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)is paper is concerned with the finite-time projective synchronization problem of fractional-order memristive neural networks
(FMNNs) with mixed time-varying delays. Firstly, under the frame of fractional-order differential inclusion and the set-valued
map, several criteria are derived to ensure finite-time projective synchronization of FMNNs. Meanwhile, three properties are
established to deal with different forms of the finite-time fractional differential inequation, which greatly extend some results on
estimation of settling time of FMNNs. In addition to the traditional Lyapunov function with 1-norm form in )eorem 1, a more
general and flexible Lyapunov function based on p-norm is constructed in )eorem 2 to analyze the finite-time projective
synchronization problem, and the estimation of settling time has been verified less conservative than previous results. Finally,
numerical examples are provided to demonstrate the effectiveness of the derived theoretical results.

1. Introduction

In the past several decades, artificial neural networks have
been extensively investigated due to their wide applications
in signal processing [1], combinatorial optimization [2],
pattern recognition [3], associative memories [4], and so on.
Memristor, first proposed by Chua in 1971 [5], was realized
by Hewlett-Packard Laboratory in 2008 [6]. Compared with
the resistor, the memristor possesses a memory character-
istic as the synaptic characteristics of biological neurons,
which is distinct from other circuit elements. As a result, by
using the memristor to replace other resistors, scholars
constructed the memristive neural networks (MNNs) to
emulate the human brain. Moreover, as a special kind of
neural networks, MNNs are nonlinear systems with state-
dependent switching jumps and possess more complicated
properties than the traditional neural networks.

It is well known that time delays are unavoidable in
neural networks. On the one hand, discrete time delays are
ubiquitous because of the finite switching speed of amplifiers

and the inherent information exchanging time between
different neurons [7]. On the other hand, distributed time
delays should also be considered in neural networks because
neural networks usually have a spatial nature and the
presence of a large number of parallel pathways with
multifarious axon sizes and lengths [8]. Hence, these time
delays, which may bring about instability, chaos, oscillation,
or other poor performances of the system, should be con-
sidered when investigating the dynamical behavior for
neural networks [9–11].

As a generalization of the ordinary differentiation and
integration to arbitrary noninteger order, fractional-order
calculus has long history and can be traced back to the 17th
century. For a long time, the theory of fractional calculus was
once considered as a purely theoretical field of mathematics
and developed very slow. However, due to its infinite
memory and more degrees of freedom [12], many scholars
have found that fractional-order models are more accurate
than integer-order ones in describing the memory and
hereditary properties. In consequence, fractional-order
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models have been incorporated into artificial neural net-
works. Subsequently, fractional-order memristive neural
networks (FMNNs) have attracted lots of researchers to
study their dynamical behaviors [13–15].

Since chaos synchronization was firstly proposed in 1990
[16], synchronization control has become an important tool
to control the chaos appearing in the practical applications
such as security communications [17], image processing
[18], and cryptography [19]. So far, many sorts of syn-
chronization schemes have been presented such as complete
synchronization [20], antisynchronization [21], phase syn-
chronization [22], lag synchronization [23], exponential
synchronization [24], and projective synchronization.

Overall, the above discussed synchronization schemes
can be divided into two categories: finite-time and infinite-
time synchronization. In practice, the system always ex-
pected to realize synchronization as quickly as possible. It is
worth noting that the finite-time control technique can not
only accelerate the convergence process but also demon-
strate better interference suppression properties and ro-
bustness [25]. Consequently, the finite-time synchronization
is an optimal synchronization method and has attracted lots
of attention in many research studies [26–33]. For example,
in [27], by using the Gronwall–Bellman integral inequality
and the Volterra integral equation, the authors explored the
finite-time projective synchronization problem of mem-
ristor-based delay fractional-order neural networks. And
Zhang and Deng studied the finite-time projective syn-
chronization of fractional-order complex-valued mem-
ristor-based neural networks with time delays in [28].
However, we note that [26–28] pay attention to discussing
the synchronization conditions and ignore the computation
of settling time. In [29], Zhang et al. deduced the fractional-
order derivative of Lyapunov function C

t0
D

α
t
V(t)≤ − aV(t)−

b and gave a conservative estimation of settling time with
a � 0. In [30–33], the authors deduced the fractional-order
derivative of Lyapunov function C

t0
D

α
t
V(t)≤ −

aV(t) − bVβ(t) and gave a conservative estimation of set-
tling time with a � 0. And we propose a new method to
estimate settling time with a≥ 0, which is less conservative
than previous results.

Among a great variety of synchronization schemes,
projective synchronization, first proposed by Mainieri and
Rehacek in [34], is characterized by a fact that the drive and
response systems could achieve synchronization up to a
scaling factor. Particularly, due to the proportional feature,
projective synchronization can be used to extend binary
digital to M-nary digital communication for achieving fast
communication [35]. Furthermore, projective synchroni-
zation of FMNNs, which can obtain faster communication
with its proportional feature, has been widely concerned and
deeply studied by researchers [36–40]. For instance, the
global projective synchronization for FMNNs is investigated
via combining open-loop control with the time-delayed
feedback control in [36]. And in [38], Yang et al. discussed
the quasi-projective synchronization of fractional-order
complex-valued neural networks, and the error bounds of
quasi-projective synchronization are estimated. Based on
notoriously Barbalat’s lemma and the Razumikhin-type

stability theorem, Zhang et al. investigated the projective
synchronization of FMNNs with switching jump mismatch
in [40]. However, to the best of our knowledge, there are few
research studies about the finite-time projective synchro-
nization of FMNNs with mixed time-varying delays.

Inspired by the above discussion, this paper will study
the finite-time projective synchronization of FMNNs with
mixed time-varying delays via applying differential inequality
of the Caputo derivative and the asymptotic expansion
property of Mittag-Leffler function. )e main innovations
and contents of this paper lie in the following aspects:

(1) For fractional-order neural networks, the fractional-
order derivative of Lyapunov function V(t) can
usually be reduced to C

t0
D

α
t
V(t) ≤ − aV(t) − b or

C
t0

D
α
t
V(t)≤ − aV(t) − bVβ(t). In the existing liter-

ature studies on finite-time synchronization of
fractional-order neural networks, most pay attention
to discuss the synchronization condition a≥ 0 and
ignore the computation of settling time. And a few
literature studies estimate the settling time with
a � 0, which will increase the conservative of the
obtained result. In this paper, via applying the as-
ymptotic expansion property of Mittag-Leffler func-
tion and the fractional-order power law inequation,
we propose three properties to estimate the settling
time with a≥ 0. And the comparison result can be seen
in Tables 1–3, which demonstrate our new estimation
of the settling time is more applicative and accurate.

(2) First, via designing a simple time-delayed feedback
controller, some sufficient conditions are derived to
guarantee the finite-time projective synchroniza-
tion of FMNNs. And the results can be easily ex-
tended to the complete synchronization and
antisynchronization.

(3) Unlike the traditional maximum absolute value-
based method to propose the synaptic weights of
memristive neural networks, by introducing some
transformations, FMNNs are translated to a type of
fractional-order systems with uncertain parameters.

(4) In addition to the traditional Lyapunov function
with 1-norm form, a more general and flexible
Lyapunov function based on p-norm is constructed
to analyze the projective finite-time synchronization
of FMNNs.

)e rest of this paper is organized as follows. Section 2
describes the models and introduces the preliminaries in-
cluding some necessary definitions and lemmas. In Section
3, we present the main results. Simulation examples are
given to confirm the validity of our results in Section 4. And
conclusions follow in Section 5.

Notation: throughout this study, N, C,R, andR∗ denote
the set of all natural numbers, complex numbers, real
numbers, and nonnegative real numbers, respectively.
Cn([t0,∞),R) represents the family of continuous and n-
order differentiable function form [t0,∞) to R. And sign(·)
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denotes the sign function, where sign (x) �
1, if x≥ 0
− 1, if x< 0􏼨 .

)e symbol ∗ involves the convolution operator. And Γ(α) is
Euler’s gamma function which is defined by
Γ(α) � 􏽒

+∞
0 sα− 1e− s ds.

2. Preliminaries and Model Description

2.1. Preliminaries. In this section, we recall some basic
definitions with respect to fractional calculus and several
important lemmas used in this paper.

Definition 1 (see [41]). )e Riemann–Liouville fractional
integral with fractional-order α for an integrable function
f(t) is defined as

t0
I
α
t f(t) �

1
Γ(α)

􏽚
t

t0

(t − s)
α− 1

f(s) ds, (1)

where t≥ t0 and α> 0.

Definition 2 (see [42]). )e Caputo fractional derivative
with fractional-order α for a differentiable function
f(t) ∈ Cn([t0, +∞),R) is defined as

C
t0

D
α
t f(t) �

1
Γ(n − α)

􏽚
t

t0

f(n)(s)

(t − s)α− n+1 ds, (2)

where t≥ t0 and n is a positive integral such that
n − 1< α< n. Especially, when α ∈ (0, 1), then

C
t0

D
α
t f(t) �

1
Γ(1 − α)

􏽚
t

t0

f′(s)

(t − s)α
ds. (3)

Definition 3 (see [41]). Mittag-− Leffler function Ep,q(·) with
two parameters is defined as

Ep,q(ς) � 􏽘
∞

k�0

ςk

Γ(pk + q)
, (4)

where p> 0, q> 0, and ς ∈ C. And if q � 1, the Mittag-Leffler
function with one parameter is shown as

Ep(ς) � Ep,1(ς) � 􏽘
∞

k�0

ςk

Γ(pk + 1)
. (5)

Definition 4. If there exists a nonzero constant λ ∈ R, for
any solutions of the n-dimensional drive system and the
response system, xi(t) and yi(t), i � 1, 2, . . . , n, with initial
values xi(t0) and yi(t0) are such that

lim
t⟶T∗

yi(t) − λxi(t)􏼂 􏼃 � 0,

yi(t) − λxi(t) ≡ 0, t≥T
∗
,

(6)

where λ represents the projective coefficient. T∗ is called the
settling time for synchronization. )en, the response system
is said to be finite-time projective synchronization to the
drive system.

Table 1: )e comparisons among T∗1 , T2, T∗3 , T4, and T5 with the projective coefficient λ � 2.

Lyapunov function Fractional-order differential inequation Settling time
)eorem 1

V1(t) � 􏽐
n
i�1 |ei(t)|

C
t0

D
α
t
V1(t)≤ − φV1(t) − η T∗1 � 1.235

Remark 4 C
t0

D
α
t
V1(t)≤ − η T2 � 5.5778

)eorem 2
V2(t) � 􏽐

n
i�1 |ei(t)|p

C
t0

D
α
t
V2(t)≤ − φV2(t) − ηV

(p− 1)/p
2 (t) T∗3 � 1.9054

Remark 6 C
t0

D
α
t
V2(t)≤ − ηV

(p− 1)/p
2 (t)

T4 � 8.0421
T5 � 6.689

Table 2: )e comparisons among T∗1 , T2, T∗3 , T4, and T5 with the projective coefficient λ � 1.

Lyapunov function Fractional-order differential inequation Settling time
)eorem 1

V1(t) � 􏽐
n
i�1 |ei(t)|

C
t0

D
α
t
V1(t)≤ − φV1(t) − η T∗1 � 1.0351

Remark 4 C
t0

D
α
t
V1(t)≤ − η T2 � 3.5169

)eorem 2
V2(t) � 􏽐

n
i�1 |ei(t)|p

C
t0

D
α
t
V2(t)≤ − φV2(t) − ηV

(p− 1)/p
2 (t) T∗3 � 1.5937

Remark 6 C
t0

D
α
t
V2(t)≤ − ηV

(p− 1)/p
2 (t)

T4 � 5.1232
T5 � 4.4965

Table 3: )e comparisons among T∗1 , T2, T∗3 , T4, and T5 with the projective coefficient λ � − 1.

Lyapunov function Fractional-order differential inequation Settling time
)eorem 1

V1(t) � 􏽐
n
i�1 |ei(t)|

C
t0

D
α
t
V1(t)≤ − φV1(t) − η T∗1 � 0.6934

Remark 4 C
t0

D
α
t
V1(t)≤ − η T2 � 1.4814

)eorem 2
V2(t) � 􏽐

n
i�1 |ei(t)|p

C
t0

D
α
t
V2(t)≤ − φV2(t) − ηV

(p− 1)/p
2 (t) T∗3 � 1.3539

Remark 6 C
t0

D
α
t
V2(t)≤ − ηV

(p− 1)/p
2 (t)

T4 � 2.3539
T5 � 2.1816
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Particularly, the drive-response system can be called
finite-time complete synchronization if λ � 1 and finite-time
antisynchronization if λ � − 1.

Lemma 1 (see [41]). If f(t): [t0, +∞)⟶ R, then for all
t ∈ [t0, +∞),

t0
I
α
t

C
t0

D
α
t
f(t)􏼐 􏼑 � f(t) − 􏽘

n− 1

i�1

f(i) t0( 􏼁

i!
t − t0( 􏼁

i
. (7)

In particular, when 0< α< 1, it has

t0
I
α
t

C
t0

D
α
t
f(t)􏼐 􏼑 � f(t) − f t0( 􏼁. (8)

Lemma 2 (see [43]). For all 0< α< 2, β ∈ C, m ∈ N, and
z≠ 0, |argz|<min π, απ{ }, then the following asymptotic
formula holds:

Eα,β(z) �
1
α

z
(1− β)α

e
z1α

− 􏽘

m

k�1

z− k

Γ(β − kα)
+ O

1
zm+1􏼔 􏼕, |z|⟶∞.

(9)

Lemma 3 (see [44]). Let z1 > 0, z2 > 0, z3 > 1, z4 > 1, and
z− 1
3 + z− 1

4 � 1; then, the following inequality holds:

z1z2 ≤ ε
z

z3
1

z3
+ ε− z3/z4z

z4
2

z4
, (10)

where ε is an arbitrary positive constant.

Lemma 4 (see [45]). Assume that a1, a2, . . . , an are non-
negative constants. For two arbitrary constants p and q

satisfying 0<p< q, then

􏽘

n

i�1
a

q
i

⎛⎝ ⎞⎠

1/q

≤ 􏽘
n

i�1
a

p
i

⎛⎝ ⎞⎠

1/p

. (11)

Lemma 5 (see [46]). Let f(t) be a continuous function on
the positive interval [t0, +∞) and satisfy

C
t0

D
α
t
f(t)≤ af(t), (12)

where a is a constant and 0< α< 1; then,
f(t)≤f t0( 􏼁Eα a t − t0( 􏼁

α
( 􏼁. (13)

Lemma 6. Let f(t) be a continuous function on the positive
interval [t0, +∞) and satisfy

C
t0

D
α

t
f(t)≤ af(t) + b, (14)

where a and b are constants and 0< α< 1; then,

f(t)≤ f t0( 􏼁 +
b

a
􏼠 􏼡Eα a t − t0( 􏼁

α
( 􏼁 −

b

a
. (15)

Proof. Let h(t) � f(t) + (b/a), and we can easily obtain

C
t0

D
α
t
h(t) �

C
t0

D
α
t
(t)≤ af(t) + b � ah(t). (16)

By applying Lemma 5, we have h(t)≤
h(t0)Eα(a(t − t0)

α), which is equivalent to

f(t)≤ f t0( 􏼁 +
b

a
􏼠 􏼡Eα a t − t0( 􏼁

α
( 􏼁 −

b

a
. (17)

□

Remark 1. For Lemma 6, Yang et al. in [38] obtain a
consistent result with a> 0 and b≥ 0. And we believe that the
conditions of a> 0 and b≥ 0 are conservative. And in
Lemma 6, we consider that a and b are constants, which is
more general than the results in [38].

Lemma 7 (see [30]). Suppose 0< α≤ 1, β≥ 1, and
f(t) ∈ C1([t0, +∞),R); then,

C
t0

D
α
t
f
β
(t) �
Γ(2 − α)Γ(1 + β)

Γ(1 + β − α)
f
β− 1

(t)
C
t0

D
α
t
f(t). (18)

Lemma 8 (see [47]). Let f(t) ∈ C1([t0, +∞),R) be a con-
tinuous and differential function; the following inequation
satisfies almost everywhere

C
t0

D
α
t
|f(t)|≤ sign (f(t))

C
t0

D
α
t
f(t), (19)

where 0< α< 1.
In the following, two new fractional-order inequalities

are established to propose the finite-time convergence,
which play a critical role to obtain the finite-time syn-
chronization and calculate the settling time. And we can gain
three new properties.

Property 1. Let f(t) ∈ C1([t0, +∞),R∗) be continuous and
nonnegative definite. And the following inequation holds:

C
t0

D
α

t
f(t)≤ − af(t) − b, (20)

where a> 0, b> 0, and 0< α< 1. It can be deduced as follows:

f(t) ≤ f t0( 􏼁 +
b

a
􏼢 􏼣

1
α
exp − a

1/α
t − t0( 􏼁􏽮 􏽯 −

b

a
, t≥ t0.

(21)

)en, we can judge f(t) converges to 0 within the
settling time T∗1 which can be estimated as follows:

t1
∗ ≤ t0 + a

− 1/αln
af t0( 􏼁 + b

bα
. (22)

Proof. By utilizing Lemma 6, we have

f(t)≤ f t0( 􏼁 +
b

a
􏼢 􏼣Eα − a t − t0( 􏼁

α
( 􏼁 −

b

a
. (23)

From Lemma 2, when β � 1, we can get

Eα(z) �
1
α

e
z1α

− 􏽘
m

k�1

z− k

Γ(1 − kα)
+ O

1
zm+1􏼔 􏼕, |z|⟶∞.

(24)
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Based on limz⟶∞O[1/zm+1] � 0, we can easily gain

lim
z⟶∞

Eα(z)⟶ lim
z⟶∞

1
α

e
z1α

− 􏽘
m

k�1

z− k

Γ(1 − kα)
⎡⎣ ⎤⎦. (25)

Apparently, 􏽐
m
k�1 z− k/Γ(1 − kα)> 0; then, we can judge

that there exists z0 > 0 such that

Eα(z)≤
1
α

e
z1α

, z> z0. (26)

Similarly, we have

Eα − a t − t0( 􏼁
α

( 􏼁≤
1
α
exp − a

1/α
t − t0( 􏼁􏽮 􏽯, t≥ t0. (27)

From the above conclusion, inequation (20) can be
converted to

f(t)≤ f t0( 􏼁 +
b

a
􏼢 􏼣

1
α
exp − a

1/α
t − t0( 􏼁􏽮 􏽯 −

b

a
, t≥ t0.

(28)

In order to better analyze the problem, let Ω(t) �

[f(t0) + (b/a)](1/α)e− a1/α(t− t0) − (b/a). We can easily know

that the function Ω(t) is monotonically decreasing. And
Ω(t0) � (1/α)f(t0) + ((1/α)− 1)(b/a)> (1/α)f(t0)> 0 and
lim t⟶∞Ω(t)⟶ − (b/a)< 0. According to the zero-point
theorem, there exists t∗1 ∈ [t0,∞) such thatΩ(t∗1 ) � 0.)en,
we can gain 0≤f(t∗1 )≤Ω(t∗1 ) � 0, so we have f(t∗1 ) � 0.
And when t≥ t∗1 , then f(t) ≡ 0.

Based on Definition 4, the function f(t) converges to 0
in finite time. And the settling time t∗1 can be calculated as
follows:

t
∗
1 ≤ t0 + a

− 1/αln
af t0( 􏼁 + b

bα
. (29)

□

Property 2. Assume that function f(t) ∈ C([t0, +∞),R∗) is
continuous and nonnegative definite. If the following in-
equality holds,

C
t0

D
α

t
f(t)≤ − af

β
(t) − b, (30)

where a> 0, b> 0, 0< α< 1, 0< β≤ 1, then it can be deduced
as follows:

f(t)≤ f t0( 􏼁 +
b

a
􏼠 􏼡

1/β
⎛⎝ ⎞⎠

1− β

−
aΓ(1 +(1/(1 − β)) − α) t − t0( 􏼁

α

Γ(1 +(1/(1 − β)))Γ(2 − α)Γ(1 + α)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

1/(1− β)

−
b

a
􏼠 􏼡

1/β

. (31)

And we can judge f(t) converges to 0 within the settling
time T2

∗ which can be estimated as follows:

t
∗
2 ≤ t0 + f

1− β
t0( 􏼁
Γ(1 +(1/(1 − β)))Γ(2 − α)Γ(1 + α)

aΓ(1 +(1/(1 − β)) − α)
􏼢 􏼣

1/α

.

(32)

Proof. Let g(t) � f(t) + (b/a)1/β > 0; according to Lemma
4, we gain

g
β
(t) � f(t) +

b

a
􏼠 􏼡

1/β
⎛⎝ ⎞⎠

β

≤f
β
(t) +

b

a
. (33)

Multiplying − a on sides of the above inequation, then we
can get

− af
β
(t) − b≤ − ag

β
(t). (34)

According to the conditions of Property 2,
C
t0

D
α
t
g(t) �

C
t0

D
α
t
f(t)≤ − af

β
(t) − b≤ − ag

β
(t). (35)

Let w(t) � gβ/m(t), where m is a positive integer. )en,
the above inequation can be written as follows:

C
t0

D
α
t
w

m/β
(t)≤ − aw

m
(t). (36)

When m≥ β, via applying Lemma 7, we can gain
Γ(2 − α)Γ(1 +(m/β))

Γ(1 +(m/β) − α)
w

(m/β)− 1
(t)D

α
t w(t)≤ − aw

m
(t).

(37)

)en,

w
(m/β)− m− 1

(t)D
α
t w(t) ≤

− aΓ(1 +(m/β) − α)

Γ(2 − α)Γ(1 +(m/β))
. (38)

Considering m≥ (β/(1 − β)), thus (m/β) − m − 1≥ 0.
Once again, we apply Lemma 7 into the above inequation.
And we have

D
α
t w

(m/β)− m
(t)≤

− aΓ(1 +(m/β) − α)Γ(1 +(m/β) − m)

Γ(1 +(m/β))Γ(1 +(m/β) − m − α)
.

(39)

Combining Lemma 1, we take the fractional integral with
fractional-order α from t0 to t on sides of in equation (3); we
have

w
(m/β)− m

(t) − w
(m/β)− m

t0( 􏼁≤
− aΓ(1 +(m/β) − α)Γ(1 +(m/β) − m) t − t0( 􏼁

α

Γ(1 +(m/β))Γ(1 +(m/β) − m − α)Γ(1 + α)
. (40)
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Substituting w(t) � [f(t) + (b/a)1/β]β/m into the above
inequation, we can obtain

f(t)≤ f t0( 􏼁 +
b

a
􏼠 􏼡

1/β
⎛⎝ ⎞⎠

1− β

−
aΓ(1 +(m/β) − α)Γ(1 +(m/β) − m) t − t0( 􏼁

α

Γ(1 +(m/β))Γ(1 +(m/β) − m − α)Γ(1 + α)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

1/(1− β)

−
b

a
􏼠 􏼡

1/β

. (41)

Apparently, the nonnegative function f(t) is mono-
tonically decreasing. Hence, we can conclude that f(t)

converges to 0 within the settling time t2
∗. By simple com-

putation, the estimation of settling time t2
∗ is given by

t
∗
2 ≤ t0 + f t0( 􏼁 +

b

a
􏼠 􏼡

(1/β)

⎛⎝ ⎞⎠

1− β

−
b

a
􏼠 􏼡

(1− β)/β
⎛⎜⎝ ⎞⎟⎠

Γ(1 +(m/β))Γ(1 +(m/β) − m − α)Γ(1 + α)

aΓ(1 +(m/β) − α)Γ(1 +(m/β) − m)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

1/α

. (42)

From the above analysis, the estimation of settling time is
connected with a positive integer m≥ (β/(1 − β)). )en, we
would like to discuss the effect of m for settling time. First,
we define a function H(m) as follows:

H(m) �
Γ(1 +(m/β))

Γ(1 +(m/β) − m)
·
Γ(1 +(m/β) − m − α)

Γ(1 +(m/β) − α)
. (43)

Based on the property of Euler’s gamma function, we
have

H(m) �
(1 +(m/β) − 1)(1 +(m/β) − 2) · · · (1 +(m/β) − m)

(1 +(m/β) − α − 1)(1 +(m/β) − α − 2) · · · (1 +(m/β) − α − m)
� 􏽙

m

i�1
Ai, (44)

where Ai � (1 + (m/β) − i)/(1 + (m/β) − α − i), i � 1, 2, . . . ,

m. Obviously, Ai > 1. On the contrary,
dAi

di
�

α
(1 +(m/β)α − i)2

> 0. (45)

According to the above analysis, it can be obtained that
H(m) is monotone increasing about m. )erefore, it can be

deduced that the settling time is monotone increasing about
m. In order to obtain more accurate estimation of settling
time, we should choose a smaller value of m.

From the above analysis, if we consider m � β/(1 − β),
we can gain a smaller estimation of settling time as follows:

t
∗
2 ≤ t0 + f t0( 􏼁 +

b

a
􏼠 􏼡

1/β
⎛⎝ ⎞⎠

1− β

−
b

a
􏼠 􏼡

(1− β)/β
⎛⎜⎝ ⎞⎟⎠

Γ(1 +(1/(1 − β)))Γ(1 +(1/(1 − β)) − (β/(1 − β)) − α)Γ(1 + α)

aΓ(1 +(1/(1 − β)) − α)Γ(1 +(1/(1 − β)) − (β/(1 − β)))

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

1/α

� t0 + f t0( 􏼁 +
b

a
􏼠 􏼡

1/β
⎛⎝ ⎞⎠

1− β

−
b

a
􏼠 􏼡

(1− β)/β
⎛⎜⎝ ⎞⎟⎠

Γ(1 +(1/(1 − β)))Γ(2 − α)Γ(1 + α)

aΓ(1 +(1/(1 − β)) − α)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

1/α

.

(46)

For Property 2, considering b � 0, we can obtain Cor-
ollary 1 as follows.

□
Corollary 1. Assume that function f(t) ∈ C([t0, +∞),R∗)

is continuous and nonnegative definite. If the following in-
equality holds,

C
t0

D
α

t
f(t)≤ − af

β
(t), (47)

where a> 0, 0< α< 1, and 0< β≤ 1, then it can be deduced as
follows:

f(t)≤ f
1− β

t0( 􏼁 −
aΓ(1 +(1/(1 − β)) − α) t − t0( 􏼁

α

Γ(1 +(1/(1 − β)))Γ(2 − α)Γ(1 + α)
􏼢 􏼣

(1/(1− β))

.

(48)

And we can judge f(t) converges to 0 within the settling
time t3

∗ which can be estimated as follows:
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t
∗
3 ≤ t0 + f

1− β
t0( 􏼁
Γ(1 +(1/(1 − β)))Γ(2 − α)Γ(1 + α)

aΓ(1 +(1/(1 − β)) − α)
􏼢 􏼣

1/α

.

(49)

Remark 2. Peng et al. and Wu et al. in [31, 32] proposed the
estimation of settling time for the differential inequation
C
t0

D
α
t
f(t)≤ − afβ(t). According to the results in [31, 32], we

can get another estimation of settling time:

t
∗
4 ≤ t0 + f

α(1+α)− β− 1
t0( 􏼁
Γ(1 + α)Γ(1 − ((1 + β)/(1 + α)))

aΓ(2 + α)Γ(1 + α − ((1 + β)/(1 + α)))
􏼢 􏼣

1/α

,

(50)

where 0< β< α(1 + α) − 1. Apparently, the results in [31, 32]
need a limiting condition on α and β. Compared with the
above results, the estimation of settling time in Property 2
and Corollary 1 has no limits about α and β when we select a
suitable value of m. Hence, the result we obtained is more
general and less conservative.

Property 3. Assume that function f(t) ∈ C([t0, +∞),R∗) is
continuous and nonnegative definite. If the following in-
equality holds,

C
t0

D
α
t
f(t)≤ − af(t) − bf

β
(t), (51)

where a> 0, b> 0, 0< α< 1, and 0< β≤ 1, then it can be
deduced as follows:

f
1− β

(t)≤ f
1− β

t0( 􏼁 +
b

a
􏼢 􏼣

1
α
exp −

aΓ(1 +(1/β) − α)

Γ(1 +(1/β))Γ(2 − α)
􏼠 􏼡

1/α

t − t0( 􏼁
⎧⎨

⎩

⎫⎬

⎭ −
b

a
, t≥ t0. (52)

And we can judge f(t) converges to 0 within the settling
time T2

∗ which can be estimated as follows:

t
∗
5 ≤ t0 +

aΓ(1 +(1/β) − α)

Γ(1 +(1/β))Γ(2 − α)
􏼢 􏼣

− 1/α

ln
af1− β t0( 􏼁 + b

bα
.

(53)

Proof. Let w(t) � fβ/m(t), where m is a positive integer.
)en, inequation (51) can be written as follows:

C
t0

D
α

t
w

m/β
(t)≤ − aw

m/β
(t) − bw

m
(t). (54)

When m≥ β, via applying Lemma 7, we can gain
Γ(2 − α)Γ(1 +(m/β))

Γ(1 +(m/β) − α)
w

(m/β)− 1
(t)D

α
t w(t)≤ − aw

m/β
(t) − bw

m
(t).

(55)

)en,
Γ(2 − α)Γ(1 +(m/β))

Γ(1 +(m/β) − α)
w

(m/β)− m− 1
(t)D

α
t w(t)≤ − aw

(m/β)− m
(t) − b.

(56)

Considering m≥ (β/(1 − β)), thus (m/β) − m − 1≥ 0.
Once again, we apply Lemma 7 into the above inequation.
And we have

D
α
t w

(m/β)− m
(t)≤ − 􏽢aw

(m/β)− m
(t) − 􏽢b, (57)

where

􏽢a �
Γ(1 +(m/β) − α)Γ(1 +(m/β) − m)

Γ(1 +(m/β))Γ(1 +(m/β) − m − α)
a,

􏽢b �
Γ(1 +(m/β) − α)Γ(1 +(m/β) − m)

Γ(1 +(m/β))Γ(1 +(m/β) − m − α)
b.

(58)

Combining Property 1, inequation (57) can be written as
follows:

w
(m/β)− m

(t)≤ w
(m/β)− m

t0( 􏼁 +
􏽢b

􏽢a
􏼢 􏼣

1
α
exp − 􏽢a

1/α
t − t0( 􏼁􏼐 􏼑 −

􏽢b

􏽢a
, t≥ t0.

(59)

Substituting w(t) � fβ/m(t) and 􏽢b/􏽢a � b/a into the above
inequation, we can obtain

f
1− β

(t)≤ f
1− β

t0( 􏼁 +
b

a
􏼢 􏼣

1
α
exp − 􏽢a

1/α
t − t0( 􏼁􏼐 􏼑 −

b

a
, t≥ t0.

(60)

Because f(t) is a nonnegative function, we can gain
f(t) � 0 if f1− β(t) � 0. )erefore, based on the analysis in
Property 1, we can conclude that f(t) converges to 0 within
the settling time t2

∗. By simple computation, the estimation
of settling time t2

∗ is given by

t
∗
5 ≤ t0 +

Γ(1 +(m/β) − α)Γ(1 +(m/β) − m)

(1 +(m/β))Γ(1 +(m/β) − m − α)
a􏼢 􏼣

− 1/α

ln
af t0( 􏼁 + b

bα
.

(61)

Similar to Property 1, H(m) � ((Γ(1+ (m/β)))/(Γ(1+

(m/β) − m))) · ((Γ(1+ (m/β) − m − α))/(Γ(1+ (m/β) − α))) is
monotone increasing about m.

t
∗
5 ≤ t0 +

a

H(m)
􏼢 􏼣

− 1/α

ln
af t0( 􏼁 + b

bα
. (62)

)erefore, it can be deduced that the settling time is
monotone increasing about m. In order to obtain more
accurate estimation of settling time, we should choose a
smaller value of β/(1 − β).
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f
1− β

(t)≤ f
1− β

t0( 􏼁 +
b

a
􏼢 􏼣

1
α
exp −

aΓ(1 +(1/β) − α)

Γ(1 +(1/β))Γ(2 − α)
􏼠 􏼡

1/α

t − t0( 􏼁
⎧⎨

⎩

⎫⎬

⎭ −
b

a
, t≥ t0. (63)

And we can obtain the settling time t2
∗ as follows:

t
∗
5 ≤ t0 +

aΓ(1 +(1/β) − α)

Γ(1 +(1/β))Γ(2 − α)
􏼢 􏼣

− 1/α

ln
af1− β t0( 􏼁 + b

bα
.

(64)

□
2.2.ModelDescription. A practical integer-order memristive
neural network can usually be implemented by a very large-
scale integration (VISI) circuit as shown in Figure 1.
According to Kirchhoff’s current law, the ith subsystem with
mixed delays can be described as follows:

dxi(t)

dt
� − dixi(t) + 􏽘

n

j�1
aij xi(t)( 􏼁fj xj(t)􏼐 􏼑

+ 􏽘
n

j�1
bij xi(t)( 􏼁gj xj t − τj(t)􏼐 􏼑􏼐 􏼑

+ 􏽘
n

j�1
cij xi(t)( 􏼁 􏽚

t

t− ρj(t)
hj xj(s)􏼐 􏼑ds + Ii,

i � 1, 2, . . . , n, t≥ t0.

(65)

In this paper, the above integer-order FNN model is
expended to fractional-order FNNs to explore the finite-time
projective synchronization. And the drive system can be
described by the following differential equation:

C
t0

D
α

t
xi(t) � − dixi(t) + 􏽘

n

j�1
aij xi(t)( 􏼁fj xj(t)􏼐 􏼑

+ 􏽘
n

j�1
bij xi(t)( 􏼁gj xj t − τj(t)􏼐 􏼑􏼐 􏼑

+ 􏽘
n

j�1
cij xi(t)( 􏼁 􏽚

t

t− ρj(t)
hj xj(s)􏼐 􏼑ds + Ii,

i � 1, 2, . . . , n, t≥ t0.

(66)

where C
t0

D
α
t
denotes the Caputo fractional derivative of order

0< α< 1 from t0 to t; di ≥ 0 is the self-feedback connection
weight of the ith neuron; xi(t) represents the corresponding
state variable of the number of ith neurons at time t; fj(·),
gj(·), and hj(·) denote the activation function between the
jth-dimension of the memristor and the state variable; τj(t)

and ρj(t), respectively, describe the discrete and distributed
time-varying delays which satisfied 0≤ τj(t)≤ τmax

j and

0≤ ρj(t)≤ ρmax
j ; and Ii represents the external input or bias,

and it is a constant. Furthermore, aij(xi(t)), bij(xi(t)), and
cij(xi(t)) are memristive synaptic connection weights which
can be given by

aij xi(t)( 􏼁 �
Waij

Ci

× signij,

bij xi(t)( 􏼁 �
Wbij

Ci

× signij,

cij xi(t)( 􏼁 �
Wcij

Ci

× signij,

(67)

where signij �
1, i≠ j

− 1, i � j
􏼨 ; Ci represents the capacitors;

and Waij, Wbij, and Wcij, respectively; denote the mem-
ductance of memristors by Raij, Rbij, and Rcij. And Raij

describes the memristor between activation function
fj(xj(t)) and xi(t); Rbij denotes the memristor between
activation function gj(xj(t − τj)) and xi(t); and Rcij is the
memristor between activation function 􏽒

t

t− ρj(t)
hj(xj(s))ds

and xi(t). According to the characteristics of memristors
and the current-voltage, we use a simplified memristor
model as follows:

aij xi(t)( 􏼁 �
a∗ij , xi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Ωi,

a∗∗ij , xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Ωi,

⎧⎪⎨

⎪⎩

bij xi(t)( 􏼁 �
b∗ij , xi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Ωi,

b∗∗ij , xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Ωi,

⎧⎪⎨

⎪⎩

cij xi(t)( 􏼁 �
c∗ij , xi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Ωi,

c∗∗ij , xi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>Ωi,

⎧⎪⎨

⎪⎩

(68)

where the switching jumps Ωi > 0 and aij
∗ , a∗∗ij , bij

∗ , b∗∗ij , cij
∗ ,

and c
∗∗

ij are all constants. And drive system (66) is supple-
mented with initial conditions as follows:

xi(s) � Ξi(s),

s ∈ t0 − τ, t0􏼂 􏼃,

τ � max
1≤j≤n

τj(t), ρj(t)􏽮 􏽯.

(69)

In order to express the proof process clearly, we set some
mathematical simplified forms. Let aij

″ � max a∗ij, a∗∗ij􏽮 􏽯,
aij
′ � min a∗ij, a∗∗ij􏽮 􏽯, bij

″ � max b∗ij, b∗∗ij􏽮 􏽯, bij
′ � min b∗ij, b∗∗ij􏽮 􏽯,

cij
″ � max c∗ij, c∗∗ij􏽮 􏽯, and cij

′ � min c∗ij, c∗∗ij􏽮 􏽯. And aij � (1/2)

(aij
″ + aij
′), 􏽥aij � (1/2)(aij

″ + aij
′ ), bij � (1/2)(bij

″ + bij
′ ),
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Figure 1: )e circuit of the memristive neural network.
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􏽥bij � (1/2)(bij
″ + bij
′), cij � (1/2)(cij

″ + cij
′), and 􏽥cij � (1/2)

(cij
″ + cij
′). Also, a+

ij � max |a ∗ij |, |a∗∗ij |􏽮 􏽯, b+
ij � max |b∗ij |,􏽮 |b∗∗ij |},

and c+
ij � max |c∗ij |, |c∗∗ij |􏽮 􏽯.

From the above description, we note that system (66) can
be regarded as a class of the complex switching system with

discontinuous right-hand side. In order to discuss the so-
lution of the system, we have to consider them in Filippov’s
sense. With the theories of the set-valued map and differ-
ential inclusions [48, 49], drive system (66) could be con-
verted to the following differential inclusion:

C
t0

D
α
t
xi(t) ∈ − dixi(t) + 􏽐

n

j�1
aij + co − 􏽥aij, 􏽥aij􏽨 􏽩􏼐 􏼑fj xj(t)􏼐 􏼑 + 􏽐

n

j�1
bij + co − 􏽥bij,

􏽥bij􏽨 􏽩􏼐 􏼑gj xj t − τj(t)􏼐 􏼑􏼐 􏼑

+ 􏽐
n

j�1
cij + co − 􏽥cij, 􏽥cij􏽨 􏽩􏼐 􏼑 􏽚

t

t− ρj(t)
hj xj(s)􏼐 􏼑ds + Ii, i � 1, 2, . . . , n, t≥ t0.

(70)

According to the set-valued map and the measurable
selection theorem in [50], there exist measurable functions
δ(1)

ij , δ(2)
ij , δ(3)

ij ∈ co[− 1, 1] such that

C
t0
Dα

t xi(t) � − dixi(t) + 􏽘
n

j�1
aij + 􏽥aijδ

(1)
ij􏼐 􏼑fj xj(t)􏼐 􏼑 + 􏽘

n

j�1
bij + 􏽥bijδ

(2)
ij􏼐 􏼑gj xj t − τj(t)􏼐 􏼑􏼐 􏼑

+ 􏽘
n

j�1
cij + 􏽥cijδ

(3)
ij􏼐 􏼑 􏽚

t

t− ρj(t)
hj xj(s)􏼐 􏼑ds + Ii, i � 1, 2, . . . , n, t≥ t0.

(71)

In order to investigate the synchronization of FMNNs,
system (66) is regarded as the drive system. Similarly, the
response system is described as follows:

C
t0
Dα

t yi(t) � − diyi(t) + 􏽘
n

j�1
aij yi(t)( 􏼁fj yj(t)􏼐 􏼑

+ 􏽘
n

j�1
bij yi(t)( 􏼁gj yj t − τj(t)􏼐 􏼑􏼐 􏼑

+ 􏽘

n

j�1
cij yi(t)( 􏼁 􏽚

t

t− ρj(t)
hj yj(s)􏼐 􏼑ds + Ii + ui(t), i � 1, 2, . . . , n, t≥ t0.

(72)

where yi(t) represents the state of the response system and
ui(t) is the controller to be designed. And the initial con-
ditions of response system (72) are given as follows:

yi(s) � Ψi(s),

s ∈ t0 − τ, t0􏼂 􏼃,

τ � max
1≤j≤n

τj(t), ρj(t)􏽮 􏽯.

(73)

By using the set-valued map and the measurable se-
lection theorem, there exist measurable functions
c

(1)
ij , c

(2)
ij , c

(3)
ij ∈ co[− 1, 1] such that
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C
t0

D
α
t
yi(t) � − diyi(t) + 􏽐

n

j�1
aij + 􏽥aijc

(1)
ij􏼐 􏼑fj yj(t)􏼐 􏼑 + 􏽐

n

j�1
bij + 􏽥bijc

(2)
ij􏼐 􏼑gj yj t − τj(t)􏼐 􏼑􏼐 􏼑

+ 􏽐
n

j�1
cij + 􏽥cijc

(3)
ij􏼐 􏼑 􏽚

t

t− ρj(t)
hj yj(s)􏼐 􏼑ds + Ii + ui(t), i � 1, 2, . . . , n, t≥ t0.

(74)

Remark 3. )e drive system and the response system are a
distinct network, so Δij(xi(t)) probably is not equal to
Δij(yi(t)). )us, we need to select six different measurable
functions δ(1)

ij , δ(2)
ij , δ(3)

ij , c
(1)
ij , c

(2)
ij , c

(3)
ij .

Let ei(t) � yi(t) − λxi(t) denote the synchronization
error. And λ represents the projective coefficient. Hence, the
fractional order of the synchronization error system can be
given as follows:

C
t0

D
α

t
ei(t) � − diei(t) +(1 − λ)Ii + 􏽘

n

j�1
aij + 􏽥aijc

(1)
ij􏼐 􏼑fj yj(t)􏼐 􏼑 − λ􏽘

n

j�1
aij + 􏽥aijδ

(1)
ij􏼐 􏼑fj xj(t)􏼐 􏼑

+ 􏽘
n

j�1
bij + 􏽥bijc

(2)
ij􏼐 􏼑gj yj t − τj(t)􏼐 􏼑􏼐 􏼑 − λ􏽘

n

j�1
bij + 􏽥bijδ

(2)
ij􏼐 􏼑gj xj t − τj(t)􏼐 􏼑􏼐 􏼑

+ 􏽘
n

j�1
cij + 􏽥cijc

(3)
ij􏼐 􏼑 􏽚

t

t− ρj(t)
hj yj(s)􏼐 􏼑ds − λ􏽘

n

j�1
cij + 􏽥cijδ

(3)
ij􏼐 􏼑 􏽚

t

t− ρj(t)
hj xj(s)􏼐 􏼑ds + ui(t).

(75)

)e initial conditions associated with system (75) are
written as follows:

ei(s) � Φi(s) � Ξi(t) − λΨi(s),

s ∈ t0 − τ, t0􏼂 􏼃,

τ � max
1≤j≤n

τj(t), ρj(t)􏽮 􏽯.

(76)

To obtain the main results expediently, we set up the
following assumptions:

Assumption 1. )e activation functions fj(·), gj(·), and
hj(·) are Lipschitz continuous. )at is, for any j ∈ N, there
exist three constants L

(1)
j , L

(2)
j , and L

(3)
j such that

fj(y) − fj(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤L
(1)
j |y − x|,

gj(y) − fj(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤L
(2)
j |y − x|,

hj(y) − hj(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ L
(3)
j |y − x|,

(77)

where x, y ∈ R, x≠y.

Assumption 2. )e activation functions fj(·), gj(·), and
hj(·) are bounded. )at is, for any j ∈ N, there exist three
constants M

(1)
j , M

(2)
j , and M

(3)
j such that

fj(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤M
(1)
j ,

gj(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤M
(2)
j ,

hj(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤M
(3)
j ,

(78)

where x ∈ R.

It is obvious that error system (75) can be expressed as
follows:

Complexity 11



C
t0

D
α

t
ei(t) � − diei(t) +(1 − λ)Ii + +ui(t) + 􏽘

n

j�1
aij + 􏽥aijc

(1)
ij􏼐 􏼑 fj yj(t)􏼐 􏼑 − fj λxj(t)􏼐 􏼑􏽨 􏽩

+ 􏽘
n

j�1
aij + 􏽥aijc

(1)
ij􏼐 􏼑 fj λxj(t)􏼐 􏼑 − fj xj(t)􏼐 􏼑􏽨 􏽩 + 􏽘

n

j�1
(1 − λ)aij + c

(1)
ij − λδ(1)

ij􏼐 􏼑􏽥aij􏽨 􏽩fj xj(t)􏼐 􏼑

+ 􏽘
n

j�1
bij + 􏽥bijc

(2)
ij􏼐 􏼑 gj yj t − τj(t)􏼐 􏼑􏼐 􏼑 − gj λxj t − τj(t)􏼐 􏼑􏼐 􏼑􏽨 􏽩

+ 􏽘
n

j�1
bij + 􏽥bijc

(2)
ij􏼐 􏼑 gj λxj t − τj(t)􏼐 􏼑􏼐 􏼑 − gj xj t − τj(t)􏼐 􏼑􏼐 􏼑􏽨 􏽩

+ 􏽘
n

j�1
(1 − λ)bij + c

(2)
ij − λδ(2)

ij􏼐 􏼑􏽥bij􏽨 􏽩gj xj t − τj(t)􏼐 􏼑􏼐 􏼑

+ 􏽘
n

j�1
cij + 􏽥cijc

(3)
ij􏼐 􏼑 􏽚

t

t− ρj(t)
hj yj(s)􏼐 􏼑ds − λ􏽘

n

j�1
cij + 􏽥cijδ

(3)
ij􏼐 􏼑 􏽚

t

t− ρj(t)
hj xj(s)􏼐 􏼑ds

≤ − diei(t) +(1 − λ)Ii + ui(t) + 􏽘

n

j�1
a

+
ij|fj yj(t)􏼐 􏼑 − fj λxj(t)􏼐 􏼑| + 􏽘

n

j�1
a

+
ij|fj λxj(t)􏼐 􏼑 − fj xj(t)􏼐 􏼑|

+ 􏽘
n

j�1
(1 − λ)aij + c

(1)
ij − λδ(1)

ij􏼐 􏼑􏽥aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌|fj xj(t)􏼐 􏼑| + 􏽘
n

j�1
b

+
ij|tgjn yj t − τj(t)􏼐 􏼑􏼐 􏼑q − hgj λxj t− τj(t)( 􏼁( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽘
n

j�1
b

+
ij|tgjn λxj t − τj(t)􏼐 􏼑􏼐 􏼑q − hgj xj t− τj(t)( 􏼁( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 􏽘

n

j�1
(1 − λ)bij + c

(2)
ij − λδ(2)

ij􏼐 􏼑􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 gj xj t − τj(t)􏼐 􏼑􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ 􏽘
n

j�1
c

+
ij 􏽚

t

t− ρj(t)
hj yj(s)􏼐 􏼑|ds

􏼌􏼌􏼌􏼌􏼌 + 􏽘
n

j�1
c

+
ij|λ| 􏽚

t

t− ρj(t)
hj xj(s)􏼐 􏼑|ds

􏼌􏼌􏼌􏼌􏼌

(79)

According to Assumption 1, we can judge

􏽘

n

j�1
a

+
ij fj yj(t)􏼐 􏼑 − fj λxj(t)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘
n

j�1
a

+
ijL

(1)
j ej(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

􏽘

n

j�1
b

+
ij gj yj t − τj(t)􏼐 􏼑􏼐 􏼑 − gj λxj t − τj(t)􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
n

j�1
b

+
ijL

(2)
j ej t − τj(t)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(80)

According to Assumption 2, we have

􏽘
n

j�1
a

+
ij fj λxj(t)􏼐 􏼑 − fj xj(t)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘
n

j�1
2a

+
ijM

(1)
j

􏽘

n

j�1
(1 − λ)aij + c

(1)
ij − λδ(1)

ij􏼐 􏼑􏽥aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 fj xj(t)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘
n

j�1
(1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌M
(1)
j

􏽘

n

j�1
b

+
ij gj λxj t − τj(t)􏼐 􏼑􏼐 􏼑 − gj xj t − τj(t)􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘

n

j�1
2b

+
ijM

(2)
j

􏽘

n

j�1
(1 − λ)bij + c

(2)
ij − δ(2)

ij􏼐 􏼑􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 gj xj t − τj(t)􏼐 􏼑􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘
n

j�1
(1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌M
(2)
j

􏽘

n

j�1
c

+
ij 􏽚

t

t− ρj(t)
hj yj(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds + 􏽘
n

j�1
c

+
ij|λ| 􏽚

t

t− ρj(t)
hj xj(s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds≤ 􏽘
n

j�1
(1 +|λ|)c

+
ijρ

max
j M

(3)
j .

(81)
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Substituting inequations (80) and (81) into equation
(79), we can obtain

C
t0

D
α

t
ei(t)≤ − diei(t) +(1 − λ)Ii + ui(t)

+ 􏽘
n

j�1
L

(1)
j a

+
ij ej(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + L
(2)
j b

+
ij ej t − τj(t)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 2a
+
ij + |(1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j􏼔

+ 2b
+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j 􏼕, i � 1, 2, . . . , n, t≥ t0.

(82)

3. Main Results

In this section, a feedback controller is designed for actu-
alizing finite-time projective synchronization of fractional-
order memristor-based neural networks with mixed time-
varying delays. And we choose the following feedback
control strategy:

ui(t) � − kiei(t) − sign ei(t)( 􏼁 hi ei t − τi(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + qi􏼐 􏼑 − (1 − λ)Ii,

(83)

where ki, hi, and qi denote the controller parameters.

3.1. De Finite-Time Projective Synchronization of FMNNs
with a Lyapunov Function Based on 1-Norm

Theorem 1. When Assumptions 1 and 2 hold, drive system
(66) and response system (72) achieve the finite-time
projective synchronization under state feedback controller
(83) if

φ � min
1≤i≤n

φi􏼈 􏼉> 0,

δ � min
1≤i≤n

δi􏼈 􏼉> 0,

η � 􏽘
n

i�1
ηi > 0,

(84)

where

φi � di + ki − 􏽘
n

j�1
L

(1)
i a

+
ji,

δi � hi − 􏽘

n

j�1
L

(2)
i b

+
ji,

ηi � qi − 􏽘
n

j�1
2a

+
ij + |(1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j􏼔

+ 2b
+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j 􏼕.

(85)

Moreover, the settling time T1 is estimated by

T
∗
1 ≤ t0 + φ− 1/αln

φV1 t0( 􏼁 + η
αη

. (86)

Proof. Firstly, we consider the following Lyapunov function:

V1(t) � 􏽘
n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (87)

Based on Lemma 8, the above fractional-order derivative
of V(t) can be written as follows:

C
t0

D
α

t
V1(t)≤ 􏽘

n

i�1
sign ei(t)( 􏼁

C

t0
D

α
t ei(t). (88)

From error system (82), we have
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C
t0

D
α

t
V1(t)≤ 􏽘

n

i�1
sign ei(t)( 􏼁

C
t0

D
α
t ei(t)

≤ 􏽘
n

i�1
sign ei(t)( 􏼁 − diei(t) +(1 − λ)Ii + ui(t) + 􏽘

n

j�1
L

(1)
j a

+
ij ej(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + L
(2)
j b

+
ij ej t − τj(t)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔

⎧⎪⎨

⎪⎩

+ 2a
+
ij + |(1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j + 2b

+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j 􏼕􏼛

≤ 􏽘
n

i�1
− di ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + sign ei(t)( 􏼁 (1 − λ)Ii + ui(t)( 􏼁 + 􏽘

n

j�1
L

(1)
i a

+
ji ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + L

(2)
i b

+
ji ei t − τi(t)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

+ 2a
+
ij + |(1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j + 2b

+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j 􏼛.

(89)

Substituting the controller (83) into inequation (89),

C
t0

D
α
t
V1(t)≤ 􏽘

n

i�1
− di ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽘

n

j�1
L

(1)
i a

+
ji ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + L

(2)
i b

+
ji ei t − τi(t)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2a

+
ij + |(1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j􏼔

⎧⎪⎨

⎪⎩

+ 2b
+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j 􏼕 − ki ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − hi ei t − τi(t)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − qi􏼛

� − 􏽘
n

i�1
di + ki − 􏽘

n

j�1
L

(1)
i a

+
ji

⎡⎢⎢⎣ ⎤⎥⎥⎦ ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 􏽘
n

i�1
hi − 􏽘

n

j�1
L

(2)
i b

+
ji

⎛⎝ ⎞⎠ ei t − τi(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

− 􏽘
n

i�1
qi − 􏽘

n

j�1
2a

+
ij + |(1 − λ)􏽥aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j􏼔

⎧⎪⎨

⎪⎩
+ 2b

+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j 􏼕􏼛.

(90)

Let

φi � di + ki − 􏽘
n

j�1
L

(1)
i a

+
ji,

δi � hi − 􏽘
n

j�1
L

(2)
i b

+
ji,

ηi � qi − 􏽘
n

j�1
2a

+
ij + | (1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j􏼔

+ 2b
+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j 􏼕.

(91)

)erefore, in equation (90) can be rewritten as follows:

C
t0

D
α

t
V1(t)≤ − 􏽘

n

i�1
φi ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 􏽘

n

i�1
δi ei t − τi(t)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 􏽘

n

i�1
ηi

≤ − φ􏽘
n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − δ􏽘

n

i�1
ei t − τi(t)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − η

� − φV1(t) − δV1 t − τi(t)( 􏼁 − η,

(92)

where φ � min1≤i≤n φi􏼈 􏼉, δ � min1≤i≤n δi􏼈 􏼉, and η � 􏽐
n
i�1 ηi.

Based on the condition δ > 0 in )eorem 1, we have
C
t0

D
α

t
V1(t)≤ − φV1(t) − η, (93)

According to the conditions of )eorem 1, we can gain
φ> 0, η> 0. Furthermore, by virtue of Property 1, it follows
that

V1(t)≤ V1 t0( 􏼁 +
η
φ

􏼢 􏼣
1
α
exp − φ1/α

t − t0( 􏼁􏽮 􏽯 −
η
φ

, t≥ t0.

(94)

And we can judge that the Lyapunov function V1(t)

converges to 0, which represents drive system (66) and
response system (72) actualizing finite-time projective
synchronization under feedback controller (83). And the
settling time T1 which can be estimated is as follows:

T
∗
1 ≤ t0 + φ− 1/αln

φV1 t0( 􏼁 + η
ηα

. (95)

)is completes the proof.
□

Remark 4. For the differential inequation C
t0

D
α
t
V1(t)≤ −

φV1(t) − η in fractional-order neural networks, Zhang et al.
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[29] ignored the effort of parameter φ when they calculated
the settling time.

C
t0

D
α

t
V1(t)≤ − η. (96)

Taking the fractional integral with variable order α on
both sides of the above inequation, we can gain

V1(t) − V1 t0( 􏼁≤
− 1
Γ(α)

􏽚
t

t0

(t − s)
α− 1η ds. (97)

)rough Definition 1, we can calculate that V(t) con-
verges to 0 within the settling time T2, and T2 is evaluated by

T2 ≤ t0 +
V1 t0( 􏼁Γ(1 + α)

η
􏼢 􏼣

1/α

. (98)

Apparently, the authors ignored the impact of parameter
η, and let η � 0 which will increase the conservation of the
settling time. Considering the parameter η> 0; the estima-
tion of settling timeT∗1 in)eorem 1 is less conservative than
the results in [29]. To verify that the settling time T∗1 is more

accurate than T2, a comparison table has been given in
numerical simulation.

Remark 5. For the differential inequation
C
t0

D
α
t
V1(t)≤ − φV1(t) − η, when fractional order α � 1, the

settling time t1 is estimated by

t1 ≤ t0 +
ln φV1 t0( 􏼁􏼂 􏼃 − ln η

φ
. (99)

Obviously, the estimate time t1 is consistent with the
result of the integer-order system given in [51]. )us, it
shows the estimation of settling time T∗1 in )eorem 1 is
more accurate and general.

3.2. De Finite-Time Projective Synchronization of FMNNs
with a Lyapunov Function Based on p-Norm

Theorem 2. Under the state feedback controller (83) and
Assumptions 1 and 2, drive system (66) and response system
(72) achieve the finite-time projective synchronization if

φ � min
1≤i≤n

φi􏼈 􏼉> 0,

δ � min
1≤i≤n

δi􏽮 􏽯> 0,

η � min
1≤i≤n

ηi􏼈 􏼉> 0,

φi �
Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
di + ki − 􏽘

n

j�1
L

(1)
j a

+
ij

(p − 1)ε1
p

+
L

(1)
i a+

ji

pεp− 1
1

+ L
(2)
j b

+
ij

(p − 1)ε2
p

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

δi �
Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
hi − 􏽘

n

j�1

L
(2)
i b+

ji

pεp− 1
2

⎛⎝ ⎞⎠,

ηi �
Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
qi − 􏽘

n

j�1
2a

+
ij + | (1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j􏼔

⎧⎪⎨

⎪⎩

+ 2b
+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j 􏼕􏼛,

(100)

where ε1 and ε2 are arbitrary positive constants.
Moreover, the settling time T2 is estimated by

T
∗
3 ≤ t0 +

Γ(1 +(p/(p − 1)) − α)φ
Γ(1 +(p/(p − 1)))Γ(2 − α)

􏼢 􏼣

− 1/α

ln
φV

1/p
2 t0( 􏼁 + η
ηα

.

(101)

Proof. Firstly, we consider the following Lyapunov function:

V2(t) � 􏽘
n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
, (102)

where p is a positive integer with p> 1.
Calculating the derivate of V2(t) and using Lemma 7 and

error system (82), one has

C
t0

D
α

t
V2(t) �

Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
􏽘

n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1C

t0
D

α

t
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(103)

According to Lemma 8, the above fractional-order de-
rivative of V(t) can be written as follows:
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C
t0

D
α

t
V2(t)≤

Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
􏽘

n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1sign ei(t)( 􏼁

C
t0

D
α

t
ei(t)

≤
Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
􏽘

n

i�1
􏼚 − di ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

+ sign ei(t)( 􏼁 (1 − λ)Ii + ui(t)( 􏼁 ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p− 1

+ 􏽘
n

j�1
L

(1)
i a

+
ij ej(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + L
(2)
i b

+
ij ej t − τj(t)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 2a
+
ij + (1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j􏼔

+ 2b
+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j 􏼕 ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1

􏼛.

(104)

Substituting the feedback controller (83) into inequation
(104), we can get

C
t0

D
α
t
V2(t)≤

Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
􏽘

n

i�1
− di ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

+ 􏽘
n

j�1
L

(1)
j a

+
ij ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1

ej(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + L
(2)
j b

+
ij ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1

ej t − τj(t)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕

⎧⎪⎨

⎪⎩

+ 􏽘
n

j�1
2a

+
ij + |(1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j + 2b

+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j􏼔

+(1 +|λ|)c
+
ijρ

max
j M

(3)
j 􏽩 ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1

− ki ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p

− hi ei t − τi(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p

− qi ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p− 1

􏽯.

(105)

By applying Lemma 3, we have

ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p− 1

ej(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
(p − 1)ε1

p
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

+
1

pεp− 1
1

ej(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p
,

ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p− 1

ej t − τj(t)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
(p − 1)ε2

p
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

+
1

pεp− 1
2

ej t − τj(t)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p
,

(106)

where ε1 and ε2 are arbitrary positive constants.
Combining with inequations (105) and (106), one has
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C
t0

DtαV1(t)≤
Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
􏽘

n

i�1
− di + ki( 􏼁 ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

− hi ei t − τi(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p

− qi ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p− 1

􏽮

+ 􏽘
n

j�1
L

(1)
j a

+
ij

(p − 1)ε1
p

+
L

(1)
i a+

ji

pεp− 1
1

+ L
(2)
j b

+
ij

(p − 1)ε2
p

⎛⎝ ⎞⎠ ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p

+ 􏽘
n

j�1

L
(2)
i b+

ji

pεp− 1
2

ei t − τi(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p

+ 􏽘

n

j�1
2a

+
ij + |(1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j + 2b

+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j􏼔 􏼕 ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1

⎫⎪⎬

⎪⎭

� −
Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
􏽘

n

i�1
di + ki − 􏽘

n

j�1
L

(1)
j a

+
ij

(p − 1)ε1
p

+
L

(1)
i a+

ji

pεp− 1
1

+ L
(2)
j b

+
ij

(p − 1)ε2
p

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ ei(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p

−
Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
􏽘

n

i�1
hi − 􏽘

n

j�1

L
(2)
i b+

ji

pεp− 1
2

⎛⎝ ⎞⎠ ei t − τi(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p

−
Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
􏽘

n

i�1
qi − 􏽘

n

j�1
2a

+
ij + |(1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j􏼔

⎧⎪⎨

⎪⎩

+ 2b
+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j 􏼕􏼛 ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1

≤ − 􏽘
n

i�1
φi ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

− 􏽘
n

i�1
δi ei t − τj(t)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p

− 􏽘
n

i�1
ηi ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1

,

(107)

where

φi �
Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
di + ki − 􏽘

n

j�1
L

(1)
j a

+
ij

(p − 1)ε1
p

+
L

(1)
i a+

ji

pεp− 1
1

+ L
(2)
j b

+
ij

(p − 1)ε2
p

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

δi �
Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
hi − 􏽘

n

j�1

L
(2)
i b+

ji

pεp− 1
2

⎛⎝ ⎞⎠,

ηi �
Γ(2 − α)Γ(1 + p)

Γ(1 + p − α)
qi − 􏽘

n

j�1
2a

+
ij + |(1 − λ)aij +(1 +|λ|)􏽥aij

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(1)
j􏼔

⎧⎪⎨

⎪⎩

+ 2b
+
ij + (1 − λ)bij +(1 +|λ|)􏽥bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓M
(2)
j +(1 +|λ|)c

+
ijρ

max
j M

(3)
j 􏼕􏼛.

(108)

Denote φ � min1≤i≤n φi􏼈 􏼉, δ � min1≤i≤n δi􏽮 􏽯, and
η � min1≤i≤n ηi􏼈 􏼉; one gets

C
t0

D
α

t
V2(t)≤ − φ􏽘

n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

− δ􏽘
n

i�1
ei t − τi(t)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

− η􏽘
n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1

.

(109)

Applying Lemma 4, we have

C
t0

D
α
t
V2(t)≤ − φ􏽘

n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

− δ􏽘
n

i�1
ei t − τi(t)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

− η 􏽘
n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p⎛⎝ ⎞⎠

(p− 1)/p

� − φV2(t) − δV2 t − τi(t)( 􏼁 − ηV2(t)
(p− 1)/p

.

(110)

Based on the conditions of )eorem 2, we know φ> 0,
δ > 0, and η> 0. )us,

C
t0

D
α

t
V2(t)≤ − φV2(t) − ηV

(p− 1)/p
2 (t). (111)
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Hence, from Property 3, we have

V
1/p
2 (t)≤ V

1/p
2 t0( 􏼁 +

η
φ

􏼢 􏼣
1
α
exp −

aΓ(1 +(p/(p − 1)) − α)

Γ(1 +(p/(p − 1)))Γ(2 − α)
􏼠 􏼡

1/α

t − t0( 􏼁
⎧⎨

⎩

⎫⎬

⎭ −
η
φ

. (112)

And we can judge that the Lyapunov function V2(t)

converges to 0, which represents drive system (66) and
response system (72) achieve finite-time projective syn-
chronization under feedback controller (83). And the set-
tling time T∗3 can be estimated by

T
∗
3 ≤ t0 +

Γ(1 +(p/(p − 1)) − α)φ
Γ(1 +(p/(p − 1)))Γ(2 − α)

􏼢 􏼣

− (1/α)

ln
φV

1/p
2 t0( 􏼁 + η
ηα

.

(113)

)e proof is accomplished.
□

Remark 6. For the differential inequation C
t0

D
α
t
V2(t)≤

− φV2(t) − ηV
(p− 1)/p
2 (t), considering the parameter φ � 0,

then
C
t0

D
α

t
V2(t)≤ − ηV

(p− 1)/p
2 (t), (114)

where η> 0.
According to Corollary 1, it has

V2(t)≤ V
1/p
2 t0( 􏼁 − η ·

aΓ(1 + p − α) t − t0( 􏼁
α

Γ(1 + p)Γ(2 − α)Γ(1 + α)
􏼢 􏼣

1/(1− β)

.

(115)

And we can judge that the Lyapunov function V2(t)

converges to 0. Furthermore, the settling time

T4 ≤ t0 + V
(1/p)
2 t0( 􏼁

Γ(1 + p)Γ(2 − α)Γ(1 + α)

Γ(1 + p − α)η
􏼢 􏼣

(1/α)

.

(116)

From Remark 2, if ((p − 1)/p)< α(1 + α) − 1 holds, we
can obtain another estimation of settling time:

T5 ≤ t0 + V
α(1+α)+(1/p)− 2
2 t0( 􏼁

Γ(1 + α)Γ(1 − ((2p − 1)/p(1 + α)))

η · Γ(2 + α)Γ(1 + α − ((2p − 1)/p(1 + α)))
􏼢 􏼣

(1/α)

. (117)

Obviously, compared with T∗3 in)eorem 2, the estimate
times T4 andT5 are conservative estimations of settling time.
And a comparison table about T∗3 , T4, and T5 has been given
in numerical simulation.

4. Numerical Simulation

In this section, several numerical examples are given to il-
lustrate the effectiveness of the obtained results. We consider
the following two-dimensional fractional-order memristive
neural networks with mixed time-varying delays:

C
t0
D0.98

t xi(t) � − dixi(t) + 􏽘
2

j�1
aij xi(t)( 􏼁fj xj(t)􏼐 􏼑 + 􏽘

2

j�1
bij xi(t)( 􏼁gj xj t − τj(t)􏼐 􏼑􏼐 􏼑 + 􏽘

2

j�1
cij xi(t)( 􏼁 􏽚

t

t− ρj(t)
hj xj(s)􏼐 􏼑 ds + Ii,

C
t0
D0.98

t yi(t) � − diyi(t) + 􏽘
2

j�1
aij yi(t)( 􏼁fj yj(t)􏼐 􏼑 + 􏽘

2

j�1
bij yi(t)( 􏼁gj yj t − τj(t)􏼐 􏼑􏼐 􏼑 + 􏽘

2

j�1
cij yi(t)( 􏼁 􏽚

t

t− ρj(t)
hj yj(s)􏼐 􏼑 ds + Ii + ui(t),

(118)

where i � 1, 2. And the values of the memristors are given as
follows:
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a11 x1(t)( 􏼁 �
0.3, x1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

0.2, x1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

a12 x1(t)( 􏼁 �
− 0.4, x1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

− 0.22, x1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

a21 x2(t)( 􏼁 �
− 0.9, x2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

− 0.8, x2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

a22 x2(t)( 􏼁 �
0.5, x2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

0.8, x2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

b11 x1(t)( 􏼁 �
− 0.6, x1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

− 0.2, x1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

b12 x1(t)( 􏼁 �
0.5, x1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

0.5, x1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

b21 x2(t)( 􏼁 �
0.1, x2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

0.4, x2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1, ‘

⎧⎨

⎩

b22 x2(t)( 􏼁 �
− 0.4, x2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

− 0.3, x2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

c11 x1(t)( 􏼁 �
− 0.1, x1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

− 0.4, x1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

c12 x1(t)( 􏼁 �
0.7, x1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

0.8, x1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

c21 x2(t)( 􏼁 �
0.4, x2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

0.3, x2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

c22 x2(t)( 􏼁 �
− 0.85, x2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

− 0.95, x2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1.

⎧⎨

⎩

(119)

For drive-response system (118), we select the system
parameters as follows: I1 � I2 � 0.1, d1 � d2 � 0.1, τ1(t) �

et/(et + 1), τ2(t) � 0.8∗ et/(et + 1), ρ1(t) � 0.5 cos(t)+

0.5, and ρ2(t) � 0.4 sin(t) + 0.4. Hence, we can obtain that
τmax
1 � 1, τmax

2 � 0.8, ρmax
1 � 1, ρmax

2
� 0.8, and τ � maxj�1,2 τj(t), ρj(t)􏽮 􏽯 � 1.And the initial
values x(s) � [− 1.5, 2.5]T, y(s) � [2.5, − 0.5]T,∀s ∈ [− 1, 0].

)e activations are adopted as follows:

fj xj(t)􏼐 􏼑 � gj xj(t)􏼐 􏼑 � hj xj(t)􏼐 􏼑 �
1 − e− xj(t)

1 + e− xj(t)
, j � 1, 2.

(120)

It is easy to check that Assumption 1 and 2 are satisfied.
By simple calculation, L

(1)
j � L

(2)
j � L

(3)
j � M

(1)
j �

M
(2)
j � M

(3)
j � 1, for j � 1, 2.

4.1. Projective Synchronization. First, we choose the pro-
jective coefficient λ � 2. We can get the initial values
Φ1(s) � y1(s) − 2x1(s) � 5.5, Φ2(s) � y2(s) − 2x2(s) �

− 5.5, V1(t0) � 11, and V2(t0) � 60.5.
According to )eorem 1, it can be calculated as follows:

φ1 � k1 − 1.1,φ2 � k2 − 1.1,

δ1 � h1 − 1, δ2 � h2 − 0.9,

η1 � q1 − 8.9, η2 � q2 − 10.38.

(121)

And we choose k1 � 3.1, k2 � 3.1, h1 � 1, h2 � 0.9, q1 �

9.9, and q2 � 11.38 which make φ � 2 and η � 2.
)en, we have a finite-time fractional-order differential

inequation as follows:
C
t0

D
α
t
V1(t)≤ − 2V1(t) − 2. (122)

Based on the result in )eorem 1, drive-response system
(118) could achieve synchronization in finite time. And we
can calculate the setting time T∗1 as follows:

T
∗
1 ≤ t0 + φ− 1/α ln

φV1 t0( 􏼁 + η
αη
≤ 2− 1/0.98 ln

2 × 11 + 2
0.98 × 2

􏼒 􏼓 � 1.235.

(123)

To verify Remark 4, we can calculate T2 to demonstrate
that T∗1 is less conservative than T2. It follows that

T2 ≤ t0 +
V1 t0( 􏼁Γ(1 + α)

η
􏼢 􏼣

1/α

�
11 · Γ(1.98)

2
􏼠 􏼡

1/α

� 5.5778.

(124)

On the contrary, we select p � 2 and ε1 � ε2 � 1 for
)eorem 2. And it is easy to calculate

φ1 � 1.9608 k1 − 1.4( 􏼁, φ2 � 1.9608 k2 − 1.85( 􏼁;

δ1 � 1.9608 h1 − 0.5( 􏼁, δ2 � 1.9608 h2 − 0.45( 􏼁;

η1 � 1.9608 q1 − 8.9( 􏼁, η2 � 1.9608 q2 − 10.38( 􏼁.

(125)

Under the controller parameter, k1 � 3.1, k2 � 3.1, h1 �

1, h2 � 0.9, q1 � 9.9, and q2 � 11.38 which lead to
φ � 2.451 and η � 1.9608.

Hence, we have another finite-time fractional-order
differential inequation as follows:

C
t0

D
α
t
V2(t)≤ − 2.451V2(t) − 1.9608V

1/2
2 (t). (126)

Based on the result in )eorem 2, we can estimate the
setting time T3 as follows:

T
∗
3 ≤ t0 +

Γ(1 +(p/(p − 1)) − α)φ
Γ(1 +(p/(p − 1)))Γ(2 − α)

􏼢 􏼣

− 1/α

ln
φV

1/p
2 t0( 􏼁 + η
ηα

�
2.451Γ(2.02)

Γ(3)Γ(1.02)
􏼢 􏼣

− 1/0.98

ln
2.451 ×

����
60.5

√
+ 1.9608

1.9608 × 0.98
� 1.9054.

(127)
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To verify Remark 6, we can calculate T4 to demonstrate
that T∗3 is less conservative than T4. It follows that

T4 ≤ t0 + V
1
p

2 t0( 􏼁
Γ(1 + p)Γ(2 − α)Γ(1 + α)

Γ(1 + p − α)η
􏼢 􏼣

1/α

�
����
60.5

√
·
Γ(3)Γ(1.02)Γ(1.98)

1.9608Γ(2.02)
􏼢 􏼣

1/0.98

� 8.0421.

(128)

Considering p � 2 and α � 0.98, ((p − 1)/p)< α(1 + α)−

1 holds. )us, we have

T5 ≤ t0 + V
α(1+α)+(1/p)− 2
2 t0( 􏼁

Γ(1 + α)Γ(1 − ((2p − 1)/p(1 + α)))

η · Γ(2 + α)Γ(1 + α − ((2p − 1)/p(1 + α)))
􏼢 􏼣

1/α

� 60.50.4404
·
Γ(1.98)Γ(0.2424)

1.9608 · Γ(2.98)Γ(1.2224)
􏼢 􏼣

1/0.98

� 6.689.

(129)

)erefore, drive-response system (118) can achieve fi-
nite-time projective synchronization under controller (83).
And the state trajectories and error curves of FMCGNNs are
as shown in Figures 2–4, which demonstrate the effective-
ness of )eorems 1 and 2.

4.2. Complete Synchronization. First, we choose the pro-
jective coefficient λ � 1. We can get Φ1(s) � y1(s)−

2x1(s) � 4, Φ2(s) � y2(s) − 2x2(s) � − 3, V1(t0) � 7, and
V2(t0) � 25.

According to )eorem 1, it can be calculated as follows:

φ1 � k1 − 1.1,

φ2 � k2 − 1.1;

δ1 � h1 − 1,

δ2 � h2 − 0.9;

η1 � q1 − 6.36,

η2 � q2 − 8.12.

(130)

And we choose k1 � 3.1, k2 � 3.1, h1 � 1, h2 � 0.9, q1 �

7.36, and q2 � 9.12 which make φ � 2 and η � 2.
)en, we have a finite-time fractional-order differential

inequation as follows:
C
t0

D
α
t
V1(t)≤ − 2V1(t) − 2. (131)

Based on the result in )eorem 1, drive-response system
(118) could achieve synchronization in finite time. And we
can calculate the setting time T∗1 as follows:

T
∗
1 ≤ t0 + φ− 1/α ln

φV1 t0( 􏼁 + η
αη
≤ 2− 1/0.98 ln

2 × 7 + 2
0.98 × 2

􏼒 􏼓 � 1.0351.

(132)

To verify Remark 4, we can calculate T2 to demonstrate
that T∗1 is less conservative than T2. It follows that

T2 ≤ t0 +
V1 t0( 􏼁Γ(1 + α)

η
􏼢 􏼣

1/α

�
7 · Γ(1.98)

2
􏼠 􏼡

1/α

� 3.5169.

(133)

On the contrary, we select p � 2 and ε1 � ε2 � 1 for
)eorem 2. And it is easy to calculate

φ1 � 1.9608 k1 − 1.4( 􏼁,

φ2 � 1.9608 k2 − 1.85( 􏼁;

δ1 � 1.9608 h1 − 0.5( 􏼁,

δ2 � 1.9608 h2 − 0.45( 􏼁;

η1 � 1.9608 q1 − 6.36( 􏼁,

η2 � 1.9608 q2 − 8.12( 􏼁.

(134)

Under the controller parameter, k1 � 3.1, k2 � 3.1, h1 �

1, h2 � 0.9, q1 � 7.36, and q2 � 9.12 which lead to
φ � 2.451 and η � 1.9608.

Hence, we have another finite-time fractional-order
differential inequation as follows:

C
t0

D
α

t
V2(t)≤ − 2.451V2(t) − 1.9608V

1/2
2 (t). (135)

Based on the result in )eorem 2, we can estimate the
setting time T3 as follows:
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Figure 3: )e second dimensional state trajectories of the drive system and the response system when the projective coefficient λ � 2.
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Figure 2: )e first dimensional state trajectories of the drive system and the response system when the projective coefficient λ � 2.
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T
∗
3 ≤ t0 +

Γ(1 +(p/(p − 1)) − α)φ
Γ(1 +(p/(p − 1)))Γ(2 − α)

􏼢 􏼣

− 1/α

ln
φV

1/p
2 t0( 􏼁 + η
ηα

�
2.451Γ(2.02)

Γ(3)Γ(1.02)
􏼢 􏼣

− 1/0.98

ln
2.451 ×

��
25

√
+ 1.9608

1.9608 × 0.98
� 1.5937.

(136)

To verify Remark 6, we can calculate T4 to demonstrate
that T∗3 is less conservative than T4. It follows that

T4 ≤ t0 + V
1/p
2 t0( 􏼁
Γ(1 + p)Γ(2 − α)Γ(1 + α)

Γ(1 + p − α)η
􏼢 􏼣

1/α

�
��
25

√
·
Γ(3)Γ(1.02)Γ(1.98)

1.9608Γ(2.02)
􏼢 􏼣

1/0.98

� 5.1232. (137)

Considering p � 2 and α � 0.98, (p − 1)/p< α(1 + α) −

1 holds. )us, we have

T5 ≤ t0 + V
α(1+α)+(1/p)− 2
2 t0( 􏼁

Γ(1 + α)Γ(1 − ((2p − 1)/p(1 + α)))

η · Γ(2 + α)Γ(1 + α − ((2p − 1)/p(1 + α)))
􏼢 􏼣

1/α

� 250.4404
·
Γ(1.98)Γ(0.2424)

1.9608 · Γ(2.98)Γ(1.2224)
􏼢 􏼣

1/0.98

� 4.4965.

(138)

)erefore, drive-response system (118) can achieve finite-
time complete synchronization under controller (83). And the
state trajectories and error curves of FMCGNNs are as shown in
Figures 5–7, which demonstrate the effectiveness of )eorems 1
and 2.

4.3. Antisynchronization. First, we choose the projective
coefficient λ � − 1. We can get Φ1(s) � y1(s) − 2x1(s) � 1,
Φ2(s) � y2(s) − 2x2(s) � 2, V1(t0) � 3, and V2(t0) � 5.

According to )eorem 1, it can be calculated as follows:

φ1 � k1 − 1.1,

φ2 � k2 − 1.1;

δ1 � h1 − 1,

δ2 � h2 − 0.9;

η1 � q1 − 9.08,

η2 � q2 − 11.12.

(139)

And we choose k1 � 3.1, k2 � 3.1, h1 � 1, h2 � 0.9, q1 �

10.08, and q2 � 12.12 which make φ � 2 and η � 2.
)en, we have a finite-time fractional-order differential

inequation as follows:
C
t0

D
α

t
V1(t)≤ − 2V1(t) − 2. (140)

Based on the result in )eorem 1, drive-response system
(118) could achieve synchronization in finite time. And we
can calculate the setting time T∗1 as follows:

T
∗
1 ≤ t0 + φ− 1/α ln

φV1 t0( 􏼁 + η
αη
≤ 2− 1/0.98 ln

2 × 3 + 2
0.98 × 2

􏼒 􏼓 � 0.6934.

(141)

To verify Remark 4, we can calculate T2 to dem-
onstrate that T∗1 is less conservative than T2. It follows
that

T2 ≤ t0 +
V1 t0( 􏼁Γ(1 + α)

η
􏼢 􏼣

1/α

�
3 · Γ(1.98)

2
􏼠 􏼡

1/α

� 1.4814.

(142)

On the contrary, we select p � 2 and ε1 � ε2 � 1 for
)eorem 2. And it is easy to calculate

φ1 � 1.9608 k1 − 1.4( 􏼁,φ2 � 1.9608 k2 − 1.85( 􏼁;

δ1 � 1.9608 h1 − 0.5( 􏼁, δ2 � 1.9608 h2 − 0.45( 􏼁;

η1 � 1.9608 q1 − 9.08( 􏼁, η2 � 1.9608 q2 − 11.12( 􏼁.

(143)

Under the controller parameter, k1 � 3.1, k2 � 3.1, h1 �

1, h2 � 0.9, q1 � 10.08, and q2 � 12.12 which lead to
φ � 2.451 and η � 1.9608.

Hence, we have another finite-time fractional-order
differential inequation as follows:

C
t0

D
α
t
V2(t)≤ − 2.451V2(t) − 1.9608V

1/2
2 (t). (144)

Based on the result in )eorem 2, we can estimate the
setting time T3 as follows:
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Figure 5: )e first dimensional state trajectories of the drive system and the response system when the projective coefficient λ � 1.
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Figure 8: )e first dimensional state trajectories of the drive system and the response system when the projective coefficient λ � − 1.
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Figure 9: )e second dimensional state trajectories of the drive system and the response system when the projective coefficient λ � − 1.
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T
∗
3 ≤ t0 +

Γ(1 +(p/(p − 1)) − α)φ
Γ(1 +(p/(p − 1)))Γ(2 − α)

􏼢 􏼣

− 1/α

ln
φV

1/p
2 t0( 􏼁 + η
ηα

�
2.451Γ(2.02)

Γ(3)Γ(1.02)
􏼢 􏼣

− 1/0.98

ln
2.451 ×

�
5

√
+ 1.9608

1.9608 × 0.98
� 1.3539.

(145)

To verify Remark 6, we can calculate T4 to demonstrate
that T∗3 is less conservative than T4. It follows that

T4 ≤ t0 + V
1/p
2 t0( 􏼁
Γ(1 + p)Γ(2 − α)Γ(1 + α)

Γ(1 + p − α)η
􏼢 􏼣

1/α

�
�
5

√
·
Γ(3)Γ(1.02)Γ(1.98)

1.9608Γ(2.02)
􏼢 􏼣

1/0.98

� 2.2539.

(146)

Considering p � 2 and α � 0.98, ((p − 1)/p)< α(1 + α)−

1 holds. )us, we have

T5 ≤ t0 + V
α(1+α)+(1/p)− 2
2 t0( 􏼁

Γ(1 + α)Γ(1 − (2p − 1)/p(1 + α))

η · Γ(2 + α)Γ(1 + α − (2p − 1)/p(1 + α))
􏼢 􏼣

1/α

� 50.4404
·
Γ(1.98)Γ(0.2424)

1.9608 · Γ(2.98)Γ(1.2224)
􏼢 􏼣

1/0.98

� 2.1816.

(147)

)erefore, drive-response system (118) can achieve fi-
nite-time antisynchronization under controller (83). And
the state trajectories and error curves of FMCGNNs are as
shown in Figures 8–10, which demonstrate the effectiveness
of )eorems 1 and 2.

5. Conclusion

In this paper, we have extensively discussed the finite-time
projective synchronization for a class of FMNNs which are
translated to a type of fractional-order systems with time
delays and uncertain parameters. By means of applying the
differential inequality of the Caputo derivative and the as-
ymptotic expansion property of Mittag-Leffler function,
three useful properties are proposed which play a vital role in
calculating the settling time of finite-time synchronization.
Besides the time-delayed feedback control utilized in this
paper, other control approaches, such as impulsive control,
intermittent control, and pinning control, can also be ap-
plied in the future work for studying projective synchro-
nization of memristive neural networks with mixed time-
varying delays.
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