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+is paper investigated the global synchronization of fractional-order memristive neural networks (FMNNs). To deal with the
effect of reaction-diffusion and time delay, fractional partial and comparison theorem are introduced. Based on the set value
mapping theory and Filippov solution, the activation function is extended to discontinuous case. Adaptive controllers with a
compensator are designed owing to the existence of unknown parameters, with the help of Gronwall–Bellman inequality.
Numerical simulation examples demonstrate the availability of the theoretical results.

1. Introduction

As a generalization of differential and integral calculus from
an integer order to arbitrary order, fractional calculus has
more than 300 years history [1]. Since Mandelbort proposed
the fact that lots of fractals exist in the field of technology, a
whole new array of possibilities for natural science research
has been opened [2]. Compared with the conventional in-
teger order calculus, it shows some superiority in the aspect
of memory and heredity [3]. +at caused its wide range of
applications [4–6].

Neural networks model, as we know, has great potential
for controlling highly nonlinear and severe uncertain sys-
tems. Due to the ability of studying arbitrary continuous
nonlinear functions, it has been fruitfully applied to opti-
mization, secure communication, cryptography, and so on.
Taking into account these facts, the combination of frac-
tional calculus and neural networks model is a remarkably
great improvement. +is kind of model called fractional-
order neural networks (FNNs) was proposed by Arena in
1998 [7]. Afterwards, a myriad of studies have focused on the
dynamical behaviors of FNNs. One of the most interesting
issues is to explore the synchronization problem of FNNs.
Various definition types of synchronization have been built

[8–10]. Among them, global synchronization is the most
basic and widely applied one, since it guarantees the con-
vergence of the system. From the perspective of engineering
applications, it has achieved the required realistic standards
[11, 12]. +us, global synchronization of FNNs has been
extensively investigated to date [13–15].

Another hot topic of research is memristor-based neural
networks, which were first put forward by Chua [16]. In
2008, a nanoscale memory was made by Williams group
[17], which was named memristor. Memory characteristics
and nanometer dimensions make the memristor show
properties the same as the neurons in the human brain.
From this standpoint, fractional-order memristive neural
networks (FMNNs) have been suggested replacing the FNNs
to emulate the human brain. +erefore, the analysis of
FMNNs has become increasingly attractive to researchers.
At present, there are many excellent results on synchroni-
zation of FMNNs [18–21]. Velmurugan investigated finite-
time synchronization of FMNNs with the method of Laplace
transform and generalized Gronwalls inequality [18].+e lag
complete synchronization criteria of FMNNs are proposed
by period intermittent control [19]. Delay-independent
synchronization criteria for FMNNs are established by using
the maximum modulus principle, the spectral radii of
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matrix, and Kakutani fixed point theorem [20]. Chen et al.
designed a stabilizing state-feedback controller by
employing the FO Razumikhin theorem and linear matrix
inequalities [21]. Besides the abovementioned methods,
adaptive mechanism has been proposed as a more effective
strategy [22]. Compared with the conventional feedback
control, the parameters of adaptive controllers will be
updated automatically, which makes the energy be saved
[23]. It also has significant effect on the analysis of fractional
order nonlinear system, especially when the system has
unknown parameters [24–27]. +us, it is a natural idea to
investigate the synchronization of FMNNs using adaptive
control scheme.

It is a remarkable fact that time delays emerge in the
communication of neurons [28, 29]. Furthermore, the oc-
currence of diffusion phenomena has a significant impact in
the electrons’ transportation through a nonuniform elec-
tromagnetic field. +at means, not only the time but also
their spatial positions affect the dynamic behaviors of net-
works. +e models covering time delay and reaction-dif-
fusion are good mimicry for the real neural networks in
terms of application, but the existence of time delays and
reaction-diffusion could bring about some undesirable be-
haviors [30, 31]. Drawing on the abovementioned concerns,
special attention should be paid on time delay and reaction-
diffusion. However, the research on FMNNs with both re-
action-diffusion and time delay is still in its infancy [32, 33].

For realistic neural networks systems, one must include
uncertainties. Uncertainty could occur in parameters in the
mathematical model, for they are hardly to be exactly known
in advance [34–36]. +erefore, the study on synchronization
of the drive-response system considering unknown pa-
rameters is one of the most challenging tasks. Expanding on
the existing literature, the global synchronization problem
for reaction-diffusion FMNNs with time delay and unknown
parameters is proposed firstly. +e main contents of this
paper are the following. (1) Based on fractional comparison
theorem, the problem of synchronization for the integral
delayed neural networks is generalized to the fractional
order case. (2) By utilizing Caputo partial fractional de-
rivative, reaction-diffusion is emphasized for the FMNNs,
which extends the problem from the time domain to time-
spatial dimension. (3) With the help of functional differ-
ential inclusions, the solution of the discontinuous systems is
guaranteed in the sense of Filippov. (4) Employing Gron-
wall–Bellman inequality, the adaptive controllers with
compensator are designed to achieve the synchronization,
despite the presence of parametric uncertainties.

+is paper is structured as follows. In Section 2, we
briefly introduce preliminaries and model description. Two
types of adaptive controllers for global synchronization of
the drive-response system are designed in Section 3. In
Section 4, two simulations are shown to verify the cor-
rectness of the proposed results. A short conclusion and
some discussions are given in Section 5.

Notations. let Rn be the space of n-dimensional Euclidean
space. +e norm of vector x � (x1, x2, . . . , xn)T ∈ Rn is
defined as ‖x‖ � (

n
q�1 x2

q)1/2. A bounded open-set Ω ⊂ Rn

containing the origin equips with the smooth boundary zΩ
and mesΩ> 0.

2. Preliminaries and Model Description

Preliminaries about fractional calculus and the model of
reaction-diffusion FMNNs with time delay are introduced in
this section. Concept of Filippov solution, fractional com-
parison theorem, and Gronwall–Bellman inequality need to
be emphasized.

2.1. Preliminaries. Definition and the properties about
Caputo Riemann–Liuville fractional calculus are given in the
following.

Definition 1 (see [37]). For any t> 0, the time Caputo
fractional derivative of order α(0< α< 1) for a function
f(t, x) ∈ C1[[0, b] ×Ω,R] is defined by

zαf(t, x)

ztα
�

1
Γ(1 − α)


t

0

zf(s, x)

zs

ds

(t − s)α
, (1)

where Γ(z) � 
∞
0 e− ttz−1dt. Particularly, when

f(t, ·) � f(t), then
zαf(t, ·)

ztα
�
dαf(t)

dtα
�

C
0 D

α
t f(t). (2)

It should be noted that the initial conditions of Caputo
fractional derivative are same as integer-order derivative,
which makes Caputo fractional derivative equip specific
physical sense in the real world. In this paper, simple no-
tation Dα is used to replace C

0 Dα
t .

Definition 2 (see [37]). Riemann–Liuville fractional integral
of order α for a function f(t): ([0, +∞)⟶ R) is defined
by

0
RI

α
t f(t) �

1
Γ(α)


t

0

f(τ)

(t − τ)1−α dτ, (3)

where 0< α< 1.

Proposition 1 (see [37]). For arbitrary constants v1 and v2,
there is

D
α

v1f(t) + v2g(t)(  � v1D
α
f(t) + v2D

α
g(t). (4)

Proposition 2 (see [37]). If 0< α< 1 and f(t) ∈ C1[0, t],
then 0

RI
α
t Dαf(t) � f(t) − f(0).

Several important conclusions about the fractional-order
system are listed below.

Lemma 1 (see [33]). Let f(t, x): [0, b] ×Ω⟶ R, be a
continuous and differentiable function on t; then, for any
t≥ 0, x ∈ Ω,

1
2

zαf2(t, x)

ztα
≤f(t, x)

zαf(t, x)

ztα
, (5)

where 0< α< 1. Particularly, when α � 1, there is
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1
2

zf2(t, x)

zt
≤f(t, x)

zf(t, x)

zt
. (6)

Lemma 2 (see [38]). Consider the system as follows:
DαV(x(t)) � −ρV(x(t)) + kV(x(t − τ)),

x(t) � ϕ(t),

t ∈ [−τ, 0],

⎧⎪⎪⎨

⎪⎪⎩
(7)

where ρ, k≥ 0 and V(x)≥ 0. 4e solution of the system is
asymptotically stable, when k< ρ sin(απ/2).

Lemma 3 (fractional comparison theorem; see [38]).
Consider the following fractional order inequality:

DαV(x(t)) ≤ − ρV(x(t)) + kV(x(t − τ)),

V(x(t)) � h(t), t ∈ [−τ, 0],
 (8)

and fractional order system:

DαV(y(t)) � −ρV(y(t)) + kV(y(t − τ)),

V(y(t)) � h(t), t ∈ [−τ, 0],
 (9)

where α ∈ (0, 1), τ > 0, x(t), y(t) ∈ Rn, and V(x) andV(y)

are continuous and nonnegative functions in (0, +∞),
h(t)≥ 0 on [−τ, 0]. If ρ> 0 and k> 0, then the inequality
holds:

V(x(t)) ≤V(y(t)), (10)

for all t ∈ [0, +∞).

Lemma 4 (see [37, 39]). Suppose that e(x, t): Ω × R+⟶ R

is integrable on Ω and is derivable respect to t. Denote
V(t) � Ωe(x, t)dx, then

D
α
V(t) � 

Ω
D

α
e(x, t)dx. (11)

Lemma 5 (see [40]). If x(t), y(t) ∈ C1[t0, b] with
x(t)≤y(t), then ∀t ∈ [t0, b] there is R

t0
Iαt x(t)≤ R

t0
Iαt y(t).

Lemma 6 (see [41]). LetΩ be a cube |xq|< lq, q � 1, 2, . . . , n,
and let f(x) be a real-valued function belonging to C1(Ω)

which vanishes on the boundary of the Ω, i.e., f(x)|zΩ � 0,
then


Ω

f
2
(x)dx≤ l

2
q
Ω

zf(x)

zxq





2

dx. (12)

Lemma 7 (Gronwall–Bellman inequality; see [42]). If z(t)

satisfies z(t)≤ 
t

0 a(τ)z(τ)dτ + b(t), where a(t) and b(t)

are the known real functions, then

z(t)≤ b(0)exp 
t

0
a(τ)dτ  + 

t

0
_b(τ)exp 

t

τ
a(r)dr dτ.

(13)

If b(t) is a constant,

z(t)≤ b(0)exp 
t

0
a(τ)dτ . (14)

2.2. System Description. Reaction-diffusion FMNNs with
time delay are described as

zαui(t, x)

ztα
� 

n

q�1
diqΔui(t, x) − ciui(t, x) + 

m

j�1
〈aijfj〉(t, x)

+ 

m

j�1
〈bijgj〉(t − τ, x) + Ii,

(15)

where i � 1, 2, . . . , m, m≥ 2 is the quantity of units; 0< α< 1
refers to the order of the equation; ui(t, x) represents the
state of the ith unit at time t and in space x; t ∈ J � [0, T]

represents the time variable; Δ is a Laplace operator, which
means Δui(t, x) � z2ui(t, x)/zx2

q; the smooth constants
diq ≥ 0 work as the transmission diffusion operator along the
ith unit at qth position; 〈aijfj〉(t, x) � aij(ui(t, x))

fj(uj(t, x)), 〈bijgj〉(t − τ, x) � bij(ui(t, x))gj(uj(t − τ,

x)), where aij(ui(t, x)) and bij(ui(t, x)) stand for the
strength of the jth unit on the ith unit at time t in space x

and at time t − τ in space x, respectively; ci > 0 is the self-
feedback connection weight; fj(·) and gj(·) denote the
discontinuous activation functions; Ii signifies the external
input; and τ ≥ 0 stands for time delay. In addition, the
memristor-based connection weights aij(ui(t,

x)) and bij(ui(t, x)) are given by

aij ui(t, x)(  �

aij, ui(t, ·)


>Ta
j ,

unsureness, ui(t, ·)


 � Ta
j ,

�aij, ui(t, ·)


<Ta
j ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

bij ui(t, x)(  �

bij, ui(t, ·)


>Tb
j,

unsureness, ui(t, ·)


 � Tb
j,

�bij, ui(t, ·)


<Tb
j,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

where i, j � 1, 2, . . . , m, t≥ 0, switching jumps Ta
j , Tb

j > 0 and
aij, �aij,

bij, and �bij are all constants.
Consider the following Dirichlet-type boundary condi-

tions of (15)

ui(t, x) � 0, t ∈ [−τ,∞), x ∈ zΩ, (17)

and initial conditions

ui(s, x) � φ0i(s, x), s ∈ [−τ, 0], x ∈ Ω, (18)

where φ0 � (φ01,φ02, . . . ,φ0m)T are real-value continuous
functions defined on [−τ, 0] ×Ω.

Take (15) as the drive system, then the corresponding
response system is defined by
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zαvi(t, x)

ztα
� 

n

q�1
diqΔvi(t, x) − civi(t, x) + 

m

j�1
〈aijfj〉(t, x)

+ 
m

j�1
〈bijgj〉(t − τ, x) + Ii + κi(t, x),

(19)

where i � 1, 2, . . . , m and κi(t, x) is the controller which will
be designed later.

Similarly, there are

vi(t, x) � 0, t ∈ [−τ,∞), x ∈ zΩ,

vi(s, x) � Φ0i(s, x), s ∈ [−τ, 0], x ∈ Ω,
(20)

and Φ0 � (Φ01,Φ02, . . . ,Φ0m)T, which have the same
property to φ0.

Since the right-hand sides of equations are discon-
tinuous, the solutions of the equations in the conven-
tional sense have been shown to be invalid. In this case,
Filippov solutions [43] are introduced to deal with the
discontinuous equations in functional differential in-
clusions framework. +e solution’s global existence for
fractional differential inclusions with time delay is given
by [44].

Assumption 1. For each i ∈ N, fi(·): R⟶ R is piecewise
continuous function. Moreover, fi(·) has at most limited the
number of discontinuous points on any compact interval of
R. +e abovementioned properties are the same to gi(·).
Based on the definition of Filippov solution, (15) can be
rewritten as

zui(t, x)

ztα
∈ 

n

q�1
diqΔui(t, x) − ciui(t, x)

+ 

m

j�1
K aij (t)co fj uj(t, x)  

+ 

m

j�1
K bij (t)co gj uj(t − τ, x)   + Ii,

(21)

where i � 1, 2, . . . , m, ui(t, x) are absolutely continuous on
any compact subinterval of [t0,∞) ×Ω:

K aij (t) �

aij, uj(t, ·)> Ta
j



,

co aij, �aij , uj(t, ·) � Ta
j



,

�aij, uj(t, ·)< Ta
j



,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K bij (t) �

bij, uj(t, ·)> Tb
j



,

co bij,
�bij , uj(t, ·) � Tb

j



,

�bij, uj(t, ·)< Tb
j



.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

Or equivalently, there are measurable functions
aij(·) ∈ K[aij](·), bij(·) ∈ K[bij](·), f1j(·) ∈co[fj(uj(·))],
and g1j(·) ∈co[gj(uj(·))] satisfy
zαui(t, x)

ztα
� 

n

q�1
diqΔui(t, x) − ciui(t, x) + 

m

j�1
aij(t)f1j(t, x)

+ 
m

j�1

bij(t)g1j(t − τ, x) + Ii,

(23)

for a.e. t ∈ [t0,∞), x ∈ Ω, i � 1, 2, . . . , m.
For writing convenience, we denote max |aij|, |�aij|  as

amax
ij and max |bij|, |�bij|  as bmax

ij .
+e IVP of the driven system (15) can be written as
zαui(t, x)

ztα
� 

n

q�1
diqΔui(t, x) − ciui(t, x) + 

m

j�1
〈aij,

f1j〉(t, x)

+ 
m

j�1
〈bij, g1j〉(t − τ, x) + Ii,

ui(t, x) � 0, t ∈ [−τ,∞), x ∈ zΩ,

ui(s, x) � φ0i(s, x), t ∈ [−τ, 0], x ∈ Ω,

f1j(s, x) � cj(s, x), a.e. t ∈ [−τ, 0], x ∈ Ω,

g1j(s, x) � ηj(s, x), a.e. t ∈ [−τ, 0], x ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

+e IVP of the response system (19) under the controller
could be given by

zαvi(t, x)

ztα
� 

n

q�1
diqΔvi(t, x) − civi(t, x) + 

m

j�1
〈aij,

f2j〉(t, x)

+ 
m

j�1
〈bij, g2j〉(t − τ, x) + Ii + κi(t, x),

vi(t, x) � 0, t ∈ [−τ,∞), x ∈ zΩ,

vi(s, x) � Φ0i(s, x), t ∈ [−τ, 0], x ∈ Ω,

f2j(s, x) � ξj(s, x), a.e. t ∈ [−τ, 0], x ∈ Ω,

g2j(s, x) � ωj(s, x), a.e. t ∈ [−τ, 0], x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where i, j � 1, 2, . . . , m. 〈aij,
f1j〉(t, x) � aij(t)f1j(t, x),

〈bij, g1j〉(t − τ, x) � bij(t)g1j(t − τ, x), 〈aij,
f2j〉(t, x) �

aij(t)f2j(t, x), and 〈bij, g2j〉(t − τ, x) � bij(t)g2j(t − τ, x),
f2j(·) ∈co[fj(vj(·))] and g2j(·) ∈ co[gj(vj(·))].
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Now, let ei(t, x) � ui(t, x) − vi(t, x) be the synchroni-
zation error between (15) and (19). +e IVP about the error
system is of the form

zαei(t, x)

ztα
� 

n

q�1
diqΔei(t, x) − ciei(t, x) + 

m

j�1
〈aij, fj〉(t, x)

+ 
m

j�1
〈bij, gj〉(t − τ, x) + κi(t, x),

ei(t, x) � 0, t ∈ [−τ,∞), x ∈ zΩ,

ei(s, x) � φ0i(s, x), s ∈ [−τ, 0], x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

where i, j � 1, 2, . . . , m, the symbol 〈aij, fj〉(t, x) is written
as aij(t)[f2j(t, x) − f1j(t, x)] and 〈bij, gj〉(t − τ, x) which
stands for bij(t)[g2j(t − τ, x) − g1j(t − τ, x)].

Denote ‖ei(t, x)‖ � [Ω
m
i�1 e2i (t, x)dx]1/2 as the norm

of vector e(t, x) � (e1(t, x), e2(t, x), . . . , em(t, x))T ∈ Rm.

Definition 3. +e drive system (15) and response system (19)
is said to be globally synchronized, if limt⟶∞‖ei(t, x)‖ � 0.

Remark 1. Owing to the zero Dirichlet boundary conditions
of (24) and (25), a zero equilibrium state of error system (26)
exists. +e global synchronization of systems (24) and (25)
corresponds to the global asymptotic stability of the zero
equilibrium of system (26).

3. Main Results

+e abovementioned synchronization problem in Section 2
are considered in two cases, namely, the drive system (15)
has known or unknown parameters.

3.1. Global Synchronization for Systems with Known
Parameters. First of all, we assume that the parameters in
(15) are known. +en, the following adaptive controllers are
proposed to implement global synchronization.

Assumption 2. For i � 1, 2, . . . , m, there are positive con-
stants pi and qi such that

sup
αi∈co fi(μ)[ ],βi∈co fi(ϑ)[ ]

αi − βi


≤pi μi − ϑi


 + qi, ∀μ, ϑ ∈ R,

sup
αi∈co gi(μ)[ ],βi∈co gi(ϑ)[ ]

αi − βi


≤ ri μi − ϑi


 + si, ∀μ, ϑ ∈ R,

(27)

where for any θ ∈ R,

co fi(θ)  � min f
−
j (θ), f

+
j (θ) , max f

−
j (θ), f

+
j (θ)  ,

co gi(θ)  � min g
−
j (θ), g

+
j (θ) , max g

−
j (θ), g

+
j (θ)  .

(28)

For the convenience of description, the following no-
tations are introduced:

σi � 2 −ci + 
n

q�1
−

diq

l2q

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ + 
m

j�1
a
max
ij pj + a

max
ji pi  + 

m

j�1
bijrj,

σ ∗i � 2 
m

j�1
a
max
ij qj + 

m

j�1
b
max
ij sj

⎛⎝ ⎞⎠,

σ∗∗i � 
m

j�1
b
max
ij ri,

σi � −2ci + 
m

j�1
a
max
ij pj + a

max
ji pi + bijrj ,

σi � −2 ci + 
n

q�1

diq

l2q

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ + 
m

j�1
a
max
ij pj + a

max
ji pi ,

σ ∗i � 2
m

j�1
a
max
ij qj.

(29)

Theorem 1. Under Assumption 1 and Assumption 2, the
global synchronization of (24) and (25) can be achieved based
on the following adaptive controllers:

κi(t, x) � − ℓi(t, x) + ℓi( ei(t, x) − ωisgn ei(t, x)( ,

Dαℓi(t, x) � ϖie
2
i (t, x), i � 1, 2, . . . , m,

⎧⎪⎨

⎪⎩

(30)

where ℓi(0, x)≥ 0, ϖi > 0, and ℓi and ωi are constants which
satisfy the following inequalities:

ℓi >
1
2

σi + σ∗∗i csc
απ
2

  > 0,

ωi >
1
2
σ ∗i .

(31)

Proof. Employ the following auxiliary function:

V(t, e(t, ·)) � 
Ω

1
2



m

i�1
e
2
i (t, x)dx. (32)

By the means of Lemma 1, the inequality can be
established:

dα

dtα

Ω

e
2
i (t, x)dx ≤ 2

Ω
ei(t, x)

zαei(t, x)

ztα
dx. (33)

According to Lemma 4, taking the derivative of (32)
yields
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D
α
V(t, e(t, ·))≤ 

m

i�1

Ω

ei(t, x) 
n

q�1
diqΔei(t, x)⎡⎢⎢⎣ ⎤⎥⎥⎦ − ciei(t, x)

+ 
m

j�1
〈aij, fj〉(t, x) + 

m

j�1
〈bij, gj〉(t − τ, x)

+ κi(t, x)dx.

(34)

Using Green’s formula and Lemma 6, it can be obtained
that



n

q�1

Ω

ei(t, x)diqΔei(t, x)dx≤ − 
n

q�1

Ω

diq

lq
e
2
i (t, x)dx.

(35)

Recalling Assumption 1 and Assumption 2, the in-
equalities hold:



m

j�1

Ω

ei(t, x)〈aij, fj〉(t, x)dx≤
1
2



m

j�1
a
max
ij pj

Ω
e
2
i (t, x)

+ e
2
j(t, x)dx + 

m

j�1
a
max
ij qj

Ω
ei(t, x)


dx,



m

j�1

Ω

ei(t, x)〈bij, gj〉(t − τ, x)dx≤
1
2



m

j�1
b
max
ij rj

Ω
e
2
i (t, x)

+ e
2
j(t − τ, x)dx + 

m

j�1
b
max
ij sj

Ω
ei(t, x)


dx.

(36)

Combining controller (30) designed in +eorem 1, it
follows that

D
α
V(t, e(t, ·))≤

1
2



m

i�1
σi
Ω

e
2
i (t, x)dx +

1
2



m

i�1
σ∗∗i


Ω

e
2
i (t − τ, x)dx +

1
2



m

i�1
σ ∗i 
Ω

ei(t, x)


dx

− 
m

i�1

Ω

li(t, x) + ℓi( e
2
i (t, x)dx

− 
m

i�1
ωi
Ω

ei(t, x)


dx.

(37)

From Definition 2 and Property 2, one obtains

ℓi(t, x) � ℓi(0, x) +
1
Γ(α)


t

0
(t − τ)

αϖie
2
i (t, x)dx. (38)

Substituting (38) into (37) and noting that ℓi and ωi meet
inequality (31), it can be deduced that

D
α
V(t, e(t, ·))≤ −λ1V(t, e(t, ·)) + ρ1V(t − τ, e(t, ·)),

(39)

where λ1 � 
m
i�1(2ℓi − σi) and ρ1 � 

m
i�1 σ
∗∗
i .

According to Lemma 2 and Lemma 3, it can be assert
that the global synchronization between (24) and (25) can be
realized.

+e proof of +eorem 1 completes. □

Remark 2. When α � 1, the error system (26) be changed
into the integer form.+e conclusion is the same as the result
in +eorem 3.1 in article [45]. If the reaction-diffusion in
space Ω disappears, then the states of the system’s variable
are only relevant to time but independent of space. +us, the
error system (26) can be converted to

Dαei(t) � −ciei(t) + 
m

j�1
〈aij, fj〉(t) + 

m

j�1
〈bij, gj〉(t − τ) + κi(t),

ei(s) � φ0i(s), s ∈ [−τ, 0], i � 1, 2, . . . , m.

⎧⎪⎪⎨

⎪⎪⎩

(40)

For convenience, the inequalities are given by

ℓi >
1
2

σi + σ∗∗i csc
απ
2

  > 0,

ωi >
1
2
σ ∗i .

(41)

Corollary 1. Under Assumption 1 and Assumption 2, the
global synchronization between (24) and (25) can be achieved
based on the following adaptive controllers:

κi(t) � − ℓi(t) + ℓi( ei(t) − ωisgn ei(t)( ,

Dαℓi(t) � ϖie
2
i (t), i � 1, 2, . . . , m,

⎧⎨

⎩ (42)

where ℓi(0)> 0, ϖi > 0, and ℓi and ωi are constants which
satisfy inequality (41).

Remark 3. In fact, synchronization of FMNNs with time
delay has been investigated in [20]. +e results about syn-
chronization of the systems with single delay in +eorem 3
in [20] are the same as Corollary 1 obtained in this paper.
Suppose that there is no time delay τ in the course of
communication between the different neurons; then, error
system (26) can be reduced to

zαei(t, x)

ztα
� 

n

q�1
diqΔei(t, x) − ciei(t, x) + 

m

j�1
〈aij, fj〉

(t, x) + κi(t, x),

ei(t, x) � 0, t ∈ [0,∞), x ∈ zΩ,

ei(s, x) � φ0i(s, x), s � 0, x ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)
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For convenience, the inequalities are given by

ℓi >
1
2

σi > 0,

ωi >
1
2
σ ∗i .

(44)

Corollary 2. Under Assumption 1 and Assumption 2, the
global synchronization between (24) and (25) can be realized
based on the following adaptive controllers:

κi(t, x) � − ℓi(t, x) + ℓi( ei(t, x) − ωisgn ei(t, x)( ,

Dαℓi(t, x) � ϖie
2
i (t, x),

i � 1, 2, . . . , m,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(45)

where ℓi(0, x)≥ 0,ϖi > 0, and ℓi and ωi satisfy inequality (44).

Remark 4. Comparing the coefficients of the adaptive
controllers (31) and (44), it can be concluded that the
controllers for global synchronization of the system with
time delay are more consumptive.

3.2. Global Synchronization for Systems with Unknown
Parameters. In real neural networks, the parameters of the
system may be unknown, so it is difficult to achieve syn-
chronization by the conventional adaptive control schemes.
In the following text, adaptive controllers with the dynamic
compensators are introduced.

Here, suppose that self connection weight ci and input Ii

in the drive system (15) are unknown. +en, the IVP of the
drive system (15) can be written as

zαui(t, x)

ztα
� 

n

q�1
diqΔui(t, x) − ciui(t, x)

+ 
m

j�1
〈aij,

f1j〉(t, x) + 
m

j�1
〈bij, g1j〉(t − τ, x) + Ii,

ui(t, x) � 0, t ∈ [−τ,∞), x ∈ zΩ,

ui(s, x) � φ0i(s, x), t ∈ [−τ, 0], x ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

+e IVP of the response system (19) can be shown as
zαvi(t, x)

ztα
� 

n

q�1
diqΔvi(t, x) − ci(t, x)vi(t, x) + 

m

j�1
〈aij,

f2j〉

(t, x) + 
m

j�1
〈bij, g2j〉(t − τ, x) + Ii(t, x) + κi(t, x),

vi(t, x) � 0, t ∈ [−τ,∞), x ∈ zΩ,

vi(s, x) � Φ0i(s, x), t ∈ [−τ, 0], x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

where i, j � 1, 2, .., m and ci(t, x) and Ii(t, x) are treated as
the compensation of ci and Ii.

+en, for i, j � 1, 2, . . . , m, the IVP of the synchroni-
zation error can be described as

zαei(t, x)

ztα
� − ci(t, x) − ci( vi(t, x) − ciei(t, x) + 

m

j�1
〈aij, fj〉

(t, x) + 
m

j�1
〈bij, gj〉(t − τ, x) + Ii(t, x) − Ii  + κi(t, x),

ei(s, x) � 0, s ∈ [−τ,∞), x ∈ zΩ,

ei(s, x) � φ0i(s, x), s ∈ [−τ, 0], x ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

Assumption 3. +ere are positive constants pi, qi, and gi

such that

sup
αi∈co fi(μ)[ ],βi∈co fi(ϑ)[ ]

αi − βi


≤pi μi − ϑi


 + qi, ∀μ, ϑ ∈ R,

gi(θ)≤gi,

(49)

where i � 1, 2, . . . , m, θ ∈ R, and the notation co[fi(θ)]

represents [min f−
j (θ), f+

j (θ) , max f−
j (θ), f+

j (θ) ].

Theorem 2. Under Assumption 1 and Assumption 3, the
global asymptotic synchronization between (46) and (47) can
realized based on the following adaptive controllers:

κi(t, x) � − ℓi(t, x) + ℓi( ei(t, x) − ωisgn ei(t, x)( ,

Dαℓi(t, x) � ϖie
2
i (t, x),

Dαci(t, x) � ϱiei(t, x)vi(t, x),

DαIi(t, x) � −]iei(t, x),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(50)

where i � 1, 2, . . . , m, ℓi(0, x), ϖi, ϱi, and ]i are positive
constants, and ℓi and ωi are constants which satisfy the
following inequalities:

ℓi >
1
2

σi > 0,

ωi >
1
2

σ ∗i ,

(51)

with σi � −2[ci + 
n
q�1(diq/l2q)] + 

m
j�1(amax

ij pj + amax
ji pi) and

σ ∗i � 2
m
j�1(amax

ij qj + bmax
ij gj).

Proof. Employ the following auxiliary function:

V(t) � V1(t) + V2(t) + V3(t), (52)

where
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V1(t) � 
Ω

1
2



m

i�1
e
2
i (t, x)dx,

V2(t) � 
Ω

1
2ϱi



m

i�1
ci(t, x) − ci( 

2dx,

V3(t) � 
Ω

1
2]i



m

i�1

Ii(t, x) − Ii 
2
dx.

(53)

Similarly to the proof of +eorem 1, one obtains

D
α
V1(t)≤ 

m

i�1

1
2

σi
Ω

e
2
i (t, x)dx

+ 
m

i�1

1
2

σ ∗i 
Ω

ei(t, x)


dx

+ 
m

i�1

Ω

Ii(t, x) − Ii ei(t, x)dx

− 
m

i�1

Ω

ci(t, x) − ci( vi(t, x)ei(t, x)dx

+ 
m

i�1

Ω

ei(t, x)κi(t, x)dx,

D
α
V3(t)≤ − 

m

i�1

Ω

ei(t, x) Ii(t, x) − Ii dx,

D
α
V2(t)≤ 

m

i�1

Ω

ei(t, x) ci(t, x) − ci( vi(t, x)dx.

(54)

Since ℓi and ωi fulfill condition (51), it follows

D
α
t V(t)≤ − λ2V1(t), (55)

where λ2 � 
m
i�1(2ℓi − σi).

By Lemma 5, it can be concluded that

V(t) − V(0)≤ −
λ
Γ(α)


t

0
(t − τ)

α− 1
V1(τ)dτ. (56)

According to the definition of V1, thus

V1(t)≤V(t)≤V(0) −
λ
Γ(α)


t

0
(t − τ)

α− 1
V1(τ)dτ. (57)

By Lemma 7, it reveals that

V1(t)≤V(0)exp −
λ
Γ(α)


t

0
(t − τ)

α− 1dτ 

� V(0)exp −
λ
Γ(α + 1)

t
α

 .

(58)

+erefore,

lim
t⟶∞

V1(t) � lim
t⟶∞


Ω

1
2



m

i�1
e
2
i (t, x)dx � 0. (59)

From (59), it is easy to see that the global synchroni-
zation between (46) and (47) can be realized.

+e proof of +eorem 2 completes. □

Remark 5. +e result obtained in +eorem 2 is more
practical for considering the situation where the parameters
of the drive system (24) are unknown. +rough the proof of
+eorem 2, it can be asserted that the dynamical compen-
sator is necessary for the unknown system. If the reaction-
diffusion in space Ω disappears, the error system (48) can be
converted to

Dαei(t) � − ci(t) − ci( vi(t) − ciei(t) + 
m

j�1
〈aij, fj〉(t)

+ 
m

j�1
〈bij, gj〉(t − τ) + Ii(t) − Ii  + κi(t),

ei(s) � φ0i(s), s ∈ [−τ, 0].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

Corollary 3. Under Assumption 1 and Assumption 3, the
global synchronization between (46) and (47) can be achieved
based on the following adaptive controllers:

κi(t) � − ℓi(t) + ℓi( ei(t) − ωisgn ei(t)( ,

Dαℓi(t) � ϖie
2
i (t),

Dαci(t) � ]iei(t),

DαIi(t) � −ϱiei(t),

i � 1, 2, . . . , m,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)

where ℓi(0)≥ 0, ϖi > 0, ℓi > (1/2)σ⌣i > 0, ωi > (1/2)σ ∗i , and
σ⌣i � −2ci + (

m
j�1 amax

ij pj + 
m
j�1 amax

ji pi).

Suppose that there is no time delay τ in the course of
communication; then, the error system (48) can be changed
into

zαei(t, x)

ztα
� − ci(t, x) − ci( vi(t, x) − ciei(t, x)

+ 
m

j�1
〈aij, fj〉(t, x) + Ii(t, x) − Ii  + κi(t, x),

ei(s, x) � 0, s ∈ [0,∞), x ∈ zΩ,

ei(s, x) � φ0i(s, x), s � 0, x ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

Corollary 4. Under Assumption 1 and Assumption 3, (46)
and (47) can achieve global synchronization based on the
following adaptive controllers:
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κi(t, x) � − ℓi(t, x) + ℓi( ei(t, x) − ωisgn ei(t, x)( ,

Dαℓi(t, x) � ϖie
2
i (t, x),

Dαci(t, x) � ]iei(t, x),

DαIi(t, x) � −ϱiei(t, x),

i � 1, 2, . . . , m,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(63)

where ℓi(0, x)≥ 0, ϖi > 0, ℓi > (1/2)σ⌣i > 0, ωi > (1/2)σ⌣
∗
i , and

σ⌣
∗
i � 2

m
j�1 amax

ij qj.

4. Numerical Simulations

Several numerical simulations are presented to illustrate the
main results.+e first example is used to validate+eorem 1.
+e second one is used to text +eorem 2. Now, let us
consider the 2D (q � 1) reaction-diffusion FMNNs with
time delay and zero Direclet boundary values. Here, m � 2,
n � 1, and Ω � [−2, 2].

Example 1. Consider error system (26) with such
parameters:

A �
a11 −0.02

0.13 −0.01
 ,

B �
0.35 b12

0.36 0.37
 ,

C �
0.35 0

0 0.23
 ,

I �
0.60 0

0 0.40
 ,

(64)

where the memristive coefficients are defined by

a11 �

0.19, δ < 1,

0.26, δ � 1,

0.55, δ > 1,

⎧⎪⎪⎨

⎪⎪⎩

b12 �

−0.13, δ < 1,

−0.17, δ � 1,

−0.24, δ > 1.

⎧⎪⎪⎨

⎪⎪⎩

(65)

Suppose that time delay τ � 1.1 and discontinuous activa-
tion functions are f(δ) � g(δ) � 0.98δ + 0.05sgn(δ). Let
initial values of (24) and (25) be

u1(x, t) � 8 sin −2 + x + t2( ,

u2(x, t) � 6 sin(−2 + x + t),


v1(x, t) � −5 cos(−2 + x + t),

v2(x, t) � −6 cos(−2 + x + t),


(66)

where t ∈ [−1.1, 0] and x ∈ (−2, 2). Given the fractional
order α � 0.98 and d11 � d21 � 0.85. Under these parame-
ters, the dynamical behaviors of the synchronization errors

between (24) and (25) are shown in Figure 1. From the
figure, it can be observed that the synchronization errors
gradually increase as time goes on. Notice that f(δ) and
g(δ) have only one discontinuous point 0, Assumption 1 is
valid. According to Assumption 2, we can choose p1 � p2 �

r1 � r2 � 0.98 and q1 � q2 � s1 � s2 � 0.05. By calculation,
the parameters of controllers are selected as ℓ1 � 0.70> 0.39,
w1 � 0.06> 0.05, ℓ2 � 0.60> 0.36, w2 � 0.05> 0.04,
ℓ1(0, x) � ℓ2(0, x) � 0.01> 0, and ϖ1 � ϖ2 � 0.01> 0. It is
easy to verify that condition (9) in +eorem 1 is satisfied.
Figure 2 suggests that the synchronization errors asymp-
totically converge to zero.

+eorem 1 is not only dependent on order but also
related with reaction-diffusion coefficients. Figure 3 shows
the trajectories of the error system at spatial position x � 55
with different orders α � 0.6, 0.7, 0.8, 0.9 when the reaction-
diffusion coefficients d � 1.8. While if the order is fixed
α � 0.7, the trajectories of the error system at spatial position
x � 55 with different reaction-diffusion coefficients
d � 0.6, 1.4, 2.2, 3.0 are shown in Figure 4. From the nu-
merical results, we could note that the error system would
achieve the asymptotic stability faster with the higher order.
It also holds true with increasing reaction-diffusion
coefficient.

Example 2. Consider the error system (48) with the fol-
lowing parameters:

A �
a11 −0.95

0.58 0.76
 ,

B �
0.22 b12

0.15 0.03
 ,

C �
0.58 0

0 0.49
 ,

I �
0.23 0

0 0.25
 ,

(67)

where

a11 �

0.19, δ < 1,

0.80, δ � 1,

0.26, δ > 1,

⎧⎪⎪⎨

⎪⎪⎩

b12 �

0.05, δ < 1,

0.11, δ � 1,

0.06, δ > 1.

⎧⎪⎪⎨

⎪⎪⎩

(68)

Assume α � 0.98, d11 � d21 � 0.85, and (47) with unknown
parameters ci and Ii, and initial values of compensators in
(47) are given by

C0 �
1 0

0 1
 ,

I0 �
2 0

0 2
 .

(69)
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Figure 1: Synchronization errors between systems (24) and (25), with no controller.
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Figure 2: Synchronization errors between systems (24) and (25), under controller (30).
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Figure 3: Trajectories of error system (26) at spatial position x � 55 under different orders.

10 Complexity



–9

–8

–7

–6

–5

–4

–3

–2

–1

0

1
Er

ro
r 1

 (t
, x

 =
 5

5)

0 10 20 30 40 50 60 70 80 90
Time t

d = 0.6
d = 1.4

d = 2.2
d = 3.0

(a)

–9

–8

-7

–6

–5

–4

–3

–2

 –1

0

Er
ro

r 2
 (t

, x
 =

 5
5)

0 10 20 30 40 50 60 70 80 90
Time t

d = 0.6
d = 1.4

d = 2.2
d = 3.0

(b)

Figure 4: Trajectories of error system (26) at spatial position x � 55 under different diffusion coefficients.
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Figure 5: Synchronization errors between systems (46) and (47), with no controller.
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Figure 6: Synchronization errors between systems (46) and (47), with controller (50).
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Activation functions are f(δ) � 0.98δ + 0.05sgn(δ) and
g(δ) � 0.5sgn(δ) and time delay τ � 3.5. Initial values of
(46) and (47) are chosen as

u1(x, t) � 1.7 sin −2 + x + t2( ,

u2(x, t) � −2.1 sin(−2 + x + t),


v1(x, t) � 1.5 cos(−2 + x + 8t),

v2(x, t) � −1.9 cos −2 + x + 8t2( ,


(70)

where t ∈ [−3.4, 0] and x ∈ (−2, 2).

As seen in Figure 5, the error state is instable. Choosing
p1 � p2 � 0.98, q1 � q2 � 0.05, and g1 � g2 � 0.5, we obtain
ℓ1 � 1.10> 1.06, w1 � 0.11> 0.10, ℓ2 � 1.00> 0.97, and w2 �

0.08> 0.07 and ℓi(0, x) � 0.01> 0, ϖi � 0.01> 0,
ϱi � 0.001> 0, and ]i � 0.02> 0, i � 1, 2. Condition (51) in
+eorem 2 is content clear. Figure 6 shows that the syn-
chronization errors achieve stability rapidly under the
adaptive controller (50).

For the error system (48), under different orders α �

0.6, 0.7, 0.8, 0.9 with the same reaction-diffusion coefficients
d � 0.6 and different reaction-diffusion coefficients
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Figure 7: Trajectories of error system (26) at spatial position x � 55 under different orders.
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Figure 8: Trajectories of error system (26) at spatial position x � 55 under different diffusion coefficients.
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d � 0.8, 1.1, 1.5, 2.0 with the same order α � 0.7, simulations
are carried out. Corresponding error state trajectories are
depicted in Figures 7 and 8. It reveals that the asymptotic
stability of the system varies with orders and reaction-dif-
fusion coefficients. Compared with the former case, the
figures show little differences with different parameters.

5. Conclusion and Discussion

+e global synchronization problem for reaction-diffusion
FMNNs with time delay was emphasized firstly in this paper.
Both the known and unknown parameters cases were in-
vestigated, separately. Based on fractional comparison
theorem and Gronwall–Bellman inequality, two kinds of
adaptive control schemes were proposed. Numerical sim-
ulations were implemented to examine the effectiveness of
the obtained results.

Conventional adaptive controllers have mostly been
used for controlling neural networks system, while they
cannot guarantee the synchronization of unknown systems.
An adaptive controller with a dynamic compensator such as
the one described in this paper can eliminate this problem.
However, the true values of the unknown parameters could
not be obtained. Further research is still in progress to design
an adaptive controller with dynamic compensator to achieve
the identity of parameters.
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