

εα 1 + ln bα + c( 􏼁/εα( 􏼁( 􏼁
􏼢 􏼣

bα− tα( )/ bα+c( )

· exp k
2
b

b2α+2η− 1 − t2α+2η− 1

2α + 2η − 1
􏼠 􏼡‖g − h‖. (55)

(erefore, we can conclude that the solution of (6)
depends continuously on the data g. (e proof is
completed. □

3.2. Error Estimates. (e following theorem presents the
error estimate in the case of exact data between the solution u
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of (1)–(3) with the conditional stable and the regularized
solution uε,c of (6) without the conditional stable.

Theorem 4. Let ε ∈ D be given, and f and g satisfy the
conditions of&eorem 3. Suppose that the unique solution u of

(1)–(3) satisfies the conditional stable C(c, t, b) ≔ 􏽐
∞
n�1k

2
n exp(2kn((bα + c)/α))|un(t)|2 <∞, ∀t ∈ [0, b], then we

obtain the following estimate:

u
ε,c

(·, t) − u(·, t)
����

����≤ [λ(ε, c)]
bα− tα( )/ bα+c( )( )ε tα+c( )/ bα+c( )( )

��
M

√
exp k

2
b

b2α+2η− 1 − t2α+2η− 1

2α + 2η − 1
􏼠 􏼡, (56)

where t ∈ [0, b], α ∈ (0, 1) is fixed, η> (1 − α),
M � asupt∈[0,b](((bα − tα)/(bα + c)))2C(c, t, b),
λ(ε, c) ≔ ((bα + c)/α(1 + ln ((bα + c)/αε))), and uε,c is a
unique solution of regularized problem (6).

Proof. Assume that u is a unique solution of (1)–(3), and
then based on(eorem 1, one observes that u is represented
by

u(x, t) � 􏽘
∞

n�1
un(t)sin

nπ
a

x􏼒 􏼓, (57)

where

un(t) � exp kn

bα − tα

α
􏼠 􏼡􏼠 􏼡gn

− 􏽚
b

t
s
α− 1 exp kn

sα − tα

α
􏼠 􏼡􏼠 􏼡fn(u)(s)ds.

(58)

Multiplying both sides of (58) with
(1 + εkn exp(kn((bα + c)/α)))(− (bα− tα))/(bα+c), one gets

1 + εkne
kn bα− tα( )/α( )

􏼐 􏼑
− bα− tα( )( )/ bα+c( )

un(t) � e
kn bα− tα( )/α( ) 1 + εkne

kn bα+c( )/α( )􏼒 􏼓
− bα− tα( )( )/ bα+c( )

gn

− 􏽚
b

t
1 + εkne

kn bα− tα( )/α( )
􏼐 􏼑

− bα− tα( )( )/ bα+c( )
e

kn bα− tα( )/α( )
e

kn sα− bα( )/α( )
s
α− 1

fn(u)(s)ds

� εkn + e
− kn bα− tα( )/α( )

􏼐 􏼑
tα− bα( )/ bα+c( )( )

gn

− 􏽚
b

t
εkn + e

− kn bα− tα( )/α( )
􏼐 􏼑

tα− bα( )/ bα+c( )( )
e

kn sα− bα( )/α( )
s
α− 1

fn(u)(s)ds

� Λ1gn − 􏽚
b

t
Λ2s

α− 1
fn(u)(s)ds,

(59)

where Λ1 and Λ2 are denoted as in the proof of (eorem 2.
Moreover, from (6), we have

u
ε,c
n (t) � Λ1gn − 􏽚

b

t
Λ2s

α− 1
fn u

ε,c
( 􏼁(s)ds. (60)

Using the inequality (z1 + z2)
2 ≤ 2z21 + 2z22 and the in-

equality 1 − (1 + z)− β ≤ βz, where β> 0, one has that
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un(t) − u
ε,c
n (t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ 2 un(t) − 1 + εkne

kn bα+c( )/α( )􏼒 􏼓
− bα− tα( )( )/ bα+c( )

un(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 2 u
ε,c
n (t) − 1 + εkne

kn bα+c( )/α( )􏼒 􏼓
− bα− tα( )( )/ bα+c( )

un(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 2 􏽚
b

t
Λ2 ε, c, s, t, kn( 􏼁s

α− 1
fn u

ε,c
( 􏼁(s) − fn(u)(s)􏼂 􏼃ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 2 1 − 1 + εkne
kn bα+c( )/α( )􏼒 􏼓

− bα− tα( )( )/ bα+c( )
􏼠 􏼡un(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 2 􏽚
b

t
Λ2 ε, c, s, t, kn( 􏼁s

α− 1
fn u

ε,c
( 􏼁(s) − fn(u)(s)􏼂 􏼃ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 2k
2
nε

2 bα − tα

bα + c
􏼠 􏼡

2

e
2kn bα+c( )/α( ) un(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(61)

Let Cn(c, t, b) ≔ k2
n exp(2kn((bα + c)/α))|un(t)|2. By

employing Hölder’s inequality and then from Lemma 1 and
(61), one obtains

un(t) − u
ε,c
n (t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ 2(b − t) 􏽚

b

t
Λ22 ε, c, s, t, kn( 􏼁s

2(α− 1)
fn u

ε,c
( 􏼁(s) − fn(u)(s)􏼂 􏼃

2ds + 2ε2
bα − tα

bα + c
􏼠 􏼡

2

Cn(c, t, b)

≤ 2(b − t) 􏽚
b

t

bα + c

εα 1 + ln bα + c( 􏼁/εα( 􏼁( 􏼁
􏼠 􏼡

2sα− 2tα( )/ bα+c( )( )

s
2(α− 1)

fn u
ε,c

( 􏼁(s) − fn(u)(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2ds + 2ε2

bα − tα

bα + c
􏼠 􏼡

2

Cn(c, t, b).

(62)

Let

y(z) � z − εα − εα ln
z

εα
􏼒 􏼓, (63)

where α ∈ (0, 1) is fixed. It is clear that

y(z)≥y(εα) � εα − εα − εα ln 1 � 0, (64)

for all z≥ εα. (erefore, for ε ∈ (0, (bα + c)/α), one gets

ε≤
bα + c

α 1 + ln bα + c( 􏼁/εα( 􏼁( 􏼁
. (65)

Hence,

ε � ε tα+c( )/ bα+c( )( )ε bα− tα( )/ bα+c( )( ) ≤ ε tα+c( )/ bα+c( )( ) bα + c

α 1 + ln bα + c( 􏼁/εα( 􏼁( 􏼁
􏼠 􏼡

bα− tα( )/ bα+c( )( )

� ε tα+c( )/ bα+c( )( )[λ(ε, c)]
bα− tα( )/ bα+c( )( ).

(66)

It follows from (62) that
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u
ε,c
n (t) − un(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ 2(b − t)[λ(ε, c)]

2bα− 2tα( )/ bα+c( )ε 2 tα+c( )( )/ bα+c( )

· 􏽚
b

t
[λ(ε, c)]

2sα− 2bα( )/ bα+c( )ε − 2 sα+c( )( )/ bα+c( )s
2(α− 1)

fn u
ε,c

( 􏼁(s) − fn(u)(s)􏼂 􏼃
2ds

+ 2[λ(ε, c)]
2bα− 2tα( )/ bα+c( )ε 2 tα+c( )( )/ bα+c( ) bα − tα

bα + c
􏼠 􏼡

2

Cn(c, t, b).

(67)

(en, by using Lipschitz condition (47), we get the
following estimate:

u
ε,c

(·, t) − u(·, t)
����

����
2 ≤ [λ(ε, c)]

2bα− 2tα( )/ bα+c( )ε 2 tα+c( )( )/ bα+c( ) a 􏽘

∞

n�1

bα − tα

bα + c
􏼠 􏼡

2

Cn(c, t, b)⎛⎝

+ k
2
(b − t) 􏽚

b

t
[λ(ε, c)]

2sα− 2bα( )/ bα+c( )ε − 2 sα+c( )( )/ bα+c( )s
2(α− 1+η)

u
ε,c

(·, s) − u(·, s)
����

����
2ds􏼡.

(68)

By putting H(t) � [λ(ε, c)](2tα− 2bα)/(bα+c)

ε(− 2(tα+c))/(bα+c)‖uε,c(·, t) − u(·, t)‖2 and M �

supt∈[0,b]((bα − tα)/(bα + c))2a 􏽐
∞
n�1 Cn(c, t, b), we get the

inequality as follows:

H(t)≤M + 2k
2
b 􏽚

b

t
s
2(α− 1+η)

H(s)ds. (69)

Using Gronwall’s inequality, we have

H(t)≤M exp 2k
2
b

b2α+2η− 1 − t2α+2η− 1

2α + 2η − 1
􏼠 􏼡. (70)

(is infers that

u
ε,c

(·, t) − u(·, t)
����

����≤ [λ(ε, c)]
bα− tα( )/ bα+c( )( )ε tα+c( )/ bα+c( )( )

��
M

√
exp k

2
b

b2α+2η− 1 − t2α+2η− 1

2α + 2η − 1
􏼠 􏼡. (71)

Based on the results of (eorems 3 and 4, the following
theorem presents the error estimate in the case of nonexact
data between the solution u of (1)–(3) with the conditional
stable and regularized solution (6) without the conditional
stable. □

Theorem 5. Let ε ∈ (0, (bα + c)/α), where c is a positive
parameter, and let f satisfy condition (47). Assume that u is a
unique solution of (1)–(3) with the data g which satisfies the
conditional stable as in &eorem 4. In addition, let h be the
measured data which satisfies

‖g − h‖≤ ε. (72)

(en, there is a function vε,c corresponding to the
measured data h such that

v
ε,c

(·, t) − u(·, t)
����

����

≤Dε tα+c( )/ bα+c( ) bα + c

α 1 + ln bα + c( 􏼁/εα( 􏼁
􏼠 􏼡

bα− tα( )/ bα+c( )

, t ∈ [0, b],

(73)

where D ≔ (
�
2

√
+

��
M

√
)exp(k2b((b2α+2η− 1) − (t2α+2η− 1)/

(2α+ 2η − 1))) and M is given as in (eorem 4.

Proof. Denote by vε,r and uε,c the solutions of (6) with the
final values h and g, respectively. We observe that

v
ε,r

(·, t) − u(·, t)
����

����≤ v
ε,r

(·, t) − u
ε,r

(·, t)
����

����

+ u
ε,r

(·, t) − u(·, t)
����

����.
(74)

Based on estimates (55) and (56) of(eorems 3 and 4, we
have that
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v
ε,r

(·, t) − u
ε,r

(·, t)
����

����≤
�
2

√ λ(ε, c)

ε
􏼢 􏼣

bα− tα( )/ bα+c( )( )

exp k
2
b

b2α+2η− 1 − t2α+2η− 1

2α + 2η − 1
􏼠 􏼡‖g − h‖,

u
ε,r

(·, t) − u(·, t)
����

����≤ [λ(ε, c)]
bα− tα( )/ bα+c( )( )ε tα+c( )/ bα+c( )( )

��
M

√
exp k

2
b

b2α+2η− 1 − t2α+2η− 1

2α + 2η − 1
􏼠 􏼡.

(75)

It follows from (72) that, for every t ∈ [0, b],

v
ε,c

(·, t) − u(·, t)
����

����≤Dε tα+c( )/ bα+c( )( )[λ(ε, c)]
bα− tα( )/ bα+c( )( ),

(76)

where D ≔ (
�
2

√
+

��
M

√
)exp(k2b((b2α+2η− 1) − (t2α+2η− 1)/

(2α + 2η − 1))). (e proof is complete. □

4. Numerical Illustration

Consider the following linear backward heat problem in-
volving the conformable derivative:

D
α
t u(x, t) − uxx(x, t) � 1 +

π
a

􏼒 􏼓
2

􏼠 􏼡u, 0≤ x≤ a, 0< t< b,

(77)

u(0, t) � u(a, t) � 0, 0< t≤ b, (78)

u(x, b) � exp
bα

α
􏼠 􏼡sin

π
a

x􏼒 􏼓, 0≤x≤ a. (79)

It is not difficult to check that
u(x, t) � exp(tα/α)sin((π/a)x) is an exact solution of
(77)–(79). It is well known that errors always occur during
measurement, and so in this section, we assume the mea-
sured data are perturbed by a “noise” with the level ε as
follows:

g
noise

(x) � exp
bα

α
􏼠 􏼡sin

π
a

x􏼒 􏼓 + 􏽘

J0

j�1
εcj sin

jπ
a

x􏼒 􏼓, (80)

where J0 ∈ N and cj is a sequence of random numbers with
mean 0. Basing on regularized problem (6), we obtain the
regularized solution uε,c corresponding to the data gnoise:

u
ε,c

(x, t) � εk1 + e
− k1 bα+c( )/α( )􏼒 􏼓

tα− bα( )/ bα+c( )( )
e

bα/α
− 􏽚

b

t
s
α− 1

e
k1 sα− bα( )/α( )

f1 u
ε,c

( 􏼁(s)ds􏼠 􏼡sin
π
a

x􏼒 􏼓

+ 􏽘

J0

j�1
εkj + e

− kj bα+c( )/α( )􏼒 􏼓
tα− bα( )/ bα+c( )( )

εcj − 􏽚
b

t
s
α− 1

e
kj

sα − bα( )

α
fj u

ε,c
( 􏼁(s)ds􏼠 􏼡sin

jπ
a

x􏼒 􏼓.

(81)

Using the concept of the relative error given by

RE(ε, t) �
uε,c(·, t) − u(·, t)‖ ‖

‖u(·, t)‖
, (82)

we shall present the difference between the exact solution
and the approximate solution for each t ∈ [0, b]. Now, the
following situations are considered:

Situation 1. We focus on the regularization param-
eter ε. In our numerical example, we take c � 0.3, α �

0.8, b � 1, and a � 10 and let ε1 � 10− 3, ε2 � 10− 5, and
ε3 � 10− 7. (e graphs of the solution u(t) and the
regularized solution uε,c are shown in Figures 1–4
with various values of ε. In addition, we also obtain
the error of the proposed method in this paper with
random measured data (80) given in Table 1 at
t � 0.5.

Furthermore, let t � 0, then the graphs of the regu-
larized solution and the exact solution are shown in
Figure 5 with the various values of ε.

Remark 2. From Figures 1–4 and Table 1, we observe that
the smaller the measurement error ε is, the closer the reg-
ularized solution becomes to the exact solution.

Situation 2. We focus on the parameter c. In our
numerical example, we take ε � 10− 6 fixed and let
α � 0.5, b � 1, and a � 10. We consider the values of c:
c1 � 0 and c2 � 1. (e graphs of the regularized solu-
tion in this case are shown in Figures 6 and 7.
Furthermore, let t � 0, then the graphs of the regu-
larized solution and the exact solution are shown in
Figure 8 with the various values of c.
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Remark 3. According to Figures 6–8, the regularized so-
lution will be closer to the exact one with a higher value of c.
It is very useful if we want to obtain a better approximation
while the measurement process cannot be improved.
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Figure 4: (e regularized solution in the case of ε3 � 10− 7.
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Figure 5: (e graphs of u(t) and uε,c(t).

Table 1: (e error of the proposed method.
ε ‖uε(·, 0.5) − u(·, 0.5)‖ RE(ε, 0.5)

ε � 10− 1 0.748065408 5.160107181
ε � 10− 2 0.116350273 0.802576715
ε � 10− 3 0.02441038 0.16838125
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5. Conclusion

In this paper, we have discussed the modified integral
equation method involving two regularization parameters
for the backward heat problem with a conformable deriv-
ative. We have also established error estimates between exact
and regularized solutions in the cases of exact data and
inexact data. (ese estimates are supported by several nu-
merical examples.
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