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�e Foot-mounted Inertial Pedestrian-Positioning System (FIPPS) based on theMicro-InertialMeasurement Unit (MIMU) is a good
choice for the forest �re �ghters when the Global Navigation Satellite System is unavailable. Zero Velocity Update (ZUPT) provides a
solution for reducing cumulative positioning errors caused by the integral calculation of the inertial navigation. However, the
performance of ZUPT is highly a�ected by the low accuracy and high noise of the MIMU. �e accuracy of conventional ZUPT for
attitude alignment is reduced by the zero o�set of acceleration and the drift of a gyroscope during the standing phase. An initial
alignment algorithm based on Adaptive Gradient Descent Algorithm (AGDA) is proposed. In the stepping phase, the extended
Kalman �lter (EKF) is often used to correct attitude and position in track estimation. However, the measurement noise of the EKF is
in�uenced by the high-frequency acceleration and angular velocity. �us, the accuracy of the attitude and position will decrease. A
double-constrained extended Kalman �ltering (DEKF) is proposed. An adaptive parameter positively correlated with the acceleration
and angular velocity is set, and the measurement noise in the DEKF is adaptively adjusted.�e performance of the proposed method
is veri�ed by implementing the pedestrian test trajectory using MPU-9150 MIMU manufactured by InvenSense. �e results show
that the attitude error of the AGDA is 33.82% less than that of the conventional GDA.�e attitude error of DEKF is 21.70% less than
that of the conventional EKF. �e experimental results verify the e�ectiveness and applicability of the proposed method.

1. Introduction

High-precision pedestrian navigation systems usually in-
clude GPS and autonomous navigation. �ese systems can
generate real-time data for a pedestrian’s attitude and po-
sition that can be widely used in �re protection, patrol, and
military �elds [1, 2]. Positioning accuracy is a key in practical
applications, especially in environments without GPS sig-
nals. However, GPS signals are unavailable in places with
dense buildings and forested areas. An inertial navigation
system uses the IMU to calculate attitude, velocity, and
position and can realize pedestrian positioning without GPS
[3, 4]. �e cumulative error characteristics of inertial nav-
igation integration greatly impact the positioning accuracy
of a pedestrian in environments lacking GPS. �erefore, it is
very important to improve the pedestrian attitude and
positioning accuracy without GPS signals [5].

In recent years, the forest �re�ghter positioning system
based on Micro-Inertial Measurement Unit (MIMU) has
recently attracted widespread attention with the rapid de-
velopment of Micro-Electro-Mechanical System (MEMS).
�e foot-mounted inertial/magnetic sensor unit consists of a
gyroscope, an accelerometer, and a magnetometer, which
can provide the angular velocity, acceleration, and magnetic
�eld intensity, respectively. �en, according to the dead
reckoning algorithm, the data measured can be transformed
into attitude and position information [6, 7]. However, the
drift and integration errors of low-cost sensors greatly
impact the �nal positioning results [8, 9].

�e positioning accuracy in the pedestrian navigation
and positioning system is greatly a�ected by the attitude
angle. As a traditional pedestrian location method, the
angular velocity and acceleration integration method is
used to obtain the attitude and position. However, this
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method encounters the problem of error accumulation,
that is, the position and attitude have a large offset over a
period of time. At present, the Zero Velocity Update
(ZUPT) method is widely used in pedestrian positioning
[10–13]. .is method divides the human gait into two
phases: standing and stepping [14]. .e core of this method
is to suppress the attitude and position errors in the
standing phase. An extended Kalman filter (EKF) assists
the pedestrian location of ZUPT to compensate for the
errors caused by the integral characteristics of acceleration
and angular velocity through observation [15–17]. How-
ever, the accuracy of this method is affected by the di-
mension of the state variables and cannot accurately
estimate the attitude and position. Initial alignment is a
common method to correct the attitude angle [18–20].
However, the zero bias of the accelerometer seriously af-
fects the accuracy of the attitude angle. .e gradient de-
scent algorithm (GDA) based on initial alignment is a
method of attitude calculation that uses gradients to find
the optimal quaternion solution [21–24]. .is method
obtains the minimum sensor measurement errors by it-
erating in the gradient direction to improve the attitude
accuracy. In [24–26], the quaternion derivative represented
by the gradient descent and the quaternion calculated by
the gyroscope are combined to reduce the quaternion error.
However, the original GDA method uses a fixed step size to
narrow the gap between the measured value and the real
value, which causes two problems. First, when the step size
is large, it is easy to miss the minimum value and the
minimum error cannot be obtained. Second, when the step
size is small, it is easy to fall into local optimal solutions,
that is, to obtain a minimum point that is not minimum
value. To overcome this problem, a gradient descent al-
gorithm based on the adaptive step size is proposed that
combines the acceleration and angular velocity measure-
ments in the step size. .e step size and attitude angle are
stable when the error disappears.

Although the cumulative errors of the attitude and
position are suppressed and eliminated in the stationary
phase, attitude deviation is caused by the high noise of the
sensor in the pedestrian movement phase [27]. .e original
attitude updating algorithm usually uses the quaternion
updating method. .is method updates the attitude by
using the real-time changes of the gyroscope. However, the
noise of sensors, especially the accelerometer and gyro-
scope, causes the measured value to greatly deviate from
the true value, which greatly influences on the attitude
accuracy. .e approaches to improve the attitude correc-
tion accuracy by multisource information fusion are
proposed. Min et al. [28] proposed to combine the IMU
signal with a human dynamics model to improve the
positioning accuracy of the pedestrian’s step. However,
different people have different accuracies and unstable
positioning performance under the same dynamic model.
Linlin et al. and Zhang et al. [29, 30] proposed the fusion of
IMU information and GPS information to achieve mutual
error correction, which can improve the attitude and po-
sitioning accuracy. However, GPS signal is weak in areas
with dense occlusions. Skog et al. and Bose et al. [31, 32]

proposed to fuse multiple types of IMU information to-
gether to improve the positioning accuracy, but it is not
convenient to wear multiple IMU devices. .ere are no
complex constraints for a single IMU system, and the data
fusion method is simple. In [33], the motion characteristics
of the two feet are measured by the IMU at the same time.
.e distance between the two feet is regarded as the
constraint condition of the Kalman Filter, and the position
accuracy is higher when this method is combined with the
zero speed update. Skog [34, 35] uses the relative positions
of the two feet minus the height of the pedestrian as the
constraint condition to establish a Kalman filter model, but
the constraint condition is a fixed value, which is not ac-
curate. .e integration of accelerometers and gyroscopes
will produce a large drift over a period of time, so the
Kalman filter is applied to pedestrian positioning to reduce
the positioning error. .e Kalman filter can realize attitude
updating by fusing two different quaternion updating
methods. In [36], the prior error covariance is used as a
variable parameter for Kalman filtering to ensure simplicity
and accuracy. In [37], the errors in the data collected by
polymer optical fiber sensors and IMU sensors are fused
through the Kalman filter to improve the attitude angle
accuracy. In [38], Zhang et al. use the estimated velocity of
the carrier phase as the observed measurement for the
Kalman filter, but the kinematic solution was not suffi-
ciently smooth. .e Kalman filter does not work well on
nonlinear systems and may even cause filter divergence.
.erefore, the EKF method is proposed to be applied to
systems with nonlinearity. In [39], the fuzzy adaptive EKF
based on fuzzy logic inference was introduced based on the
MIMU for pedestrians to correct the horizontal positioning
error. In [40], a two-stage extended Kalman filter based on
an accelerometer and a magnetometer is designed to solve
magnetic field fluctuations. In [41], the extended Kalman
filter is used to calculate the knee angle from an MAPR
system. In [42], the heading is estimated by the EKF,
Heuristic Heading Reduction, Flat-ground Hypothesis, and
Cardinal Heading-Aided Inertial Navigation techniques. In
[16], an optimal-enhanced Kalman filter is proposed, in
which adaptive parameters are added to the covariance
matrix to achieve accurate positioning of pedestrians
within an enclosed environment. In [8, 15, 43, 44], the EKF
and zero velocity update are combined to eliminate heading
angle drift, which is better than the zero velocity update
only. In [45], Wang et al. reconstruct the prior error co-
variance by mining the posterior sequence online to
overcome the inaccurate calculation of the Kalman co-
variance. In [46], Zampella et al. used the EKF algorithm to
obtain more accurate heading information based on the
PDR algorithm. However, the measurement error is in-
creased by the noise disturbance of the gyroscope and
accelerometer in the external environment. .us, the noise
estimation is the main factor affecting the filtering accuracy
of the EKF. .e traditional EKF estimation of noise is not
accurate because this estimation is fixed. .erefore, the
noise of the accelerometer and gyroscope in the dual-
constrained extended Kalman filter (DEKF) method pro-
posed in this paper is considered in the measurement noise,
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that is, adding adaptive parameters can be used to suppress
the high-frequency noise in the measurement noise, which
helps prevent filter divergence and ensures the accuracy of
attitude and position.

.e rest of the paper is organized as follows: the basic
principles of the pedestrian Inertial Navigation System are
introduced in Section 2, including the ZUPTmethod and the
pedestrian positioning algorithm. Section 3 introduces the
AGDA at zero velocity, which is the first contribution of this
article. In Section 4, a combination of updating the attitude
angle by the AGDA and updating the attitude angle by the
quaternion method is used as the state variables for the EKF
in the stepping phase and the DEKF is used for the attitude
and position corrections, which is the second contribution of
this paper. In Section 5, the experimental algorithm pro-
posed in this study is experimentally verified using the
MPU9150 sensor.

2. BasicPrinciples of InertialNavigationSystem

2.1. Principle of ZUPT Algorithm. .e ZUPT algorithm
performs well in suppressing the cumulative errors of sensors
in the standing phase. According to the motion characteristics
of pedestrian’s foot, the detection thresholds of the zero velocity
moment are set according to the acceleration modulus, the
angular velocity modulus, and the acceleration variance. When
the three parameter values are less than the corresponding
thresholds at the same time, the pedestrian’s foot is considered
to be at zero velocity moment. After detecting the zero velocity
moment, the initial alignment is performed to obtain the initial
attitude angle, as in the following equation:

φx � arctan −
ax

az

 ,

φy � arcsin
ay

‖a‖
 ,

φz � arctan
mx cos φx(  + my sin φx( 

mx sin φx(  − mz cos φx( ( sin φy  + my cos φy  
⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where ax, ay, and az are the axial accelerations measured in
the x, y, and z directions, respectively, by the accelerometer;
‖a‖ �

����������
a2

x + a2
y + a2

z


, mx, my, and mz are the axial magnetic

field strengths measured in the x, y, and z directions, re-
spectively, by the magnetometer, φx is the roll angle, φy is the
pitch angle, and φz is the heading angle.

.e initial attitude angle is updated by the quaternion
method to obtain an updated attitude angle after initial
alignment. .e quaternions are represented in the following
form:

Q � q0 + q1i + q2j + q3k, (2)

where q0, q1, q2, and q3 are quaternions and i, j, and k are
fundamental quaternion units. .e quaternion differential
equations related to the angular velocity of the carrier are
established:

_Q �
1
2

QΩ, (3)

Ω �

0 ωx − ωy − ωz

ωx 0 ωz − ωy

ωy − ωz 0 ωx

ωz ωy − ωx 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

.e angular velocities of x, y, and z axes are measured by
the gyroscope in the sensor frame (short for b frame) as ωx,
ωy, and ωz, respectively. According to the attitude angle at
time k − 1, the attitude angle at time k can be obtained by
equation (3). In the stance phase, the accelerationmodulus is
theoretically the same as that of gravity and the angular
velocity modulus is theoretically zero. However, the output
of the sensor is not equal to the theoretical value. .e
measurements of the acceleration and angular velocity
produce cumulative errors over a period of time. In the third
part, the AGDA is proposed to correct the attitude angle
affected by the cumulative error.

2.2. Pedestrian Positioning Algorithm. .e foot movements
of a pedestrian have periodic characteristics. If the IMU is
fixed on the pedestrian’s foot, the pedestrian’s speed and
position can be calculated according to the dead reckoning
algorithm. .e basic formula of the dead reckoning algo-
rithm is as follows:

V
n
k � V

n
k− 1 + C

n
bkf

b
k + g

n
 T, (5)

P
n
k � P

n
k− 1 +

Vn
k + Vn

k− 1( T

2
, (6)

where Cn
b is the coordinate transformation matrix from the b

frame to n frame, Vn
k and Vn

k− 1 are the velocities along the n
frame at times k and k − 1, respectively, fb

k is the projection
of the acceleration on the b frame at time k,
gn � 0 0 − g 

T is gravity, and T is sample time.
.e inertial pedestrian navigation system model is

shown in Figure 1, which shows the whole process from the
data acquisition to the output of attitude, velocity, and
position.

.e velocity and position can be obtained by equations
(5) and (6), respectively. In the stepping phase, the EKF can
reduce the error in the velocity and position, but the in-
fluence of acceleration and angular velocity noise on the
measurement noise cannot be ignored. To solve this prob-
lem, the errors of the quaternion obtained by the differential
equation and quaternion obtained by AGDA are selected as
the state variables of the improved EKF. In the fourth part,
the measurement noise is estimated according to the ac-
celeration modulus and angular velocity modulus. .e at-
titude and position are corrected using the DEKF.

3. Adaptive Gradient Descent Algorithm

.e initial attitude angle can be obtained by the initial
alignment algorithm, but the noise of the gyroscope
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gradually makes the attitude deviate from the theoretical
value, so the attitude error cannot be restrained in the
standing phase when only the gyroscope is used. Gradient
descent algorithm (GDA) is a new directional �lter for
obtaining high-precision attitude information. �e purpose
of this �lter is to reduce the quaternion error through ac-
celeration and magnetic �eld intensity. When the error of
the acceleration and magnetic �eld intensity reaches the
minimum, the quaternion is robust and the attitude error is
eliminated. �erefore, �e GDA algorithm can be used as
attitude calculation in the standing phase. However, the
accelerometer bias and gyroscope drift seriously a�ect the
step size of gradient, so the attitude correction accuracy of
GDA decreases.

To solve this problem, an adaptive gradient descent
algorithm (AGDA) is proposed to correct the attitude of
FIPPS in the standing phase. When the angular velocity
varies greatly, the component of gradient descent com-
pensation increases accordingly in the standing phase. �us,
the step size is positively correlated with the angular velocity.
�e rotation matrix error of acceleration characterization is
the error between the measurement vector of the acceler-
ometer and the projection of gravity acceleration vector in
frame b, as shown in equation (7). �e rotation matrix error
of magnetic �eld intensity characterization is the error
between the measurement vector of the magnetometer and

the projection of local magnetic �eld intensity vector in
frame b, as shown in equation (8):

Fa �
2g q1q3 − q0q2( )
2g q0q1 + q2q3( )
q20 − q21 − q22 + q23( )g


 −

ax

ay

az


,

(7)

Fm �

2myq1q2 + q0q3 + 2mz q1q3 − q0q2( )
my q20 − q21 + q22 − q23( ) + 2mz q0q1 − q2q3( )
2myq2q3 + q0q1 +mz q

2
0 − q21 − q22 + q23( )


 −

mx

my

mz


,

(8)

where Fa is the rotation matrix error of acceleration char-
acterization and Fm is the rotation matrix error of the
magnetic �eld intensity characterization.

�e gradient value of the acceleration error function and
the gradient value of the error function of the magnetic �eld
intensity can be written as follows:

∇F � Ja′ ∗Fa,
∇h � Jm′ ∗Fm,

(9)

where Ja is the Jacobian matrix of the acceleration and Jm is
the Jacobian matrix of the magnetic �eld intensity. Ja and Jm
are expressed by equations (10) and (11), respectively:

Ja �
− 2q2g 2q3g − 2q0g 2q1g

2q1g 2q0g 2q3g 2q2g

2q0g − 2q1g − 2q2g 2q3g


, (10)

Jm �

2q3my − 2q2mz 2q2my + 2q3mz 2q1my − 2q0mz 2q0my + 2q1mz

2q0my + 2q1mz − 2q1my + 2q0mz 2q2my + 2q3mz − 2q3my + 2q2mz

− 2q1my + 2q0mz − 2q0my − 2q1mz 2q3my − 2q2mz 2q2my + 2q3mz


. (11)

�e rotation matrix error can be eliminated by iteration
from the initial attitude along the opposite direction of the
gradient to the minimum point of the error function. �e
gradient direction can be attained by normalizing the

gradient. �e gradient direction of acceleration error
function and the gradient direction of the error function of
magnetic �eld intensity can be obtained by the following
equations:

Accelerometer

Gyroscope

Magnetometer Quaternion method

a

ω

m

Sensor
calibration

Coordinate
transfer

matrix Cb
n

Attitude

Velocity

Position

ZUPT?

Y

N Dead reckoning
algorithm

Input Output

Figure 1: Inertial pedestrian navigation system model.
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∇F
•

�
∇F

‖∇F‖
, (12)

∇h
•

�
∇h

‖∇h‖
, (13)

where∇F
•

and∇h
•

are the gradient directions of acceleration
error function and the gradient direction of the error
function of magnetic field intensity, respectively, and ‖∇F‖

and ‖∇h‖ are the moduli of ∇F and ∇h, respectively.
From the above equations, the quaternion at time k can

be computed by the quaternion at time k − 1:

Qk � Qk− 1 − α1∗ μ∗∇F
•

− α1∗ μ∗∇h
•

, (14)

where Qk and Qk− 1 are quaternions at times k and k − 1,
respectively, μ is the step size of the AGDA, and α1 is the
adaptive factor.

When the rotation matrix errors of the acceleration and
magnetic field intensity characterization are larger, the
distrust degree of the algorithm on the measured values of
the accelerometer and magnetometer is deeper and the part
of compensating gyroscope deviation by the accelerometer
and magnetometer should be reduced accordingly. α1 is set
in the algorithm. α1 is positively correlated with the angular
velocity modulus of the gyroscope and negatively correlated
with the rotation matrix errors of acceleration and the
magnetic field intensity..e adaptive factor can be expressed
as

α1 � c1 ∗ ‖ω‖ +
ε1

Fa

����
���� + ε1

+
β1

Fm

����
���� + β1

, (15)

where ‖ω‖ is the angular velocity module, ‖Fa‖ and ‖Fm‖ are
moduli of Fa and Fm, respectively, c1 is a positive correlation
parameter, and ε1 and β1 are negatively correlated param-
eters. .is algorithm realizes the adaptive adjustment of the
step size and reduces the influence of accelerometer bias,
magnetometer disturbance, and gyroscope drift on the at-
titude angle correction. .erefore, the AGDA improves the
accuracy of attitude angle in the standing phase.

4. Pedestrian Attitude and Position Updating
Based on Double-Constrained Kalman Filter

.e EKF can reduce the errors of attitude and position, but
changes in acceleration and angular velocity in the step
phase seriously affect the changes in the noise interference.
In this section, we first introduce the AGDA affected by
high-frequency acceleration and angular velocity in the step
phase. .en, the filtering accuracy of the traditional EKF is
affected by acceleration and angular velocity noise, so the
above two kinds of noise are considered in DEKF.

4.1. Adaptive Gradient Descent Algorithm Based on the
Stepping Phase. .e acceleration and angular velocity of
pedestrians change constantly during the stepping phase.
According to the AGDA in the standing phase, the qua-
ternion at k time can be obtained as follows:

Qk � Qk− 1 − α2∗ μ∗∇h
•

, (16)

where α2 is the adaptive factor. When the angular velocity
increases, the gradient descent compensation component
increases, so the step size is positively correlated with the
angular velocity.When the rotationmatrix error of magnetic
field intensity characterization is larger, the distrust degree
of the algorithm on the measured values of the magne-
tometer is deeper, and the part compensating gyroscope
deviation by the magnetometer should be reduced..us, the
step size is negatively correlated with the rotation matrix
errors of magnetic field intensity. When the measurement
value of the accelerometer is larger, the high-frequency
interference of the accelerometer is stronger and the deeper
is the distrust of the algorithm on the measurement value of
the accelerometer. .e step size is negatively correlated with
the measurement value of the accelerometer. α2 is set to
adjust the step size adaptively as follows:

α2 � c2 ∗ ‖ω‖ +
ε2

Fm

����
���� + ε2

+
β2

‖a‖ + β2
, (17)

where c2 is a positive correlation parameter and ε2 and β2 are
the negative correlation parameters. .is algorithm uses the
adaptive adjustment of the step size to reduce the influence
of magnetometer disturbance, gyroscope drift, and high-
frequency acceleration disturbance. .erefore, the AGDA
improves the accuracy of attitude and position correction in
the stepping phase.

4.2. Double-Constrained Kalman Filtering Algorithm. In
pedestrian navigation and positioning system, the EKF can
effectively reduce the errors of attitude and position.
However, the noise in acceleration and angular velocity
increases sharply during the moving state, Figures 2 and 3
are, respectively, the waveforms of acceleration and angular
velocity of the foot from the standing phase to the stepping
phase in a walking cycle.

.e noise interference in the acceleration and angular
velocity reduces the precision of basic EKF results. To im-
prove the positioning accuracy, the attitude angle corrected
by the AGDA and the attitude angle corrected by the
quaternion method are fused by the improved EKF and the
noise interference of acceleration and angular velocity is
constrained adaptively by DEKF. .e state equation and
observation equation of the navigation system model are
shown in the following equations:

X
−
k � FkX

−
k− 1 + Wk, (18)

Zk � HXk + Vk, (19)

where X−
k and X−

k− 1 are state vectors at time k and k − 1,
respectively, the state vector can be expressed by equation
(20), the observation vector Z consists of quaternions
updated by AGDA, Wk and Vk are the process noise matrix
and observation noise matrix, respectively, the measurement
matrix H is shown in equation (21), and the transfer matrix
of coordinate system F can be computed by equation (22):
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X � q0 q1 q2 q3 ξx ξy ξz[ ], (20)

H � I4×4 O4×3[ ], (21)

F �
Fω O4×3

O3×4 Fb
[ ], (22)

where ξx, ξy, and ξz are gyroscope drift of x, y, and z axes,
respectively, and Fω and Fb can be written by equations (23)
and (24), respectively:

Fω �

1
− ωxt
2

− ωyt
2

− ωzt
2

ωxt
2

1
ωzt
2

− ωyt
2

ωyt
2

− ωzt
2

1
ωxt
2

ωzt
2

ωyt
2

− ωxt
2

1





, (23)

Fb �
1 − λx 0 0
0 1 − λy 0
0 0 1 − λz


, (24)

where λx, λy, and λz are the gyroscope drift coe«cients of the
x, y, and z axes, respectively.

�e measurement noise matrix in the basic EKF is a
constant value, but in practice, the acceleration and angular

velocity in the step phase have high-frequency interference,
and the modulus of acceleration and angular velocity are
positively correlated with the noise disturbance. �erefore,
the DEKF is proposed in this study at themoment of motion.
�e core formula is as follows:

Kk �
P−kH

T
k

HkPkH
T
k + τRk

,

τ � c3 ∗ ‖a‖ +‖ω‖ + c3( ),

(25)

where Kk is the Kalman gain, τ is an adaptive parameter, c3
is the noise perturbation parameter on the stepping phase,
the moduli of acceleration and angular velocity are positively
correlated with the observed noise R, Pk and P−k are error
covariance matrices and prediction error covariance ma-
trices, respectively, and Pk, P−k , and Xk are shown in the
following formulas:

P−k � FkPk− 1F
T
k + Qk,

Pk � I − KkHk( )P−k ,
Xk � X

−
k +Kk Zk − HkX

−
k( ).

(26)

In the DEKF, τ is used to estimate the high-frequency
interference caused by the change of acceleration and an-
gular velocity in the stepping phase. �e measurement noise
of the DEKF is constrained by adaptive adjustment of pa-
rameter τ. �erefore, the attitude and position errors of the
pedestrian positioning system are reduced.

5. Experimental Study on Pedestrian
Positioning Algorithms

5.1. Structure of Improved Pedestrian Attitude and Position
Algorithms. Figure 4 introduces the �ow chart from the
original input data to the output data. �e attitude cor-
rection is carried out in two phases by AGDA and DEKF
methods.

�e thin line frame is the basic step of pedestrian po-
sitioning, the dotted line frame is the standing phase which
incorporates the AGDA, and the thick line frame is the
stepping phase which incorporates the DEKF.

5.2. Experimental Results. According to the experiment, the
validity of AGDA andDEKF is veri�ed. MPU-9150 is used as
the acquisition system to measure the static and motion
parameters of pedestrian feet. �e parameters of MPU-9150
sensor are shown in Table 1.

�e experimental devices are utilized to collect the
output and calculate the experimental results of the pe-
destrian, which are shown in Figure 5. �e red line is the
reference trajectory (16m× 16m) in test 2. The sample
frequency of sensors is 30Hz.

�e parameter selection of the algorithm proposed in the
experiment is shown in Table 2.

To verify that the attitude accuracy is improved by using
the AGDA in the standing phase, an experiment is carried
out in a step cycle. In the pedestrian position experiment, the
attitude angle is the main parameter used to evaluate the
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Figure 2: Acceleration change during the walking cycle.
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Figure 3: Angular velocity change during the walking cycle.
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performance of the algorithm. �e results of the attitude
angle are collected by pedestrians at the static state during a
stepping cycle.�e attitude angles are corrected by GDA and

AGDA methods, respectively, in the pedestrian standing
phase. Figures 6–8 show the contrast waveform of pitch
angle error, roll angle error, and heading angle error,

MIMU

Zero velocity
detection

Initial alignment by AGDA

Update attitude angle by the
quaternion method

Update attitude angle by
AGDA

Dead reckoning algorithm

O
ut

pu
t

Double-constrained
Kalman algorithm

Y

N

Standing

Walking

Figure 4: Principle of improved pedestrian location algorithm.

Table 1: MPU-9150 parameters.

Sensors Typical

Gyro
Bias repeatability (deg/s) 0.06
Noise density (deg/s �

.
√ Hz) 0.005

Full-scale range (deg/s) ±1000

Accelerometer
Bias repeatability (m/s2) 0.0392
Noise density (μg/ �.√ Hz) 400
Full-scale range (g) ±2

Magnetometer Full-scale range (μT) ±1200

Interface

CPU

MIMU

Figure 5: Hardware system and experimental area.

Table 2: Control parameter.

Parameter μ c1 ε1 β1 c2 ε2 β2 c3
Value 0.02 0.018 0.02 0.0075 0.0015 0.003 0.001 0.001
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respectively. In addition, the legends for the curves in �gures
are summarized as follows:

GDA: the traditional gradient descent algorithm dis-
cussed in Section 3
AGDA: the adaptive gradient descent algorithm pro-
posed in Section 3

In the attitude angle comparison results, the blue line is
the result of attitude correction using basic GDA in the
standing phase and the red line is the result of attitude
correction using AGDA in the standing phase. As seen from

the above �gure, the attitude angle error can be reduced and
stabilized by using the AGDA. To obtain better experimental
veri�cation, four di�erent groups of people were tested and
the experimental results of four groups were calculated. �e
average errors of the pitch angle, roll angle, and heading
angle are shown in Table 3. Compared with the basic
method, the average error of the pitch angle obtained by
AGDA algorithm is reduced by 69.06%, 12.06%, 18.26%, and
24.80%, the average error of the roll angle obtained by
AGDA algorithm is reduced by 20.76%, 66.03%, 24.92%, and
24.83%, and the average error of the heading angle obtained
by AGDA algorithm is reduced by 19.70%, 35.25%, 46.04%,
and 44.05%.

To verify the improvement in attitude and positioning
accuracy by using DEKF in the stepping phase, a 16m× 16m
path planning experiment is carried out.�eAGDAproposed
in Section 3 is used to correct the attitude during the standing
phase of the pedestrian walking cycle. �e comparison ex-
periments are carried out using di�erent methods in the
stepping phase. Figure 9 shows the results of the heading angle
error obtained by di�erent methods. Figure 10 shows the
results of the position error obtained by di�erent methods. In
Figure 11, the trajectories are obtained by using di�erent
methods in the stepping phase. In addition, the legends of the
curves in the �gures are summarized as follows:

Quaternion method: basic quaternion algorithm
GDA+EKF: the attitude angles obtained by the qua-
ternion algorithm and GDA are fused by thEKF
AGDA+EKF: the attitude angles obtained by the
quaternion algorithm and AGDA are fused by the EKF
AGDA+DEKF: the attitude angles obtained by the
quaternion algorithm and AGDA are fused by the
DEKF

Comparing the heading angle errors obtained by dif-
ferent methods, the results obtained by AGDA are better
than those obtained by GDA. �e heading angle error
calculated by DEKF is smaller than that calculated by the
EKF. �e average errors of the heading angles are shown in
Table 4. �e average error of using AGDA in motion time is
reduced by 20.30% compared with using GDA. �e average
error of using DEKF in motion time is reduced by 21.70%
compared with using EKF.

Compared with the position errors obtained by di�erent
methods, the position error is e�ectively reduced by using
the DEKF fusion quaternion algorithm and AGDA. �e
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Figure 6: Pitch angle error results.
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Figure 8: Heading angle error results.

Table 3: Average error of attitude angle in test 1.

Test
Average error of
pitch angle (°)

Average error of
roll angle (°)

Average error of
heading angle

(°)
GDA AGDA GDA AGDA GDA AGDA

Person 1 0.7503 0.0597 0.2606 0.0530 0.2511 0.0541
Person 2 0.5698 0.2173 0.7336 0.0733 0.6446 0.1192
Person 3 0.5171 0.0568 0.2932 0.0440 0.3617 0.0390
Person 4 0.6192 0.1787 0.3470 0.0987 0.6470 0.1180
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trajectory in Figure 11 re�ects the reduction of position
errors by AGDA and DEKF.

�e results show that compared with the reference
trajectory, the AGDA performs better than GDA for

trajectory correction and DEKF is more e�ective than EKF
in improving the positioning accuracy. In the comparison of
the above methods, the DEKF is mentioned by fusing the
attitude angles, which are obtained by AGDA and
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Figure 9: Heading angle error results.
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quaternion methods, respectively, and this method calcu-
lated the trajectory closest to the real trajectory by correcting
the attitude and position.

6. Conclusion

In this work, a pedestrian attitude correction method based
on foot-mounted inertial navigation is studied. An im-
proved adaptive step-size adjustment algorithm is provided
by the combining rotation matrix error of acceleration and
magnetic field intensity. According to the noise interfer-
ence characteristics of acceleration and angular velocity in
pedestrian motion, an enhanced attitude fusion algorithm
is proposed. Experiments and comparison analysis dem-
onstrate that the AGDA and DEKF can effectively reduce
attitude errors and improve the positioning accuracy. .e
proposed method is suitable for the navigation and posi-
tioning of firefighters in forest areas, and it can be extended
to pedestrian positioning in other nonsatellite navigation
aided areas, such as the positioning of elderly people in
buildings, positioning of workers in mines, and positioning
of pedestrians in underground supermarkets. However, the
performance of the improved method has not been con-
sidered with changes in attitude. Future work will focus on
the performance of the proposed method in 3D
positioning.
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