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�e sentiments among social individuals are complexity and diversity, and the relationships between them include being friendly 
and hostile. �e positive (“friendly” ,“like” or “trust”) or negative (“hostile”, “dislike” or “distrust”) sentiments in the relations can be 
modeled as signed connections or links. �e missing relations or sentiments between individuals are always worthy of speculation. 
�e sign predication on links has been signi�cant applications in a variety of online settings, such as online recommendation system 
and abnormal user detections. A novel sign prediction method called the ��� model is measured by the values of the two indexes, 
one is similarity; the other is preference-reputation (PR). �e similarity of a pair nodes is de�ned by the statistical properties of local 
structures. �e de�nition of similarity agrees with the theory of social balance because existing connections re�ect the tendency 
of the new links emergence between individuals. And PR value is to measure the positive or negative tendency of edges without 
sign. �e experiments on real big social data proved the feasibility and e�ciency of the ��� model: Comparing with some popular 
predication methods, the ��� model in this issue shows lower complexity and higher accuracy. Experimental results also prove 
that the ��� model provide insight and foresight of the mechanism driving the sign formation of links.

1. Introduction

In social networks, relations among members not only exhibit 
friendship and cooperation, but also hostility and competition. 
Positive and negative links were used to describe cooperative 
(friendly/trustful) and competitive (hostile/distrustful) rela-
tionships respectively. Assigning signs to links were a signi�-
cant way of including additional information to networks than 
traditional binary or weighted approaches [1–3]. One of the 
challenges in signed networks is inferring the signs of 
unknown relations that is o�en referred to as sign prediction 
[4], which reveals the underlying relationships between social 
members. �erefore, it can be widely used in many applica-
tions such as recommendation systems and abnormal user 
detections etc. [5].

Sign prediction is the problem of inferring those hidden 
signs using the information provided by the rest of the network. 
It is similar to link prediction, which is a well-studied problem 
in traditional unsigned social network analysis [6]. However, 
compared with link prediction, sign prediction is still in its 
beginning stage due to the following di�culties. One the hand, 
the e¢ects of negative and positive signs are unbalanced or 

unwieldy in signed social networks [7, 8]. Positive signs can be 
propagated between members of social networks while nega-
tive signs cannot. For example, A trusts B and B trusts C, A 
will trust C to some extent, while A distrusts B and B distrusts 
C, it is hard to judge the relationships between A and C directly 
[9]. �ereby, in the propagation model of reference [10], the 
distrust relationship only propagates once among the trust 
relationships. On the other hand, the formation mechanism of 
the negative links is di¢erent from the positive links. In the 
�eld of signed network research, less negative signs datasets 
are available for study [11] because members of social networks 
rarely express their antipathy to others for fear of being retal-
iated [12]. So the negative sign prediction became a di�cult 
problem in the �eld of sign prediction. �erefore, in-depth 
study and mining of the formation mechanism of social net-
work is the key to improve the accuracy of prediction.

Sign prediction was �rst introduced and investigated by 
Guha et al. [10], and later developed in matrix calculation, 
machine learning, and collaborative �ltering. Guha et al. [10] 
used power matrix to calculate the propagation of trust and 
distrust. By the matrix, a variety of technical on predications 
were discussed. �e leading eigenvectors with �tness functions 
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to �ne-tune clusters were presented [13]. �e random walk 
according to the similarity between nodal pairs realized in 
researching the inconsistency of distrust in propagation [14]. 
Minimizing the rank of the adjacent matrix could approxi-
mately make the balanced structure to the greatest extent [15]. 
To quickly obtain the maximal balanced matrix, Cai et al. [16] 
propose a singular value projection algorithm, in which the 
product of the top-k singular vectors and singular values is 
taken to approximately replace the original matrix. Agrawal 
et al. [17] and Hsieh et al. [18] approximate the original matrix 
by a matrix decomposition method, in which the original � × �
matrix is decomposed into the product of two � × � matrices, 
and the element values of the product matrix are used as the 
predicted values. To date, the methods used in machine learn-
ing include logistic regression [4, 9, 19, 20], support vector 
machine [21], decision tree [22], naive Bayes [23] etc.; the 
features used for learning include nodal degrees [4, 9], types 
[23], similarity [9, 20], trustworthiness [24], preference [25, 
26], triangle structures [4], quadrilateral structures [19], user 
reviews [22, 27] etc. Collaborative �ltering focuses on simi-
larity, similar individuals are more likely to make similar 
behaviors, which is the basic idea of sign prediction by collab-
orative �ltering. Javari and Jalili [28] believe that computing 
the similarity between nodes is a¢ected by the sparsity of the 
social networks. �erefore, they cluster the network and cal-
culate the similarity between clusters to replace the similarity 
between individuals. Individual behaviors in signed network 
was believed hidden in “group intelligence” which is embodied 
by the community structure [5]. �e community structure 
embedded in the social network is untractable even in com-
plete networks [29].

Enlightened by the references and their methods, a new 
sign prediction method is presented by two indexes in this 
paper, one is similarity; the other is the preference-reputation 
(PR) value, called ��� model for short. �e statistics of local 
structures are analyzed to explore the constitution mechanism 
of signed social networks by which the similarity of a pair nodes 
are de�ned. �e meaning of similarity agrees with the theory 
of social balance, because the existing connections re�ect the 
tendency of new links emerging between individuals. And the 

PR value, coinciding with the preferential attachment mecha-
nism [2], is to measure the positive or negative tendency of 
edges without sign. �e experiments on real data proved the 
feasibility and e�ciency of the model. Compared with the pop-
ular predication methods, the ��� model in this issue shows 
lower complexity and higher accuracy. Experimental results 
also prove that the ��� model provide insight and foresight of 
the mechanism driving the sign formation of links.

�e arrangement of this paper is follows. �e introduction 
and motivation is illustrated in Section 1; In Section 2, the 
similarity, and the PR value are de�ned. �erea�er, the pre-
dictive method, namely the ��� model, is presented based on 
the indexes. In Section 3, the experimental results and com-
parisons on three real social signed networks, Epinions, 
Slashdot, and Wikipedia, are shown. Finally, the discussion 
and conclusion of this work are presented in Section 4.

2. The Method and Model

A signed graph is denoted by � = (�, �, �), where � and �
are the node set and the link set of � respectively, and 
� = {+1,−1, 0} is a weight set on � such that the link (�, �) is 
set ��� = 1, −1 or 0 if the node � shows positive, negative, or 
none attitude to the node �. Irrespective of  positive or nega-
tive, the sentiments are clear and distinct. While, for the none 
attitude, it is ambiguous and unsetting, people wonder to 
determine the precise attitude. �en a natural question is to 
predict the sign of link (�, �) based on the information of �
and their signs [4]. �e sign prediction problem is also inter-
preted to “what extent the evolution of a network can be pre-
dicted using its structural information” [26].

In this section, indexes such as similarity, dissimilarity, 
preference and reputation are presented, and the sign of link 
predication model is constructed.

2.1. Similarity and Dissimilarity. In order to predict the edge 
sign from node � to node �, ���, it is necessary to make targeted 
analysis on the prediction task. Consider the following local 
structure, as shown in Figure 1: in panel (a), since � is the node 
into � and ��� ̸= 0, then the higher common attribute between 
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Figure 1: Similarity diagram. (a) �e out node pair. (b) �e in node pair.
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� and �, the more probability of ��� = ���; in panel (b), since ℎ is 
the node out of �, then the higher common attribute between 
ℎ and �, the more probability of ��� = ��ℎ. �ere by predicting 
��� can via the common attributes between � and � and the 
common attributes between ℎ and �. Analyzing Figure 1, since 
�, � are the source nodes and ℎ, � are the target nodes in the 
quadrilateral structure, the common attributes between � and 
� are equal to the common attributes between ℎ and �. �us, 
it can yield twice the results with half the e¢ort. Generally, 
the more common neighbors (polarity is also consistent) two 
nodes have, the higher their common attributes will be. �en 
the similarity between � and � can be de�ned as

where �+� (�) and �−� (�) are the neighborhoods getting out the 
node � with positive and negative links, respectively, ��(�) is 
the neighborhoods getting in the node � irrespective of the 
signs of links. Further, ���(�, �) is re�ned by the signs of the 
node � and its neighbors. �en

where ���+(�, �) and ���−(�, �) are the cases of � ∈ �+� (�) and 
� ∈ �−� (�) for Equation (1) respectively, and �+� (�) and �−� (�)
are the neighborhoods getting in the node � with positive 
and negative links respectively. ���+(�, �) and ���−(�, �) are 
called the positive similarity and negative similarity, 
respectively.

Figure 2 shows all the cases of ∑�∈��(�)|��(�) ∩��(�)|: 
where panels (a)–(d) are the case of � ∈ �+� (�) and panels (e)–
(h) are the negative similarity � ∈ �−� (�); Hence, panels (a)–(d) 
show positive similarity ���+(�, �), whereas panels (e)–(h) 
describe the negative similarity ���−(�, �). By Equation (1), 
panels (a) and (b) con�rm with ���+(�, �), while panels (c) 
and (d) against it; Panels (e) and (f) con�rm to ���−(�, �) while 
(g), (h) are against it respectively. For the opposite property 
of the similarity, the dissimilarity is also introduced.

(1)

���(�, �) =
∑�∈��(�)(

�����
+
� (�) ∩�+� (�)

���� +
�����
−
� (�) ∩�−� (�)

����)
∑�∈��(�)
������(�) ∩��(�)

����
,

(2)���(�, �) = ���+(�, �) + ���−(�, �),

In Figure 2, the more structures of (a) and (b), the larger 
the value of ���+(�, �), and the more structures of (c) and (d), 
the smaller the value of ���+(�, �). �e more structures of (e) 
and (f), the larger value of ���−(�, �), and the more structures 
of (g) and (h), the smaller value of ���−(�, �).

As the de�nition of similarity of nodes � and �, the dissim-
ilarity between nodes � and � is de�ned

where ����+(�, �) and ����−(�, �) are the cases of � ∈ �+� (�)
and � ∈ �−� (�) for Equation (3) respectively, ����+(�, �) and 
����−(�, �) are positive dissimilarity and negative dissimilar-
ity, respectively.

By Equations (1)–(4), it is found that the following two 
facts hold if ��(�) ∩ ��(�) ̸= 0,

otherwise, when ��(�) ∩ ��(�) ̸= 0, the other two facts hold,

Normally, ���(�, �) represents the degree of consistency 
between nodes � and �, while ����(�, �) is the degree of incon-
sistency between nodes � and �. In real social networks, posi-
tive similar nodes tend to have positive relationships, while 
nodes with large di¢erences between them may have negative 
relationships.

2.2. Preference and Reputation. In social networks, the 
preference and reputation of individuals are in�uential in 
decision-making to form a connection [25]. �e preference, 
known as optimism or bias in previous studies [26], is for edge 
generating nodes. Some nodes might be more optimistic than 
others, meaning their attitude are more likely to be positive. 
�e preference of node � is de�ned as

(3)

����(�, �) =
∑�∈��(�)(

�����
+
� (�) ∩ �−� (�)

���� +
�����
−
� (�) ∩ �+� (�)

����)
∑�∈��(�)
������(�) ∩ ��(�)

����
,

(4)����(�, �) = ����+(�, �) +����−(�, �),

(5)
���+(�, �) + ����+(�, �) = 1, if � ∈ �+� (�),
���−(�, �) + ����−(�, �) = 1, if � ∈ �−� (�);

(6)
���+(�, �) = ����+(�, �) = 0, if � ∈ �+� (�),
���−(�, �) = ����−(�, �) = 0, if � ∈ �−� (�).
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Figure 2: Positive and negative similarity. Panels (a)–(d) denote  positive similarity, whereas panels (e)–(h) denote negative similarity.
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competent for the prediction. �erefore, the sign of the link 
��� is assigned as

When �����
+ − �−���� > �, the sign tendency of ��� is obvious so  

that the feature ��� − ���� is competent for the prediction 
task. Yet,

Case 2. �����
+ − �−���� ≤ �. �is case means that the sentiment’s 

tendency is ambiguous. Hence, the feature of ��� − ����
loses its e�cacy for predictions. In this case, the values of 
��(�, �) is considered for prediction. Denote the proportion 
of positive links in the network by �+. �en the sign of the 
link ��� is assigned as

In fact, ��(�, �) ≥ �+ means a probability of the preference and 
the reputation is greater than the proportion of positive ten-
dency, so ��� = 1 is easy to admit. Otherwise, ��� = −1. When 
��(�, �) = 1 means the links generated by nodes � and � are all 
positive; otherwise, the links generated by nodes � and �
received are all negative when ��(�, �) = 0.

2.4. �e Pseudo-Code for Computing the SPR-Model.  
�e pseudo-code for calculating the ���-model is shown in 
Table 1.

�e computational complexity including time and spatial 
complexity of the  ���-model algorithm in Table 1 are ana-
lyzed. Step 1 computes the nodal neighbor’s set by traversing 
all edges once time, the computational time complexity is 
�(|�|), where |�| is the size of edge set �; In Step 2, for each 
edge (�, �), match the neighbors ℎ and � of � and � respec-
tively, the time complexity of Step 2 is �(|�|⟨�⟩2), where ⟨�⟩
is the average degree of nodes. In Step 3, computing the 
similarity and dissimilarity of each pair of nodes takes 
�(|�|). In Step 4, it takes �(|�|) for computing �� value of 
each pair of nodes. And �nally in Step 5, it also takes �(|�|)
for predicting the sign of each edge. �erefore, the total com-
putational time complexity of predicting the signs of edge 
in � is �(|�|⟨�⟩2).

In the experimental analysis, the input real social net-
worked data is the adjacent matrix with |�| rows times 3 col-
umns. Each row is an edge, the �rst and the second columns 
are the source and the target nodes, respectively, the third 
column is the observed sign from a source to a target node. 
When we calculate the ���-model, a 21 × |�| dimensions 
matrix is de�ned. As described above, the �rst three columns 
are still network link data. �e 4th column to the 11th are the 
number of eight special quadrangles of each edge contained 
in respectively. �e 12th to 15th column store the values of 
���+, ���−, ����+ and ����− of the edge respectively. �e 
16th to 18th columns are the values of ��, �� and �� of each 
edge respectively. �e 19th and 20th columns are the values 
of �+ and �− of each edge respectively. �e 21st column is the 
predicted value for each edge. Hence, the spatial complexity 
is �(|�| × 21). In addition, the spatial complexity of calculating 
the neighbor set of each node is �(|�|⟨�⟩), where |�| is the 

(10)��� = {
1, if�+ > �− + �;
−1, if�− > �+ + �.

(11)��� = {
1, if ��(�, �) ≥ �+;
−1, otherwise.

��(�) measures the general attitude of node � toward other 
nodes in Equation (7), and also means the probability of pos-
itive edges among all edges generated by the node �. �e 
greater ��(�) is, the higher the probability of node � regener-
ating another positive edge is.

Reputation, also known as prestige or deserve in previous 
studies [26], is for edge receiving nodes. Reputation re�ects 
the popularity of a node in the network. A node with a high 
reputation tends to receive more positive edges. �e reputation 
of node � is de�ned as

In Equation (8), ��(�) measures the general attitude of other 
nodes toward node �, and it is also the probability of positive 
edges among all edges received by node �. �e greater ��(�) is, 
the higher the probability of node � receiving another positive 
edge is.

Combing both ��(�) and ��(�) would enhance the predic-
tion e¢ect on the pair of nodes � and �. �erefore, we calculate 
the weighted sum of ��(�) and ��(�) as

�e sum of the coe�cients of ��(�) and ��(�) in Equation (9) 
is 1, which means the equation not only takes into full consid-
eration  the preference of node � and the reputation of node �, 
but also the priority connection mechanism [2].

2.3. �e Prediction: SPR-Model. �is section predicts signs 
using similarity-dissimilarity (denotes as ��� − ����) 
and �� value. ��� −���� is a local environmental feature 
which re�ects the interaction structure the target edge 
actually participated, while �� value is the nodal own feature 
which re�ects the empirical estimates according to the past 
performances. Here, the prediction method takes both 
��� −���� as the decisive factor and �� value as the auxiliary 
factor.

�e ��� model is taken as follows:
Denote �+ = ���+(�, �) +����−(�, �) as the positive index 

and �− = ���−(�, �) +����+(�, �) as the negative index. Let �
be any given positive real number to measure the di¢erence 
between �+ and �−, � ∈ [0, 1] a threshold measuring the dif-
ference between �+ and �−, and �. �+ re�ects the positive ten-
dency between nodes, while �− is the negative tendency 
between nodes. When the gap between �+ and �− is large 
enough, the tendency is looked as obvious. �erefore, two 
cases of �+ − �− > � and �+ − �− < � are assumed as the pos-
itive and negative signs, respectively. Hence, the sign of the 
link of nodes � and � is assigned by the two cases:

Case 1. If |�+ − �−| > �. In this case, the sign tendency 
on ��� is easy to understand, so the values of ��� – ���� is 

(7)��(�) =
�����
+
� (�)
���������

+
� (�)
���� + (�

−
� (�))
.

(8)��(�) =
�����
+
� (�)
���������

+
� (�)
���� +
�����
−
� (�)
����
.

(9)��(�, �) =
�����
+
� (�)
���� +
�����
+
� (�)
����������(�)

���� +
������(�)
����
.
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3.1. Evaluating Metrics. Experimental results are presented 
by three metrics: accuracy, average accuracy and �1-score. �e 
accuracy (acc) is de�ned as:

where TP, TN, FP and FN are de�ned as shown in Table 3. 
TPR is the true positive rate, TNR is the true negative rate, P 
is the number of positive edges, and N is the number of neg-
ative edges. Equation (12) shows that the role of negative edge 
prediction is almost ignored and the result is completely deter-
mined by positive edge when �→ 0 (� = �/�). �erefore, the 
average accuracy (���) is de�ned as:

�us, predictors with higher ��� can predict higher rates 
of either sign in even skewed datasets disregarding bias [30]. 
In addition, since sign prediction is a binary classi�cation task, 
�1-score is used to measure the predictive precision and recall 
rate and it is calculated as:

where ��������� = ��/�� + �� and ������ = ��/�� + ��. 
Obviously, the �1-score is the harmonic mean of ��������� and 
������ and can be a trade-o¢ between them.

3.2. Generalization across Datasets. To test the performance 
of the predictive model, experiments are made on di¢erent 

(12)��� = �� + ��
�� + �� + �� + �� =

��� + ����
1 + � .

(13)��� = ��� + ���2 = � × �� + � × ��2(� ×�) .

(14)
1
�1
= 12 ∗ (

1
��������� +

1
������),

size of the node set � of the network. Summarizing the above 
analysis, the total spatial complexity is �(2|�| + ⟨�⟩|�|).

3. Experiments

In order to verify the e�ciency and reasonability of the sign 
of link predication model, experiments on real data are taken. 
Experiments are included for three real social signed networks, 
Epinions, Slashdot, and Wikipedia [4]. Epinions is a consumer 
review site. Users can read or comment on a variety of goods 
and services, and they can also rate them. Users also can be 
allowed to evaluate the comments made by other users, that 
is, evaluate other users as trustworthy or distrusted objects. 
Epinions dataset consists of 131828 nodes and 841372 edges, 
86.0% of which are positive edges. Slashdot is a blog site that 
allows users to say they like or dislike other users’ comments. 
Slashdot data consists of 82144 nodes and 549202 edges, 77.4% 
of which are positive edges. Wikipedia is an online voting 
network where users can vote for or against a candidate 
administrator. Wikipedia dataset consists of 7118 nodes and 
104359 edges, 78.4% of which are positive edges. �e details 
of these three networks are shown in Table 2.

Table 1: Algorithm of pseudo-code of ���-model.

Input: Network adjacent matrix.
Initialization: For each node �, �+� (�) = 0, �−� (�) = 0, �+� (�) = 0, 
�−� (�) = 0.
For each edge (�, �), do the following 5 steps:
Step 1. Compute the neighbor set of each node.

  If ��� = 1, �+� (�) = �+� (�) ∪ {�}, �+� (�) = �+� (�) ∪ {�};
  If ��� = −1, �−� (�) = �−� (�) ∪ {�}, �−� (�) = �−� (�) ∪ {�}.

Step 2. Compute the number of special quadrilaterals.
   For ℎ ∈ �+� (�) − {�}  %�e existing sign of ��� is not 

considered.
   For � ∈ �+� (�) − {�}  %�e existing sign of ��� is not 

considered.
   If ℎ ∈ �+� (�), set FIG2(a) = FIG2(a)+1,
   where FIG2(a) is the number of quadrangles in  

Figure 2(a).
  Similarly, compute FIG2(b), FIG2(c), . . ., FIG2(h).

Step 3. Compute the similarity and dissimilarity.

  ���+(�, �) = FIG2(a) + FIG2(b)
FIG2(a) + FIG2(b) + FIG2(c) + FIG2(d).

  Similarly, compute ���−(�, �), ����+(�, �) and ����−(�, �).
Step 4. Compute �� values.

  ��(�, �) = |�
+
� (�)| + |�+� (�)|
|��(�)| + |��(�)|

.

Step 5. �e sign of each edge (�, �) is predicted.
   Set �+ = ���+(�, �) + ����−(�, �), 
�− = ���−(�, �) + ����+(�, �).

  If �+ − �− > �, ��� = 1;
  If �− − �+ > �, ��� = −1.
  If |�− − �+| ≤ � and ��(�, �) ≥ �+, set ��� = 1;
  If |�− − �+| ≤ � and ��(�, �) < �+, set ��� = −1,
  where �+ is the proportion of positive links in the network.

Output: �e sign of each edge (�, �).

Table 2: �ree real social signed networks.

+Edges denote the positive edges in networks.

Epinions Slashdot Wikipedia
Nodes 131828 82144 7118
Edges 841372 549202 104359
+Edges (%) 86.0 77.4 78.4
Edges in triangles (%) 80.1 52.1 91.9
Edges extracted (%) 91.6 91.1 97.7

Table 3: �e parameters used to calculate metrics.

Real
Positive Negative

Predicted
Positive TP (True positive) FP (False positive)

Negative FN  
(False negative)

TN  
(True negative)

Table 4: �ree extracted subdatasets.

+Edges (-Edges) is the number of positive (negative) edges in networks. % 
+Edge is the percentage of +Edge.

Nodes +Edges −Edges % +Edge
Sub-Epinions 82877 657608 113143 85.3%
Sub-Slashdot 54747 383788 116346 76.7%
Sub-Wikipedia 4837 79987 21952 78.5%
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Figure 3: Accuracies comparison with di¢erent prediction mechanisms or sets’ size on the three networks. Panels (a), (c) and (e) are accuracies 
comparison with di¢erent prediction mechanisms; and panels (b), (d) and (f) are accuracies comparison with di¢erent set size of each network. 
(a) and (b) Epinions. (c) and (d) Slashdot. (e) and (f) Wikipedia.
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explain the mechanism of the formation of signed social net-
works, although MOI-10 measures the balance of cycles with 
lengths ≤ 10, its prediction results are still inferior to those of 
other algorithms. In addition, the low ��� of CF also illustrates 
that the prediction of edge signs should take full account of 
other features of the network, rather than relying solely on 
structural balance. (2) Local structure is more signed than 
macro structure. In other words, nodes generate the signed 
edges usually based on their local connections, i.e., HOC-5 
learns the features of cycles with length of 3 : 5, its predictive 
results are still inferior to those of other machine learning 
algorithms. (3) Machine learning can not e¢ectively capture 
the key signed structural features when there are too many 
features to learn, i.e., for the nine scalars of the three 

datasets Epinions, Slashdot and Wikipedia. In Table 2, 91.6%
of Epinions, 91.1% of Slashdot and 97.7% of Wikipedia are 
extracted for testing. Table 4 shows the three sub-datasets 
whose edges are contained in at least one panel of Figure 2.

�e performances of the predictive model is displayed in 
Figures 3(a), 3(c) and 3(e) which demonstrates that: (1) when 
predicting only based on �� value, accuracies on three datasets 
are 85.51%, 78.66% and 75.34%, respectively, while when pre-
dicting only based on ��� −����, results are 97.57%, 95.31% 
and 90.20%, improved by 12.06%, 16.65%, and 14.86% respec-
tively. (2) when using ��� −���� as decisive and PR value as 
auxiliary to predict, accuracies on the three datasets are all 
improved, which demonstrate the scienti�c of the predictive 
model.

Since ��� −���� is computed by the number of quadri-
laterals as Figure 2 displayed, each dataset is classi�ed into 
four sub-datasets according to the number of quadrilaterals 
to test the performance of ��� −����, As shown in Figures 
3(b), 3(d) and 3(f). For Epinions, the predictive e¢ect does not 
di¢er signi�cantly over the four sub-datasets, moreover, the 
predictive accuracy always be high. �is proves that 
��� −���� has high robustness. For Slashdot and Wikipedia, 
when the number of quadrilateral is 0 : 100, the predictive 
accuracy is obviously lower than that when the number of 
quadrilateral exceeds 100. �is demonstrates that these two 
networks have less data to extract features, which is the main 
reason why the accuracy under these two datasets is not as 
well as the data of Epinions. �erefore, the conclusions are 
threefold. First, the network of Epinions is more mature than 
that of Slashdot and Wikipedia. Second, that the predictive 
accuracy of Slashdot and Wikipedia increasing with the 
increased available network data; And the third is scienti�c to 
predict with ��� −����.

3.3. Comparison of Results. To further test the performance 
of prediction of ��� model, it is compared with the existing 
approaches, such as the logistic regression (LR) proposed 
by Leskovec et al. [4], the logistic regression based on three 
attributes (LR-3A) proposed by Yuan et al. [9], the supervised 
learning based on higher order cycles (HOC) proposed by 
Chiang et al. [19], the logistic regression based on Bayesian 
node properties (LR-BNP) proposed by Song et al. [23], 
the troll-trust model based on ranking proposed by Wu 
et al. [24], the logistic regression based on reputation and 
optimism (LR-RO) proposed by Shahriari et al. [26], the 
measures of imbalance (MOI) and the matrix factorization 
(MF) studied by Chiang et al. [15], the collaborative �ltering 
(CF) introduced by Javari and Jalili [28] and the closed triple 
micro structure (CTMS) proposed by Khodadadi and Jalili 
[30]. �e comparison results are shown in Table 5. In order 
to compare the approaches fairly, the experimental data of 
Table 5 are quoted from the previous studies. Note that in the 
predictive model � = 0.15.

Table 5 shows that the ��� values of SPR-model on 
Epinions, Slashdot and Wikipedia are all larger than that of 
other 10 approaches. �is proves the feasibility and validity of 
���’s predicting mechanism for calculating the nodal features. 
By comparing the ��� of the 10 approaches, the following con-
clusions can be drawn: (1) Social balance theory cannot fully 

Table 5: �e results of ��� on three networks.

“≈” is the approximation from the reference.

Epinions Slashdot Wikipedia
LR [4] 0.9342 0.9351 0.8021
LR-3A [9] 0.9592 0.8892 0.8786
HOC-5 [19] 0.9080 0.8469 0.8605
LR-BNP [23] 0.9313 0.8565 0.8737
Toll-Trust [24] ≈ 0.96 ≈ 0.90 ≈ 0.89
LR-RO [26] 0.9582 0.9010 0.8880
MOI-10 [15] 0.8497 0.7850 0.8220
MF [15] 0.9448 0.8835 0.8839
CF [30] 0.9282 0.8258 0.8137
CTMS [30] 0.9570 0.8598 0.8542
��� 0.9664 0.9446 0.9007

Table 6: �e results of ���.

“≈” is the approximation from the reference.

Epinions Slashdot Wikipedia
LR-RO [26] 0.9441 0.8975 0.8651
CF [28] ≈ 0.88 ≈ 0.83 ≈ 0.79
LR [30] 0.7589 0.6887 0.6654
MF [30] 0.8856 0.8217 0.7911
CTMS [30] 0.9083 0.8142 0.7202
��� 0.9470 0.9387 0.8667

Table 7: �e values of �1-score.

“≈” is the approximation from the reference.

Epinions Slashdot Wikipedia
LR-3A [9] ≈ 0.83 ≈ 0.71 ≈ 0.78
Troll-Trust [24] ≈ 0.97 ≈ 0.94 ≈ 0.93
��� 0.9802 0.9636 0.9360

Table 8: Statistics of bi-directed edges.

Epinions Slashdot Wikipedia
{+1, +1} 97.11% 88.36% 90.54%
{−1, −1} 1.84% 9.60% 3.29%
{+1, −1} 1.05% 2.04% 6.17%
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As for the skewness feature of actual datasets, ��� is basi-
cally determined by the positive edges. �erefore, the ��� of 
the ��� model is compared with the exiting algorithms, shown 
in Table 6. In order to compare the approaches fairly, the 
experimental data of Table 6 are quoted from previous studies. 
Since some previous studies did not show the results of these 
experiments, the kinds of comparison algorithms in Table 6 
are less than that in Table 5, and the  ���-model signi�cantly 
outperforms than others showing the scienti�c and validity of 
���’s predictive mechanism. Compared with the �ve algo-
rithms in Table 6, LR-RO is still the most competitive, which 
is consistent with the conclusion in Table 5. However, the ���
of other algorithms has been greatly reduced. �is shows that 

algorithms (LR, HOC-5 and LR-BNP) there are eight scalars 
inferior to that of LR-RO. �e main reason is that LR-RO only 
learns two features (reputation and optimism) while the other 
three algorithms have learnt many features. (4) �e main fac-
tor a¢ecting the sign of an edge is the features of its two end-
points, followed by its local features, and �nally its global 
features. For these 11 algorithms, there are only Troll-Trust 
and LR-RO can be comparable to ��� in terms of accuracy 
and robustness. What these three algorithms have in common 
is that they are based on the features of two endpoints to pre-
dict the sign of edge. �e above comparative analysis demon-
strates that ��� successfully avoids the shortcomings of other 
algorithms and captures the key signed structural features.
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Figure 4: Experimental results of three real data sets under di¢erent �. (a) Epinions. (b) Slashdot. (c) Wikipedia.
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of ��� and �1-score is basically synchronized, which also shows 
that the two evaluation metrics are mainly determined by the 
positive edges, moreover, when � is very small (0 ≤ � ≤ 0.1),  
they can reach the optimum. However, the trend of  
��� is quite di¢erent. With the change of �, ��� shows a clear 
trend of increasing �rst and then decreasing, and the optimal 
value is obviously lagging behind that of ��� or �1-score. �is 
is because: when � is very small, the edge signs are mainly 
determined by the ��� −���� feature; with the increase of �, a 
considerable part of the edges are determined by the �� value, 
by this token, �� value is superior to ��� −���� in predicting 

most of the algorithms have defects in predicting negative 
edges. In addition, ���’s �1-score is also compared with LR-3A 
and Troll-Trust algorithms, as shown in Table 7, of which the 
experimental data prove that the predictive model has high 
predictive precision and recall rate. By comparing with the 
state of the art methods, it is fully demonstrated that ��� out-
performs others in predicting both positive and negative 
edges.

3.4. Analysis of Results. Figure 4 shows the experimental 
results, plotted as a function of �. With the change in �, the trend 
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Figure 5: Degree distributions of the three real data sets. (a) Epinions. (b) Slashdot. (c) Wikipedia.
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measured by the model are extracted from the nodal own or 
local structures, the model is very advantageous for large-scale 
datasets.

Data Availability

�e three .txt �les, Epinions.txt, Slashdot.txt, and Wikipedia.
txt are datasets used to support the �ndings of this study 
have been deposited in the Stanford web site repository at 
https://snap.stanford.edu/data/#signnets. �e datasets are in 
the form of adjacency list, include three arrays: the �rst is 
the source node, the second is the target node, and the third 
is the edge weights or the signs. �e data of Epinions is the 
consumers’ review site, includes 131828 nodes and 841372 
links.  Users can read or comment on a variety of goods and 
services, and also be allowed to evaluate the comments made 
by others users, that is, to evaluate other users as trustworthy 
or distrusted objects. �e data of Slashdot is a blog site that 
allows users to say what did they like or dislike other users’ 
comments, and it contains 82144 nodes and 549202 links. �e 
data of Wikipedia is an online voting network where users vote 
or against a candidate administrator, and there is 7118 nodes 
and 104359 links.
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