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In this paper, an innovative approach based on an artificial neural network (ANN) load forecasting model to improve the
distribution system state estimation accuracy is proposed. High-quality pseudomeasurements are produced by a neural model fed
with both exogenous and historical load information and applied in a realistic measurement scenario. Aggregated active and
reactive powers of small or medium enterprises and residential loads are simultaneously predicted by a one-step ahead forecast.
(e correlation between the forecasted real and reactive power errors is duly kept into account in the definition of the estimator
together with the uncertainty of the overall measurement chain.(e beneficial effects of the ANN-based pseudomeasurements on
the quality of the state estimation are demonstrated by simulations carried out on a small medium-voltage distribution grid.

1. Introduction

Power systems are rapidly evolving, and, correspondingly,
control and management systems need information on the
actual operating conditions of the grids, in order to manage
them effectively. (is information can be obtained in several
ways and concerns different types of data, but, in any case,
the proper operation of the systems is strictly connected to
an accurate knowledge of the operating conditions of the
grid [1]. Knowledge on possible operating conditions of the
network can be obtained by means of load flow and power
flow methods (see, for example, [2–4]), which are used, for
instance, starting from nominal data in the planning stage or
to find optimal configuration during contingencies. Other
methods, suitable to know the state of the network, in terms
of node voltages and/or branch currents, at run time starting
from available measurements can be based on state esti-
mation (SE) techniques. SE methods applied to the electrical
power systems date back to the 1970s, when Fred Schweppe
proposed the use of SE for achieving an accurate picture of
the operating conditions of transmission networks [5]. (e
conventional state estimators assume the monitoring system
to be overdetermined by having redundant measurements,
thus ensuring the system observability, which is crucial for

the state estimator to work. Unlike transmission systems, the
number of real-time measurements in distribution systems
(DSs) is usually limited. Despite the recent vast deployment
of smart meters (SMs), the monitoring systems of DSs are
still underdetermined; moreover, possible metering or
communication problems causing missing/delayed data
contribute to real-time measurements scarcity. For DSs, SE
is not feasible unless the so-called pseudomeasurements are
introduced in order to ensure the observability of the system
and to perform, thus, the so-called distribution system state
estimation (DSSE). In reviews [6, 7], it is possible to find the
context of research activity on DSSE techniques. In the
following, the focus will be on the definition of pseudo-
measurements for DSSE. Typically, pseudomeasurements
are indirect or derived measurements used to describe load/
generator power absorption/generation. It is worth recalling
that loads in electric DS have highly different location, size,
and typology, and distributed generation can be highly
variable. (us, an accurate idea of the behaviour of the
overall load configuration is challenging and can be essential
for an effective DSSE [8]. In order to allow DSSE to function
properly, pseudomeasurements from load estimates and
short-term load forecasts can be used [9, 10]. In recent times,
research has been carried out on the application of machine
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learning techniques both for load estimation and load
forecasting problems.

Traditional load power estimation can be performed
from typical load profiles of each user type. Assuming the
demand at each hour is equal to the demand at the same
hour of the previous equivalent day is a common choice.(e
load profiles can be considered as derived estimates of the
customer load behaviour with high variance. Consequently,
the quality of the state estimates obtained with this approach
is generally poor. To improve the accuracy of load power
consumption estimation in [11], a neural network approach
is proposed to realign the average load profiles with the real
power flow measurements available at the network sub-
station. In particular, for each bus, two feed-forward arti-
ficial neural networks (ANNs) are trained, the first one
associates real active power flow measurements with active
power injections, whereas the second one relates real re-
active power flow measurements with reactive power
injections.

In the literature, algorithms based on Multiple Linear
Regression (MLR) analysis [10] and machine learning
techniques [12] have been proposed for load forecasting.

Load forecasting is a difficult task as the time evolution of
the loads is complex and exhibits several levels of seasonality;
the load at a given hour can be correlated not only with the
load at the previous hour but also with the loads at the same
hour on the previous day and with the same day in the
previous week. Moreover, many important exogenous
variables can be considered, especially weather-related
variables. In this context, ANNs with their inherent capa-
bility to infer a function from data represent an efficient
solution for load modelling more than linear models.
Generating pseudomeasurements using ANNs for load
forecasting has been demonstrated to be a viable solution
especially for local-level load modelling [12]. In [13], a
closed-loop estimator is proposed for a medium-voltage DS,
where a machine learning function provides pseudomea-
surements to DSSE. (e output of the estimator is then fed
back to the machine learning function, which allows the
estimation when measurement data are missing. For each
medium-voltage (MV) node, two feed-forward ANNs are
trained to independently forecast nodal active and reactive
power. Load time series and indices categorizing the load
time series according to the load patterns are used as ANN
inputs. (e ANNs are retrained over time whenever a new
load time series of an MV node is available. In [14], a SE tool
with closed flow between the estimator and the machine
learning function is proposed as in [13]. In [14], a feed-
forward ANN is trained to forecast active power value one
step ahead with three types of inputs: historical load in-
formation and weather-related and time-related variables.
Once the predictive model has been developed, its perfor-
mance is monitored continuously in order to detect the
deterioration over the medium-to-long term (i.e., weeks to
months) and retrain it accordingly.

Among all the proposed machine learning methods,
multilayer perceptron (MLP) neural networks demonstrated
to perform better than others for load forecasting [11, 15]. In
particular, in [15], five machine learning methods, i.e., MLP,

Support Vector Machines, Radial Basis Functions, Decision
trees, and Gaussian Process, have been compared to forecast
the active power charges for the next 100 hours. (e com-
parison has been made using three measures of accuracy
(MAPE—Mean Absolute Percentage Error; MAE—Mean
Absolute Error; and RMSE—Root Mean Squared Error)
showing that the MLP is the most robust among the others.

In this context, this paper proposes an MLP load fore-
casting model for generating simultaneously high-quality
active and reactive power pseudomeasurements for an ef-
fective branch-current-based DSSE (BC-DSSE). (e esti-
mator uses all the available information suitably considering
uncertainty sources and correlations. In particular, appro-
priate weights are introduced to take into account the SM
and forecast uncertainties. A realistic measurement scenario
composed of few real measurements, SMs, load forecasts,
and suitable pseudomeasurements is assumed. In particular,
a feed-forward ANN is trained to predict one step ahead the
power demands at each MV node. Exogenous variables have
been used as predictive model inputs together with historical
load information. A closed-loop information, flowing from
the ANN outputs to the inputs, has been created to allow the
BC-DSSE even though SM measurements are not available
at the MV node for the last 24 hours.

(e approach proposed in this paper is validated by
means of simulation performed on a grid derived from a
portion of a distribution network [16], which is a simplified
version of an 18-bus UK radial feeder.

2. Distribution System State Estimation

DSSE is the key routine to obtain a picture of the network
status at a given time instant. (e system is locally con-
sidered under steady-state conditions, and the underlying
measurement model can be described as follows:

z � h x( 􏼁 + ϵ, (1)

where z is the vector of available measurements z1, . . . , zM;
x is the vector including all the variables that uniquely define
the state of the network; and h(·) represents all the mea-
surement functions (generally nonlinear) linking the ref-
erence measured values to the state of the system. Vector ϵ
includes all the measurement errors and is considered a
zero-mean random vector. (e state x can have different
formulations (the so-called voltage state or current state,
either in polar or rectangular coordinates), which are
equivalent from a theoretical perspective but can lead to
advantages in the implementation of DSSE solution rou-
tines. Hereafter, the following state x is considered (see the
BC-DSSE algorithm in [17]):

x � Vs Ir
1 · · · Ir

Nbr
Ix
1 · · · Ix

Nbr
􏽨 􏽩, (2)

where Vs is the voltage magnitude at a node of the network,
which is chosen as the reference (e.g., the slack node), while
Ir

k and Ix
k are the real and imaginary parts of k − th branch

current, with the branch index ranging from 1 to the number
of branches Nbr. (is branch-current formulation allows
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linearizing some of the measurement functions and thus
simplifying the estimation process.

From (1), it is clear that, to estimate the network state, it
is necessary to manipulate the information coming from
measurements in z, also taking into account the charac-
teristics of the measurement errors. As mentioned above, in
DSs, it is hard to have a widespread installation of mea-
surement devices and thus the availability of real-time
measurements is typically limited. (e measurement vector
z can thus be divided as follows:

z �
zreal− time

zpseudo

⎡⎣ ⎤⎦, (3)

where zreal− time includes the Mr real-time measurements,
which can be voltage magnitude, current magnitude, and
active or reactive powermeasurements as far as conventional
measurements are concerned. Vector zpseudo represents
information that can be derived from other sources
(pseudomeasurements), mainly historical information on
active and reactive power consumption or generation. Every
load or aggregated load of the network is thus analysed to
define its average power absorption or injection. Pseudo-
measurements are necessary to allow system observability in
this context, but their accuracy is usually very low.

(e most widespread technique to perform DSSE is
represented by theWeighted Least Squares (WLS) approach,
which aims at finding the state that minimizes the following
objective function:

x􏽢� argminx z − h x( 􏼁( 􏼁
T

· W · z − h x( 􏼁( 􏼁, (4)

which is the sum of the weighted squared residuals. Matrix W

represents the weighting matrix that allows penalizing or
favouring each residual in a different way depending on the
accuracy of the corresponding measurement or pseudo-
measurement. W is usually chosen as the inverse of the
variance-covariancematrix of the measurements Σ

z
so that all

measurements are weighted differently depending on their
uncertainty (corresponding to a maximum likelihood esti-
mation in case of normally distributed measurements), which
is typically block-diagonal, since measurements performed by
different devices can be considered uncorrelated.

(eminimization in equation (4) is typically obtained by
an iterative Newton solution of the following system of
normal equations (considering the generic iteration i) [9]:

GiΔ􏽢xi � H
T
i W ri � H

T

i
W z − h x̂i􏼐 􏼑􏼐 􏼑, (5)

where Δx􏽢i � x􏽢i+1 − x􏽢i is the estimated state variation and
H

i
� d h /dxT|􏽢xi

is the Jacobian of the measurement func-
tions in h with respect to the state variables computed at the
previously estimated state. (e so-called gain matrix G

i
can

be written as
G

i
� H

T

i
W H

i
, (6)

and it is constant when measurement functions are linear or
can be linearized (see [17] for examples and details).

Pseudomeasurements are employed similarly to other
measurements but are usually associated with very large

uncertainties (e.g., derived from historical variability of
loads), which result in small contributions to the objective
function in equation (4). Focusing on active power, a typical
approach is to consider the following quantities for an
unmonitored network node j:

zPj
�

1
|Γ|

􏽘
n∈Γ

Pj nTs( 􏼁,

σ2zPj

�
􏽐n∈Γ Pj nTs( 􏼁 − zPj

􏼒 􏼓
2

K
,

(7)

where zPj
and σzPj

indicate the active power pseudomea-
surement and its standard deviation, respectively, Pj(nTs) is
the active power injected (the injection convention is used for
both absorbed and generated power) into node j, and Ts

defines the time resolution of the available information
(historical data). (e set Γ includes the considered time in-
stant indices (with n indicating the generic time instant) for all
the available power samples, and K � |Γ| − 1 is its cardinality
decreased by one to obtain the classical unbiased variance
estimator.(e higher the variability of the load/generator, the
larger the corresponding variance, which is inversely pro-
portional to the weight wzPj

associated with the pseudo-
measurement. A typical variation range of the power drawn
by a load is over 50% of its nominal value, so it is easy to see
that pseudomeasurements, while guaranteeing observability,
are often of little help in improving the estimation accuracy.

In this context, SMs, and, in particular, those of 2nd

generation, can play a significant role in enhancing pseu-
domeasurement definition. New SMs can provide voltage
magnitude and active and reactive power measurements,
with a much faster reporting rate than before. Italian au-
thority for electric energy, for instance, gives and contin-
uously updates directives on the functionalities for new-
generation SMs, which include, among others, a 2 s mea-
surement interval for “instantaneous” power measurements
[18]. (ese measurements might be, in the future, directly
acquired and integrated into estimation algorithms, but due
to the huge number of installed SMs (above 30 million in
Italy), it would be difficult to directly manage them in real-
time and investment costs for communication and com-
putation could easily become overwhelming.

For this reason, it is much more likely that SM mea-
surements are used in an indirect and delayed way. (e
approach proposed in this paper is to collect active and
reactive power measurements from SMs and exploit them to
forecast the power consumption at a given time with an-
ticipation compatible with the timing and data collection
requirements. To this purpose, load forecasting Artificial
Neural Network (ANN) models have been trained for dif-
ferent types of loads and/or aggregation of loads, as detailed
in the following section. In fact, SM measurements from
large customers or from a set of users connected to a given
node (for instance, in a medium-voltage network) can be
gathered from the field one day or few hours ahead the time
instant of BC-DSSE execution and aggregated, so that they
can serve as inputs in the neural load forecasting process.
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As previously mentioned, once the forecast power
consumption or generation of a given node is obtained, it
can be included in z as an enhanced pseudomeasurement
and it is thus important to associate the correct covariance
matrix to the new forecast quantities, thus allowing a correct
weighting of the corresponding residual in the WLS pro-
cedure, according to equation (4).

Focusing on a generic bus j, the forecast procedure gives
two predicted quantities PF

j and QF
j , which are the active and

reactive power injections, respectively. (e following co-
variance matrix is thus needed:

Σ
zPQj

�

σ2zPj

σzPj
zQj

σzPj
zQj

σ2zQj

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where σ2zPj

and σ2zQj

are the variances of new pseudomea-

surements zPj
and zQj

, while σzPj
zQj

� ρPQj
σzPj

σzQj
is the

covariance between the pseudomeasurement errors of the
two forecast powers and ρPQj

is the corresponding corre-
lation coefficient. It is interesting to notice that, while in
conventional DSSE approaches, the active and reactive
powers pseudomeasurements are usually considered as
uncorrelated, in the proposed approach, further information
is taken into account and the correlation arising in the si-
multaneous estimation ofPj and Qj can be easily included in
the estimator by using the submatrix W

zPQj

� Σ− 1
zPQj

in the

overall weighting matrix.
Another important aspect, which is usually overlooked

in the literature, is the modelling of the SM uncertainty. (e
proposed load forecasting is designed to obtain an esti-
mation of the measured Pj andQj at a given time instant nTs

from previous available measurements, but this means that
the computed power values can be considered only as ap-
proximations of the measured values (reference values are
obviously unknown in practical conditions and real-time
operation). (e SM measurement chain is an additional
source of uncertainty that affects the values considered in
equation (8). As an example, the calibration process of SM
devices cannot be perfect and compensate for all the sys-
tematic errors in all the operating conditions.

For this reason, in the following, the definition of the
weights is discussed in detail in the presence of both forecast
and SM errors. Focusing on zPj

and zQj
, it is possible to

distinguish the two zero-mean error contributions as follows:

zPj
� P

F
j � P

ref
j + ePj

� P
ref
j + e

F
Pj

+ e
SM
Pj

, (9)

zQj
� Q

F
j � Q

ref
j + eQj

� Q
ref
j + e

F
Qj

+e
SM
Qj

, (10)

where Pref
j and Qref

j are the ideal reference values of active and
reactive power, eF

Pj
and eF

Qj
are the corresponding forecast

errors, and eSMPj
and eSMQj

are the errors associated with the
aggregated SM outputs. In the following, in the absence of
further information, all the errors of the SMs associated with
loads or generators grouped under the jth node are

considered independent. Similarly, the active and reactive
power measurement errors are assumed uncorrelated.

Given the relative standard uncertainty αSM of the ge-
neric SM (as derived from the SM datasheets and assumed as
common to all SMs, without loss of generality), the relative
standard uncertainty associated with eSMPj

becomes

ueSM
Pj

� αSM
����������
􏽐i∈Λj

PSM
i( 􏼁

2
􏽱

􏽐i∈Λj
PSM

i

, (11)

where PSM
i is the measured active power of load i, which

belongs to the set Λj of the loads downstream the MV node
j. Since the lack of knowledge in SM behaviour can be
considered as independent from the prediction errors, the
overall variance of the measurement zPj

can be expressed as
follows:

σ2zPj

� σ2ePj

� σ2eF
Pj

+ σ2eSM
Pj

� σ2eF
Pj

+ u
2
eSM

Pj

P
2
j � σ2eF

Pj

+ u
2
eSM

Pj

􏽘
i∈Λj

P
SM
i

⎛⎜⎝ ⎞⎟⎠

2

.

(12)

Similar expressions are valid for the reactive power while
the correlation coefficient ρPQj

, under the above assump-
tions, becomes as follows:

ρPQj
�

σzPj
zQj

σzPj

σzQj

�

σeF
Pj

eF
Qj

σzPj

σzQj

�
ρF

PQj�������������

1 + σ2
eSM

Pj

/σ2
eF

Pj

􏼠 􏼡

􏽳 �������������

1 + σ2
eSM

Qj

/σ2
eF

Qj

􏼠 􏼡

􏽳 ,

(13)

where ρF
PQj

is the correlation coefficient of the active and
reactive power forecast errors.

(e way these values are computed in practice is
explained in the following section, where information
available at each step is discussed. (e above equations allow
the computation of the elements of Σz PQj

(see equation (8))

and thus, the definition of the weights for BC-DSSE that
reflect appropriately the actual uncertainty in the proposed
pseudomeasurement model.

3. Load Forecasting Neural Network Model

AMultilayer Perceptron (MLP) ANN with one hidden layer
is used to forecast the load demand one step ahead (roughly
speaking “t + 1 prediction,” where the actual time step de-
pends on the chosen ANN model in terms of input and
output variables), where the time interval for prediction
update is assumed equal to half an hour. In particular,
residential and Small and Medium Enterprises (SMEs) loads
have been considered in this paper. An MLP has been
trained for each single or aggregated load. It has to be noted
that, while for the residential loads, only the active power has
been forecasted, as in the majority of the literature, for the
SME loads, the corresponding reactive power is also con-
sidered in the proposed model. Figure 1 shows the structure
of the MLP neural network for a SME.
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(e relationship between input and output patterns is
described by the following algebraic equations system:

input layer
hidden layer
output layer

W1 · v +b1 � y,

hl � f y􏼐 􏼑,

W2 · hl +b2 � o,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

where v is the input vector, which contains variables related
to the time instant t:

(i) Two weather variables at the time instant t: tem-
perature, measured in °C, and humidity, in
percentage;

(ii) (ree time-related variables: these consist of a label
corresponding to the hour of the day [1, 2, . . . , 12], a
label for the day of the week [1, 2, . . . , 7], and a label
1/0{ }, where 1 indicates a working day and 0 in-
dicates a nonworking day;

(iii) Four historical demand variables, which have a
strong correlation with the recorded demand profile
(active power for residential loads, whereas both
active and reactive powers for SMEs): the demand at
the previous hour, the demand at the same hour of
the previous day, the demand at the same hour of
the previous week, and the 24-hour average power
evaluated considering all the recorded values in the
previous day. As the considered time step is half an
hour, the variables at the previous one hour, one
day, and one week correspond to 2 steps, 48 steps,
and 336 steps back.

(e output o of the network consists in the one-step
ahead forecast load demand.

At time instant nTs that corresponds to the current time
tag of DSSE computation update, information on active and/
or reactive powers of node j is needed. In the proposed
solution, if the ANN forecast model is available for node j,
powers Pj and/or Qj are obtained, thanks to the performed
prediction. In this case, the instant indicated as “t+ 1” in the
forecast model description (see Figure 1) corresponds to the
current time instant nTs. For ease of presentation, a perfect
match has been here adopted between Ts and the time
interval of prediction update (half-hour step for both pre-
diction and estimation updates), but other solutions at
different rates are also possible following a similar scheme.
As mentioned above, an ANNmodel is built for all the loads
of interest and its outputs (load predicted powers) are fed
into the DSSE algorithm at the following time step, with the
procedure described in the previous section.

W1 is the weight matrix of the input layer, b1 is the bias
vector of the input layer, y is the input of the hidden layer, hl

is the output of the hidden layer, f(·) is the hidden neuron
(logistic) activation function, W2 is the weight matrix of the
output layer, and b2 is the bias vector of the output layer.

(e Levenberg–Marquardt algorithm [19], which com-
bines the gradient descent method and the Gauss–Newton
method, has been used for the MLP training. (e hyperbolic
tangent sigmoid transfer function is used in the hidden layer.
(e inputs and outputs are normalized in the range [− 1, 1]

before being used to train the ANN to balance the impor-
tance of input variables.

In the following, the case study and the database used to
train and test the forecasting models are described.

4. Case Study

To evaluate the performance of the proposed approach,
several tests have been carried out on a single-phase 18-bus
network derived from a UK network (Figure 2) [20].
Connected to the 33 kV at bus 1, the network has a common
rated bus voltage level at 11 kV. (is network is used since it
is adopted for other studies in the literature and gives a
realistic load scenario for a MV network. On this topology,
both industrial and residential loads have been considered as
explained in detail in the next section. (ere is no loss of
generality in considering loads information (SM measure-
ments) coming from the database described in the next
section, since individual loads are aggregated to replicate a
load scenario that is compatible with nominal data of the
considered network in [20]. Main assumptions and test
results are also reported and discussed in the following.

4.1. Database for the Load Forecasting. To train and test the
neural networks used to perform the load forecasting, data
related to the active power consumption, available from the
Commission for Energy Regulation (CER) [21], have been
used. (is database is anonym, and it consists of recorded
half-hourly SM energy consumption from 6445 customers
that participated in the “Electricity Smart Metering Cus-
tomer Behavior Trials” [22]. (e data are collected over a
period of 18 months (from July 14, 2009, to December 31,
2010), at various distribution network locations in Ireland.
(e customer types are classified as residential (4225), SME
(485), and others (1735). (e present paper focuses on
residential (the largest group in the available database) and
SME customers who completed the trial. (e SME cus-
tomers are grouped into four subsectors: entertainment
(including hotels, restaurants, sporting facilities, and public
houses), industrial manufacturing, offices, and retail
premises.

After removing the consumers having missing data, a
database of 3423 residential and 287 SME consumers has
been obtained. For SME loads, the reactive power profiles
have been obtained starting from a real power factor (PF)
profile recorded on a typical industrial site. In particular, the
recorded PF profile has been propagated on the whole
observation period. No reactive power was taken into ac-
count for residential loads.

Analyzing residential and SME data, a significant dif-
ference between the two consumer types can be observed.
Figure 3 shows the power consumption (P, where the node
index is dropped in the following when unnecessary, for the
sake of simplicity) of four residential loads, randomly se-
lected from the database. As can be noted, the energy
consumption of each household is low, not regular, and very
different in two consecutive working days as it depends on
the lifestyle of its residents. On the contrary, the SME loads
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Figure 1: Structure of the active (P) and reactive (Q) power one-step ahead forecasting neural network model for SMEs (the structure of the
neural network for residential loads considers only active power both in the input and the output layers).
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(Figure 4) appear typically high and mostly regular due to
the regular activity during the working hours and working
days. (erefore, a different load forecasting performance for
these two subsets is expected.

Since the objective of this paper is an effective state
estimation of a DS, different equivalent MV loads have been
created aggregating loads from the database with the aim to
obtain power levels compatible with those of the considered
grid (Figure 2). (e load aggregation has been performed
simply summing together the readings of several SMs. In
particular, three different SME loads (sme1, sme2, and sme3)
are obtained by aggregating 21, 26, and 46 individual SMEs
data, respectively. Moreover, two different residential loads
(res1 and res2) are obtained by aggregating, respectively, the
energy consumption of 523 and 537 residential loads ran-
domly chosen. In Table 1, the ranges of the active power of
the aggregate loads are reported.

Figure 5 shows the power consumption of one aggre-
gated residential (res1) and one aggregated SME (sme3) load
in the same two consecutive days considered in Figures 3
and 4. As expected, the aggregation makes the load profile
more predictable. In fact, especially in the case of residential
loads (Figure 5(a)), the agregate load is more periodic and
smoother than individual ones. (is is because the aggre-
gation operation permits to remove the high-frequency
impulses corresponding to random events in the individual
curve, alleviating and smoothing the randomness. Regarding
the aggregated SME load (Figure 5(b)), its periodicity is
more evident because the individual SME loads are already
more periodic than individual residential loads.

(e demand profiles depend not only on historical load
evolution but also on exogenous variables, such as season
and weather-related variables. (erefore, weather data,
collected from the Irish Meteorological Service [23], have
been added to the database. Among the weather variables, in
this paper, the temperature (in °C) and the humidity (in
percentage) have been chosen as neural model inputs.(is is
because when the value of the temperature varies, the power
system demand also varies. Furthermore, the humidity plays
a relevant role in driving electricity demand during the
warm months. In fact, the temperature above certain values
is intensified by high humidity [24]. As the aggregation has

been performed by selecting individual loads located in
different Irish areas, the simple averages of the temperature
and the humidity percentage measured by several weather
stations located in the central area of Ireland are used to
represent the corresponding weather variables.

To highlight the dependence of the load energy con-
sumption on the weather data, Figure 6 reports the daily
energy consumption of res1 and sme3 and the average daily
temperature trend over the same period. As can be noted,
both residential and SME aggregated loads show a time
pattern dependent on the temperature, with a stronger
dependence for the residential load. Obviously, the de-
pendence of the load energy consumption on the temper-
ature data, even if prevailing, is not the only one. In fact, the
drastic reduction in the consumption of SME loads and the
increase in the residential one at the end of December 2009
are mainly related to the Christmas-New Year period rather
than the temperature. In this paper, the dependence of the
load energy consumption to the weather data is demon-
strated by evaluating how the performance of the forecasting
model is affected when the weather variables are excluded
from the inputs of the model. (e results are shown in the
following section. Other weather variables, such as precip-
itation and wind speed, were analyzed, but it was found that,
in this case, they do not have a significant impact on the
energy demand.

As Figure 6 highlights, the considered energy con-
sumption time series shows strong regularity, and a spec-
trum analysis revealed a prevalent daily periodicity, but at
the same time, it is decidedly nonlinear. (is complex data
behavior can be captured by a MLP, which owns the ability
to construct a larger set of nonlinear input/output mapping,
by combining an appropriate number of nonlinear activa-
tion functions. (erefore, in this case study, a simple MLP,
with a suitable structure, can be enough to build a per-
forming forecasting model avoiding the overfitting of the
training data.

4.2. Performance of the Load Forecasting Models. A neural
load forecasting model has been designed for each aggregated
load characterized by the range reported in Table 1. In order
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Figure 3: Power consumption of four residential loads in two consecutive working days.
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Figure 4: Power consumption of four SME loads in two consecutive working days.

Table 1: Range of active power P of the aggregate loads.

sme1 sme2 sme3 res1 res2
Min (kW) 67.70 101.64 192.32 69.68 73.05
Max (kW) 420.55 537.83 907.10 639.99 663.22
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Figure 5: Aggregation of residential (a) and SME (b) loads.
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to optimize the load forecasting network architecture, a trial-
and-error approach has been performed to choose the ap-
propriate number of hidden layer nodes, which consists in
progressively growing the number of nodes, and selecting the
network that minimizes the prediction error on the validation
set.(is optimization procedure resulted in 20 neurons for all
the five networks (associated with loads in Table 1).(erefore,
the best MLP architecture consists of an input layer with one
neuron for each input variable (thus 9 or 13, for residential or
SME, respectively), one hidden layer with 20 neurons, and an
output layer with one neuron for each output variable (1 or 2
for residential or SME, respectively). (us, the dimensions of
the weight matrices and bias vectors in equation (14) result in
20 × 9 for W1, 20 × 1 for b1, 1 × 20 for W2 , and 1 × 1 for b2
in case of residential loads. In case of SME loads, W1 and b1
are 20 × 13 and 20 × 1, respectively, whereas W2 and b2 are
2 × 20 and 2 × 1, respectively.

(e time series of each load profile is composed of 25728
half-hourly active and reactive (when considered) power values,
from August 1, 2009, to December 31, 2010, while the July 2009
data were not used as only the recordings of fifteen days were
available. (e MLP training has been performed using the data
of the first 12 months.(e validation has been performed using
the following 2 months (from August 1, 2010, to September 30,
2010). (e last 3 months (from October 1, 2010, to December
31, 2010) have been used to test the trained neural model.

Since the forecasting accuracy depends both on the
quality and quantity of the historical data used to train the
predictor, a greater amount of data, for example, an extra
year would certainly improve the prediction performance.

Note that a realistic assumption about the monitoring
architecture could be that data from SMs are actually available
after 24 hours. However, the proposed solution can also work
with data collected one hour before (that could represent a
future-proof scenario).(us, during the training of the neural
model, this information, both for active and reactive powers,
has been included among inputs, because it is always available
in the offline phase. In the online test phase, the corre-
sponding inputs have been replaced by the values forecasted
by the neural predictor at the previous steps. (e outputs of
the predictor are then fed back to the input layer creating a
closed-loop information flow.(is allows the state estimation
even when measurement data are missing.

To evaluate the performance of the predictive models,
the MAE, the MAPE, and the Root Mean Square Percentage
Error (RMSPE), defined as in the following, have been used:

MAE �
1
n
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(15)

where oi is the actual load value, which can thus represent
either the active power P or the reactive power Q of the
considered load (respectively, Pj and Qj when referring to
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Figure 6: Residential and SME aggregate daily energy consumption compared with the average daily temperature trend. (a) Average daily
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the network nodes as in the DSSE section above); 􏽢oi is the
corresponding predicted load value; and n is the number of
training or testing samples. (e smaller the values of MAE,
MAPE, and RMSPE are, the better the forecasting perfor-
mance is.

Figure 7 shows (in the top) the actual (black line) and the
predicted (red line) active power load time series and (in the
bottom) the corresponding differences between predicted
and actual load powers for a month (October) of the test set
related to sme1. Figure 8 reports the same time series for res1.
As can be noted, the trends of the two loads are efficiently
modeled by the neural predictors.

Figures 9 and 10 report the behavior of the actual and
predicted real power load time series (top) and the corre-
sponding prediction error (bottom), for the sme1 and res1
respectively, during the first test week. (e MAPE for the
forecasted active power in this time window results in 4.7%
for the sme1 and 4.8% for res1. Moreover, the validity of the
zero-mean hypothesis has been verified for errors of both
active and reactive power prediction.

In Table 2 and in Table 3, the training and test per-
formances, obtained for the SME and residential aggregate
loads, are reported, respectively.

It can be noted that, as expected, the performance de-
teriorates in the test phase. (e SME loads show that the
error percentages of the active and reactive power are very
similar. (e correlation coefficients between the real and
reactive power errors are then evaluated to be used in the
following, for the state estimation.

(e results on the test set show that the proposed
predictive model is able to forecast simultaneously both
active and reactive powers (when required) with limited
errors, starting from both exogenous and historical mea-
surements. Moreover, it overcomes the problem of limited
or time-delayed historical measurement availability
throughout a closed loop information flow, which replaces
the missing data with values forecasted by the predictor itself
at the previous step.

(e influence of the input variables on the load energy
consumption can be evaluated through the performance of
the forecasting model. In fact, the performance of the neural
network model is expected to deteriorate when an effective
variable is excluded from the inputs. In this paper, since
aggregated loads show a time pattern dependent on the
temperature, highlighted in Figure 6, the dependence of the
load energy consumption on the weather data has been
assessed. Removing the weather variables, the RMSPE on the
test set increases by about 2%, for both active and reactive
powers for SME costumers, and by about 1% for the resi-
dential ones (which are significant variations with respect to
the results reported in Tables 2 and 3).

5. Performance of the Distribution Systems
State Estimation

To assess the estimator performance, several simulations
have been carried out starting from a measurement scenario
that is realistic for a distribution grid. Two measurement
points have been assumed on the network: on bus 1, with a

magnitude voltage measurement and an active and reactive
power flow measurement; on bus 4, with a magnitude
voltage measurement. SMs have been considered providing
data fully available the day after the measurements. An
accuracy equal to 1% for the magnitude of the voltage and
equal to 3% for the power flows and SMmeasurements have
been assumed.

A Monte Carlo approach has been applied in order to
obtain statistically sound results, and the following as-
sumptions are made:

(i) Number of Monte Carlo trials, NMC � 1000

(ii) A maximum deviation of 50% with respect to the
nominal values for the active and reactive powers
drawn by the loads (uniform distribution)

(iii) Measurement errors uniformly distributed

(e SME loads sme1, sme2, and sme3 have been con-
nected to buses 17, 14, and 7, respectively (and thus are
described by the couples P17 − Q17, P14 − Q14, andP7 − Q7),
while residential loads res1 and res2 have been associated
with buses 3 and 12 (and thus associated with P3 and P12).
As for these loads, the last 1000 values of the test set have
been considered, which correspond to a temporal interval of
about 21 days. For each instant, a different operating con-
dition of the network is thus considered by using such values
for SME and residential loads and extracting the reference
values applying the SM uncertainty. For all the other loads,
active and reactive powers are extracted from nominal values
according to the above assumption. (en, all reference
values are computed from these load conditions by means of
load flow calculation. Finally, measurements are also
extracted from their random distribution and used as inputs
to the BC-DSSE.

To assess the performance of the estimator, two dif-
ferent formulations and configurations of the BC-DSSE
that correspond to different computation and management
of the pseudomeasurements have been adopted. (e first
one, which uses the proposed estimator, exploits the
predictions of the loads coming from the corresponding
neural load forecasting models. (is case is indicated as
“Prediction” in Figures 11–13 reporting DSSE results in the
following.

As mentioned in the previous section, the forecast active
and reactive powers of SME loads (PF

j and QF
j , with

j ∈ 7, 14, 17{ }) have been used for each instant together with
the forecast active power of residential loads (PF

j with
j ∈ 3, 12{ }).

To build the weighting matrix, besides the real-time
measurement weights, submatrices concerning forecast
loads must be included (see equations (9) and (10)) in the
BC-DSSE. According to equation (12) (and its counterpart
for reactive power), the variance of the pseudomeasure-
ment is computed by using the RMSPE of the training set
for the forecast errors and the datasheet information for
the SMs. Since the SM measurements are not available in
real time, the relative uncertainty of the aggregated power
is evaluated for each time instant as the relative uncer-
tainty of the day before at the same hour and it is
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associated with the aggregated forecast powers at the
current instant. (e above procedure has been applied for
all the estimations. It is interesting to notice that, with this

model, RMSPE can also be updated at fixed intervals by
considering the measurements and forecast data obtained
in the meanwhile.
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(e second formulation corresponds to the classical BC-
DSSE where no forecasting is considered, and pseudo-
measurements of nodes 3, 7, 12, 14, and 17 are directly
computed from the available measurement data. In par-
ticular, the measured power values collected the day before

at the same hour are used as pseudomeasurements. (is
estimator thus does not apply predictions (and is referred to
as “No prediction” algorithm) and is considered as a
benchmark for the proposed method in the same network
scenarios.
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Figure 10: Detail of the first test week related to res1: (a) the red curve represents the forecasted real power values, and the black curve
represents the actual one; (b) the corresponding error in kW.
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Once the state variables (branch currents) are estimated
along with derived quantities (e.g., voltages and power
flows), a comparison of the results obtained with the two
methods is performed in terms of percent root mean square
errors (RMSEs) of the estimations (i.e., the square root of the
mean of the squared differences between the estimated
quantities and the corresponding reference values). RMSE
results of the branch-current magnitude estimations are
presented in Figure 11. (e bar plot in red (dash line) shows
the results obtained considering the prediction of the loads,
while the bar plot in grey (the same holds for the Figures 12
and 13) presents the results obtained considering the above-
described pseudomeasurements. A reduction close to 12%
(meaning that the error is about halved) has been obtained as
a best case on branch 6, where the largest forecast load sme3
is connected, and an average reduction of more than 3% is
also obtained. It is clear that the reductions in the estimation
errors are more evident close to the position of the forecast
loads. Branches 12 and 13 clearly show the same accuracy
results, since node 13 is a zero-injection node. (e same
holds for the pairs 7-8 and 14-15.

Figure 12 shows the results obtained in terms of percent
RMSE of the active power flow estimations for all the
network branches. (e bar plot in violet (dash line) shows

Table 2: Performance of the neural load forecasting models for the SME aggregated loads (training and test).

Aggregate
load

Active power (P) Reactive power (Q)
MAE(kW) MAPE(%) RMSPE(%) MAE(kvar) MAPE(%) RMSPE(%)

Train Test Train Test Train Test Train Test Train Test Train Test
sme1 11.2 15.2 5.5 7.4 7.5 12.0 2.1 2.8 5.5 7.4 7.5 11.9
sme2 11.7 15.5 5.2 7.5 7.0 10.8 2.2 3.3 5.2 7.5 7.0 10.8
sme3 17.4 26.9 4.1 6.2 5.4 9.1 3.3 5.1 4.1 6.2 5.4 9.0

Table 3: Performance of the neural load forecasting models for the residential aggregated loads (training and test).

Load
Active power (P)

MAE(kW) MAPE(%) RMSPE(%)

Train Test Train Test Train Test
res1 10.7 16.9 4.9 7.6 6.7 10.5
res2 12.0 19.3 5.1 8.1 6.7 11.0
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Figure 11: Current magnitude RMSEs obtained with and without
the ANN-based prediction.
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ANN-based prediction.
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the results obtained considering the prediction. (e con-
siderations that can be drawn by these results are similar to
those obtained for the branch currents: estimation im-
provements are more evident for the branches that are close
to larger predicted loads. (e error reduction is also more
effective when lateral branches or leaves of the network are
considered. In this case, the proposed algorithm brings a
maximum reduction about 11.5% (error reduction of about
44%). Moreover, an average reduction of more than 3.3% is
obtained.

As for reactive power estimations, it is possible to see in
Figure 13 that the estimations are mainly affected by the
prediction of the industrial loads locally, since the reactive
power forecast is also available for them. A reduction of the
percent RMSEs larger than 13% is obtained at branches 12,
13, and 16, while it is larger than 15% (the estimation error is
more than halved in this case) for branch 6.

(e test result highlights how the distribution state es-
timation performance significantly improves, introducing as
pseudo-measurements the active and reactive power fore-
casted by the neural predictors instead of the power con-
sumptions measured at the same hour of the day before. (e
improvements are more evident for branches close to larger
loads.

6. Conclusions

Neural network load forecasting models demonstrated to
produce reliable input information for a distribution
state estimator, overcoming the problem of limited and
time-delayed SM measurements or temporary failure in
the communication system. In order to improve the
accuracy of the state estimation, different requirements
have been fulfilled: (i) the neural models are able to
forecast simultaneously both active and reactive powers
with limited errors, starting from both exogenous and
historical measurements; (ii) the correlation between the
forecasted real and reactive power errors has been de-
termined, which results in significant information for the
state estimation algorithm; (iii) a closed loop information
flow allows the load forecasting, and hence, the state
estimation, even when real measurement data are missing
by replacing them with forecasted values; (iv) to build
effectively the weighting matrix, needed to solve the state
estimation algorithm, the variance of the pseudomea-
surements can be updated at fixed intervals by consid-
ering the measurements and forecast data obtained in the
meanwhile.

(e test results show that introducing pseudomeasure-
ments forecasted by the neural predictors significantly im-
proves the DSSE and, more importantly, the improvements
are more evident for the branches that are close to larger
predicted loads almost halving the percent RMSEs of power
and current estimations.

In summary, the proposed approach can be used for the
state estimation of medium-voltage distribution networks
that are either underdetermined, due to limited real-time
measurements, or overdetermined but with delayed mea-
surements from SMs.
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