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In this paper, we introduce the definitions of d-shadowing property, d-shadowing property, topological ergodicity, and strong
ergodicity of iterated function systems IFS(f0, f1). -en, we show the following: (1) if IFS(f0, f1) has the d-shadowing
property (respectively, d-shadowing property), then Fk has the d-shadowing property (respectively, d-shadowing property)
for any k ∈ Z+; (2) ifFk has the d-shadowing property (respectively, d-shadowing property) for some k ∈ Z+, then IFS(f0, f1)

has the d-shadowing property (respectively, d-shadowing property); (3) if IFS(f0, f1) has the d-shadowing property or
d-shadowing property, and f0 or f1 is surjective, then IFS(f0, f1) is chain mixing; (4) let f0, f1 be open maps. For IFS(f0, f1)

with the d-shadowing property (respectively, d-shadowing property), if A ⊂ X is dense in X, and s is a minimal point of f0 or f1
for any s ∈ A, then IFS(f0, f1) is strongly ergodic, and hence, Fk is strongly ergodic; and (5) for IFS(f0, f1) with the average
shadowing property, if S ⊂ X is dense in X, and s is a quasi-weakly almost periodic point of f0 or f1 for any s ∈ S, then
IFS(f0, f1) is ergodic.

1. Introduction

In this paper, let N � 0, 1, 2, . . .{ } and Z+ � 1, 2, 3, . . .{ }.
Suppose that X is a compact metric space and f:X⟶ X a
continuous map. -e set J ⊂ N is a syndetic set if there is
N0 ∈ Z+ such that [n, n + N0] ∩ J≠∅ for each n ∈ N. For
any x ∈ X, ε> 0, let B(x, ε) denote the ε-neighborhood of x.
x ∈ X is aminimal point of f if for any neighborhood U of x,
the set N(x, U) � n ∈ N: fn(x) ∈ U  is syndetic, and the
set of all minimal points of f is denoted by AP(f). x ∈ X is
called a quasi-weakly almost periodic point of f if for any
neighborhood U of x, the set N(x, U) � n ∈ N: fn(x) ∈ U 

has positive upper density.
-e shadowing property is a very important notion in

dynamical systems. Many researchers have found some
relationship among various shadowing properties, chain
transitivity, transitivity, and ergodicity. Gu [1] proved that if
(X, f) has the asymptotic average shadowing property, and f
is surjective, then (X, f) is chain transitive. For more recent

results about various shadowing properties, one can refer to
[2–9] and references therein.

A δ-ergodic-pseudo-orbit of f is a sequence xi i≥0 such
that for any i ∈ N,

lim
n⟶∞

1
n

i ∈ N : 0≤ i< n, d f xi( , xi+1( < δ 


 � 1, (1)

where |·| represents the cardinality.
f is said to have the d-shadowing property if for any ε> 0,

there is δ > 0 such that every δ-ergodic-pseudo-orbit xi i≥ 0
is ε-shadowed by a true orbit fi(z) i≥0 in a way such that

lim sup
n⟶∞

1
n

i ∈ N: 0≤ i< n, d f
i
(z), xi < ε 



>
1
2
, (2)

where f is said to have the d-shadowing property if for any
ε> 0, there is δ > 0 such that every δ-ergodic-pseudo-orbit
xi i≥0 is ε-shadowed by a true orbit fi(z) i≥0 in a way such
that
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lim inf
n⟶∞

1
n

i ∈ N: 0≤ i< n, d fi(z), xi( < ε 


> 0. (3)

Let X be a metric space and f0, f1 be continuous maps
on X. -e iterated function system IFS(f0, f1) is the action
of the semigroup generated by f0, f1  on X. In this paper,
we introduce the definitions of the d-shadowing property
and d-shadowing property for IFS(f0, f1).

An orbit of IFS(f0, f1) is a sequence fi
ω(x) i≥ 0, where

ω � ω0ω1ω2 . . . ∈ Σ2 � α � α0α1α2 . . . : αi ∈ 0, 1{ } , and for
any i ∈ N,

f
i
ω(x) � fωi− 1

∘ · · · ∘fω0
(x),

f
0
ω(x) � x.

(4)

A sequence ξi i≥ 0 is called a δ-ergodic-pseudo-orbit for
IFS(f0, f1) if there is ω ∈ Σ2 such that

lim
n⟶∞

1
n

i ∈ N: 0≤ i< n, d fωi
ξi( , ξi+1 < δ 



 � 1. (5)

IFS(f0, f1) is said to have the d-shadowing property if
for any ε> 0, there is δ > 0 such that every δ-ergodic-pseudo-
orbit xi i≥ 0 is ε-shadowed by a true orbit fi

ω(z) i≥ 0 in a
way such that

lim sup
n⟶∞

1
n

i ∈ N: 0≤ i< n, d f
i
ω(z), ξi < ε 



>
1
2
. (6)

IFS(f0, f1) is said to have the d-shadowing property if
for any ε> 0, there is δ > 0 such that every δ-ergodic-pseudo-
orbit ξi i≥ 0 is ε-shadowed by a true orbit fi

ω(z) i≥ 0 in a
way such that

lim inf
n⟶∞

1
n

i ∈ N: 0≤ i< n, d f
i
ω(z), ξi < ε 



> 0. (7)

Denote Fk � {X: fωk− 1
∘ · · · ∘fω1

∘fω0
: ω0,ω1, . . . ,ωk− 1 ∈

0, 1{ }}, where k ∈ Z+.
In this paper, the definitions of the shadowing property

and average shadowing property for IFS(f0, f1) are in-
troduced by Bahabadi [10], and the definition of the as-
ymptotic average shadowing property for IFS(f0, f1) is
introduced by Nia [11]. Let f0, f1 be open maps. For
IFS(f0, f1) with the d-shadowing property (respectively,
d-shadowing property), if A ⊂ X is dense in X, and s is a
minimal point of f0 or f1 for any s ∈ A, then IFS(f0, f1) is
strongly ergodic. Under similar conditions, Niu [2]
researched that (X, f) has the average shadowing property
and then the conclusion is true. Wang and Niu showed that,
for (X, f) with the average shadowing property, if S ⊂ X is
dense in X, and s is a quasi-weakly almost periodic point of f
for any s ∈ S, then f is transitivity (see [12]). However, under
similar conditions, we will prove that IFS(f0, f1) is ergodic.
-en, we will come up with a situation that IFS(f0, f1) does
not have the asymptotic average shadowing property.

According to Bahabadi [10], a finite sequence ξ0 � x, . . . ,

ξk � y is called a δ-chain of IFS(f0, f1) if for any i � 0, . . . ,

k − 1, there is ωi ∈ 0, 1{ } such that d(fωi
(ξi), ξi+1)< δ.

Definition 1 (see [10]). IFS(f0, f1) is as follows:

(1) Chain transitive if for any x, y ∈ X and any δ > 0,
there is a δ-chain of IFS(f0, f1) from x to y

(2) Transitive if for any nonempty open sets U, V ⊂ X,
there are ω ∈ Σ2 and n ∈ N such that fn

ω(U) ∩ V≠∅
(3) Mixing if for any nonempty open sets U, V ⊂ X,

there are ω ∈ Σ2 and N ∈ N such that fn
ω(U) ∩ V≠

∅ for any n≥N

(4) Chain mixing if for any x, y ∈ X and any δ > 0, there
is N ∈ Z+ such that for any n≥N, there is a δ-chain
of IFS(f0, f1) from x to y consisting of exactly n
elements

For any A ⊂ N, define the positive upper density of A by

d(A) � lim sup
n⟶∞

1
n

|A ∩ 0, 1, . . . , n − 1{ }|. (8)

Define the lower density of A by

d(A) � lim inf
n⟶∞

1
n

|A ∩ 0, 1, . . . , n − 1{ }|. (9)

If A ⊂ N, Ac is the complementary set of A.
ω in the pseudo-orbit of the shadowing property,d-

shadowing property, and d-shadowing property for
IFS(f0, f1) is the same as the one chosen in the shadowing
orbit, while the two ωs in the definitions of the average
shadowing property and asymptotic average shadowing
property may be different.

2. The d-Shadowing Property and d-Shadowing
Property for IFS(f0, f1)

Bahabadi [10] introduced the definition of the shadowing
property for IFS(f0, f1). In this paper, we will introduce the
definitions of the d-shadowing property and d-shadowing
property for IFS(f0, f1) and give some results.

Definition 2. A sequence ξi i≥ 0 is called a δ-pseudo-orbit
for IFS(f0, f1) if there is ω ∈ Σ2 such that for any i ∈ N,

d fωi
ξi( , ξi+1 < δ. (10)

Definition 3. IFS(f0, f1) has the shadowing property if for
any ε> 0, there is δ > 0 such that every δ-pseudo-orbit ξi i≥ 0
is ε-shadowed by a point z ∈ X, i.e., there is z ∈ X such that
for any i ∈ N,

d f
i
ω(z), ξi < ε. (11)

Example 1. Suppose that f0(x) � 0, f1(x) � 1, x ∈ [0, 1].
For any ε> 0, there is δ � ε> 0. Let ξi i≥ 0 be a δ-ergodic-
pseudo-orbit for IFS(f0, f1). -erefore, there is ω �

ω0ω1ω2 · · · ∈ Σ2 such that

lim
n⟶∞

1
n

i ∈ N: 0≤ i< n, d fωi
ξi( , ξi+1 < δ 



 � 1. (12)

-en, there is z � ξ0 such that
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lim
n⟶∞

1
n

i ∈ N: 0≤ i< n, d f
i
ω(z), ξi < ε 



 � 1. (13)

Obviously, IFS(f0, f1) has the d-shadowing property
and d-shadowing property.

Lemma 1. For any k ∈ Z+, and any ε> 0, there is
0< δ < (ε/k) such that there is any δ-chain of length k + 1 for
IFS(f0, f1) ξ0, ξ1, . . . , ξk , i.e., there is ω ∈ Σ2 such that
d(fωi

(ξi), ξi+1)< δ satisfies

d f
i
ω ξ0( , ξi < ε, ∀ 0≤ i≤ k. (14)

Proof. Fix k ∈ Z+ and let ε> 0. Since f0 and f1 are uni-
formly continuous, for any ω1 � ω1

0ω1
1 · · · ∈ Σ2, fi

ω1 is also
uniformly continuous, where i � 0, 1, . . . , k. -en for
(ε/k)> 0, there is 0< δ < (ε/k) such that d(fi

ω1(x),

fi
ω1(y))< (ε/k) for any x, y ∈ X satisfies d(x, y)< δ. Since
ξ0, ξ1, . . . , ξk  is a δ-chain of IFS(f0, f1), there is ω ∈ Σ2
such that

d fωi
ξi( , ξi+1 < δ, ≤ i≤ k − 1. (15)

Put ω1 � ω. -en,

d f
j
ω ξ0( , ξj 

≤d fωj− 1
· · · fω1

fω0
ξ0( , fωj− 1

· · · fω1
ξ1(   + · · · +

d fωj− 1
ξj− 1 , ξj 

<
ε
k

+
ε
k

+ · · · +
ε
k

+ δ < k ·
ε
k

� ε,

(16)

where 0≤ j≤ k.

Theorem 1

(1) If IFS(f0, f1) has the d-shadowing property, thenFk

has the d-shadowing property for any k ∈ Z+

(2) If IFS(f0, f1) has the d-shadowing property, thenFk

has the d-shadowing property for any k ∈ Z+

Proof. Fix k ∈ Z+ and let ε> 0. We can find a number δ > 0
satisfying Lemma 1. We will show that (1) is true. We can
find a number δ1 > 0 such that each δ1-ergodic-pseudo-orbit
of IFS(f0, f1) is δ-shadowed by a true orbit along a set with
positive lower density, and δ > δ1. Let xi i≥ 0 be a δ1-er-
godic-pseudo-orbit ofFk. -at is to say, there is ω ∈ Σ2 such
that

lim
n⟶∞

1
n

i ∈ N: 0≤ i< n, d fω(i+1)k− 1
∘ · · · ∘



fωik
xi( , xi+1< δ1


� 1.

(17)

Let

ξi i≥ 0 � x0, fω0
x0( , . . . , fωk− 2

∘ · · · ∘fω0
x0( , x1,

fωk
x1( , . . . , fω2k− 2

∘ · · · ∘fωk
x1( , . . . , xn, fωnk

xn( ,

. . . , fω(n+1)k− 2
∘ · · · ∘fωnk

xn( , . . ..

(18)

Obviously, ξi i≥ 0 is a δ1-ergodic-pseudo-orbit of
IFS(f0, f1). -en, there is z ∈ X such that

lim inf
n⟶∞

1
n

i ∈ N: 0≤ i< n, d f
i
ω(z), ξi < δ 



> 0. (19)

Put A � i ∈ N: d(fki
ω(z), xi)< ε , A1 � i ∈ N: d(fi

ω

(z), ξi)< δ}, B1 �

%i ∈ N: d(fω(i+1)k− 1
∘ · · · ∘fωik

(xi), xi+1)<
δ1%, an d M � i � kl + j: l ∈ B1, j � 1, · · · , k .

Obviously, d(A1)> 0, d(M) � 1, d(B1) � 1, and then
d(A1∩M) � d(A1)> 0. Now, to prove the theorem, we need
to show the following claim.

Claim 1. Put (|A∩ 0, 1, . . . , n − 1{ }|/n) � (sn/n) and (|A1∩
M∩ 0, 1, . . . , nk − 1{ }| − k/nk) � (tn/nk), then (sn/n)≥
(tn/nk).

Proof. Without loss of generality, suppose that d(z, x0)< ε,
then the claim is true when n � 1. Assume (sn/n)≥ (tn/nk),
then we will show that (sn+1/n + 1)≥ (tn+1/(n + 1)k). For any
m � kp + q ∈ A1∩M∩ 0, . . . , nk − 1{ }, where p ∈ N, 0<
q≤ k, we have d(fm

ω (z), ξm)< δ, and the sequence
fm− 1
ω (z), ξm, · · · , ξk(p+1)− 1, xp+1  is a δ-chain. According to

Lemma 1, d(f
k(p+1)
ω (z), xp+1)< ε. So, p + 1 ∈ sn+1. -ere-

fore, sn+1 ≥ (|A1∩M∩ 0, 1, . . . , nk{ }|/k) and (sn+1/n + 1)≥
(|A1∩M∩ 0, 1, · · · , (n + 1)k − 1{ }| − k/(n + 1)k) � (tn+1/(n +

1)k)

Obviously,

lim inf
n⟶∞

A1∩M∩ 0, 1, . . . , nk − 1{ }


 − k

nk

� lim inf
n⟶∞

A1∩M∩ 0, 1, . . . , nk − 1{ }




nk
.

(20)

-en, d(A)≥ d(A1∩M)> 0. So (1) is true. Now suppose
that IFS(f0, f1) has the d-shadowing property. In this case,
the proof is the same as for (1) except that
d(A1∩M) � d(A1)> (1/2). -en, we can see that d(A)>
(1/2).

Theorem 2

(1) If Fk has the d-shadowing property for some k ∈ Z+,
then IFS(f0, f1) has the d-shadowing property

(2) If Fk has the d-shadowing property for some k ∈ Z+,
then IFS(f0, f1) has the d-shadowing property

Proof. Suppose that Fk has the d-shadowing property for
some k ∈ Z+. Let ε> 0, and we can find a number ε1 > 0
satisfying Lemma 1. SinceFk has the d-shadowing property,
there is δ1 > 0 such that any δ1-ergodic-pseudo-orbit ofF

k is
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ε1-shadowed by a true orbit along a set with positive lower
density, and ε1 > δ1. For δ1, we can get δ > 0 by Lemma 1. Let
ξi i≥ 0 be a δ-ergodic-pseudo-orbit of IFS(f0, f1), and
xi i≥ 0 � ξki i≥ 0. -erefore, there is ω ∈ Σ2 such that

lim
n⟶∞

1
n

i ∈ N: 0≤ i< n, d fωi
ξi( , ξi+1 < δ 



 � 1. (21)

Let M � {i ∈ N: 0≤ i< n, d(fωik+j
(ξik+j), ξik+j+1)< δ, j �

0, . . . , k − 1}, then

lim
n⟶∞

1
n

|M| � 1. (22)

-erefore, if i ∈M, then the sequence ξik, ξik+1, . . . ,

ξ(i+1)k} is a δ-chain. According to Lemma 1, d(fω(i+1)k− 1
∘ · · · ∘

fωik
(xi), xi+1) � d(fω(i+1)k− 1

∘ · · · ∘fωik
(ξik), ξ(i+1)k)< δ1, so

xi i≥ 0 is a δ1-ergodic-pseudo-orbit of F
k. -ere is z ∈ X

such that

lim inf
n⟶∞

1
n

i ∈ N: 0≤ i< n, d f
ki
ω(z), xi < ε1 



> 0. (23)

Put A � i ∈ N: d(fki
ω(z), xi)< ε1  and A1 � i ∈ N:{

d(fi
ω(z), ξi)< ε}, then d(A∩M) � d(A)> 0. -ere is

m ∈ A∩M such that d(fkm
ω (z), ξkm) � d(fkm

ω (z), xm)< ε1,
and then the sequence fkm− 1

ω (z), xm, ξkm+1, · · · , ξkm+k− 1  is a
ε1-chain. According to Lemma 1, we have d(f

km+j
ω (z),

ξkm+j)< ε, where j � 0, . . . , k − 1. Now, to prove the theo-
rem, we need to show the following claim.

Claim 2. Put (|A∩M∩ 0,1, . . . ,n − 1{ }|/n) � (sn/n) and(|A1∩
0,1, . . . ,nk − 1{ }|/nk) � (tn/nk), then (tn/nk)≥(sn/n).

Proof. Without loss of generality, suppose that 1 ∈M and
d(z, x0)< ε1, then the claim is true when n � 1. Assume that
(tn/nk)≥ (sn/n), then we will show that (tn+1/(n + 1)k)≥
(sn+1/n + 1). Obviously, sn+1 � sn or sn+1 � sn + 1. If
sn+1 � sn + 1, then d(fkn

ω (z), xn)< ε1, and we can see that
d(f

kn+j
ω (z), ξkn+j)< ε, where j � 0, . . . , k − 1. So tn+1 � tn +

k and (tn+1/(n + 1)k)≥ (sn+1/n + 1)acs. If sn+1 � sn, then
tn+1 ≥ tn and (tn+1/(n + 1)k)≥ (sn+1/n + 1).

-en, d(A1)≥ d(A∩M) > 0. So (1) is true. Now suppose
thatFk has the d-shadowing property for some k ∈ Z+. In this
case, the proof is the same as for (1) except that d(A∩M) �

d(A)> (1/2). -en, we can see that d(A1)> (1/2).

Corollary 1. Let IFS(f0, f1) be a iterated function system,
then the following statements are equivalent:

(1) IFS(f0, f1) has the d-shadowing property (respec-
tively, d-shadowing property)

(2) Fk has the d-shadowing property (respectively,
d-shadowing property) for some k ∈ Z+

(3) Fk has the d-shadowing property (respectively,
d-shadowing property) for any k ∈ Z+

Lemma 2. Let A, B ⊂ N; (1) if d(A) � α and d(B)> 1 − α,
then d(A∩B) > 0; (2) if d(A) � α and d(B)> 1 − α, then
d(A∩B)> 0. Here, 0≤ α≤ 1.

Proof. Firstly, we will show (1). Suppose on the contrary
that d(A∩B) � 0. -en, d(B)≤ d(Ac). -erefore, we can see
d(A) + d(Ac)≥ d(A) + d(B)> α + 1 − α � 1. But d(A) +

d(Ac) � 1, which contradicts the hypothesis. Hence,
d(A∩B) > 0. -e proof for the second case is the same as
for (1).

Theorem 3. f0 or f1 is surjective,

(1) If IFS(f0, f1) has the d-shadowing property, then
IFS(f0, f1) is chain transitive

(2) If IFS(f0, f1) has the d-shadowing property, then
IFS(f0, f1) is chain transitive

Proof. Without loss of generality, suppose that f1 is sur-
jective. -en, there is a sequence yi i≥ 0 � y0 � y,

y1, y2, · · ·} such that for any i> 0, f1(yi) � yi− 1. Let ε> 0 be
arbitrary, and x, y ∈ X. Firstly, we will prove that (1) is true.
We can find a number δ > 0 as in the definition of the
d-shadowing property for IFS(f0, f1). Put a1 � 2,

ai � 2a1+···+ai− 1 . Construct a sequence as follows: ξi i≥ 0 �

x, f0(x), f
a1
0 (x), ya2

, ya2− 1, · · · , y, x, f0(x), · · · , f
a3
0 (x),

ya4
, · · · , y, · · ·}. -en, ξi i≥ 0 is a δ-ergodic-pseudo-orbit for

IFS(f0, f1), i.e., there is ω � ω0ω1ω2 · · · ∈ Σ2 such that

lim
n⟶∞

1
n

i ∈ N: 0≤ i< n, d fωi
ξi( , ξi+1 < δ 



 � 1, (24)

where

ωi �
0, d f0 ξi( , ξi+1( < δ,

1, d f1 ξi( , ξi+1( ≥ δ.
 (25)

Put A1 � i∈N: ξi ∈ f
j
0(x) 

j≥0  andA2 � i∈N: ξi ∈

f
j
1(y) 

j≥0}. -en, d(A1) � 1,d(A2) �1. Since IFS(f0,f1)

has the d-shadowing property, there is z∈X such that

lim inf
n⟶∞

1
n

i ∈ N: 0≤ i< n, d f
i
ω(z), ξi < ε 



> 0. (26)

According to Lemma 2, there are i0, j0, l, s ∈ N, l< s such
that

d f
l
ω(z), ξl < ε, d f

s
ω(z), ξs( < ε, ξl � f

i0
0 (x), ξs � yj0

.

(27)

So x,f0(x),f2
0 (x), · · · ,f

i0− 1
0 (x),fl

ω(z), · · · ,fs− 1
ω (z),yj0

,

yj0− 1, · · · ,y1,y} is an ε-chain from x to y. Hence, IFS(f0,f1)

is chain transitive.
-en, we will prove that (2) is true. Construct a sequence

as follows:

ξi i≥0 � x, y, x, f0(x), y1, y, x, f0(x), f
2
0(x), y2, y1, y, · · · .

(28)

-en, ξi i≥ 0 is a δ-ergodic-pseudo-orbit for IFS(f0, f1),
i.e., there is ω � ω0ω1ω2 · · · ∈ Σ2 such that
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lim
n⟶∞

1
n

i ∈ N: 0≤ i< n, d fωi
ξi( , ξi+1 < δ 



 � 1, (29)

where

ωi �
0, d f0 ξi( , ξi+1( < δ,

1, d f1 ξi( , ξi+1( ≥ δ.
 (30)

-en, d(A1) � (1/2), d(A2) � (1/2). Since IFS(f0, f1)

has the d-shadowing property, there is z ∈ X such that

lim sup
n⟶∞

1
n

i ∈ N: 0≤ i< n, d f
i
ω(z), ξi < ε 



>
1
2
. (31)

-en, the proof of this case is the same as for (1).

Theorem 4. If IFS(f0, f1) has the d-shadowing property or
d-shadowing property, and f0 or f1 is surjective, then
IFS(f0, f1) is chain mixing.

Proof. -e result is obtained by Corollary 1, -eorem 3, and
-eorem 2.3 in [13].

Lemma 3 (see [10]). IFS(f0, f1) is chain transitive and has
the shadowing property, and then IFS(f0, f1) is transitive.

Corollary 2. IFS(f0, f1) has the d-shadowing property
(respectively, d-shadowing property) and the shadowing
property, one of f0, f1 is surjective, and then IFS(f0, f1) is
mixing.

Proof. -e result is obtained by -eorem 4 and Lemma 3.
IFS(f0, f1) is ergodic if for any pair of nonempty open

subsets U, V ⊂ X, there is ω ∈ Σ2 such that
N(U, V) � n ∈ N: fn

ω(U)∩V≠∅  has the positive upper
density. IFS(f0, f1) is strongly ergodic if for any pair of
nonempty open subsets U, V ⊂ X, there is ω ∈ Σ2 such that
N(U, V) � n ∈ N: fn

ω(U)∩V≠∅  is a syndetic set.
A map f: X⟶ X is an open map if for any open set

U ⊂ X, f(U) is also an open set.

Theorem 5. Let f0, f1 be open maps. For IFS(f0, f1) with
the d-shadowing property (respectively, d-shadowing prop-
erty), if A ⊂ X is dense in X, and s is a minimal point of f0 or
f1 for any s ∈ A, then IFS(f0, f1) is strongly ergodic.

Proof. Suppose thatU andV are two nonempty open subsets
of X, then there are x ∈ U∩A, y ∈ V∩A, an d ε> 0 such
that B(x, ε) ⊂ U, B(y, ε) ⊂ V and J

p
x, J

q
y are syndetic sets,

where J
p
x � i ∈ N: fi

p(x) ∈ B(x, (ε/2))}, J
q
y � i ∈ N:{

fi
q(y) ∈ B(y, (ε/2))}, p, q � 0 or 1. Since J

p
x, J

q
y are syndetic

sets, we can find Nx, Ny ∈ Z+ such that J
p
x∩[n,

n + Nx]≠∅, J
q
y∩[n, n + Ny]≠∅ for any n ∈ N. Firstly, we

will prove if IFS(f0, f1) has the d-shadowing property, then
the conclusion is true. Put N0 � max Nx, Ny , a0 � 0, a1 �

N0, a2 � 2a0+a1 , . . . , an � 2a0+a1+a2+···+an− 1 , an d En � a0+

a1 + · · · + an. Put

E � 

+∞

n�0
E2n, E2n + 1, . . . , E2n+1 − 1 ,

F � 

+∞

n�0
E2n+1, E2n+1 + 1, . . . , E2n+2 − 1 .

(32)

We can see that d(E) � 1 and d(F) � 1. For (ε/2)> 0, we
can find a number ε1 > 0 satisfying Lemma 1, where
k � N0 + 1. -ere is δ > 0 such that every δ-ergodic-pseudo-
orbit of IFS(f0, f1) is ε1-shadowed by a true orbit along a set
with positive lower density, and ε1 > δ. Put ξi i≥ 0 as follows:

ξi �
f

i− E2n
p (x), E2n ≤ i<E2n+1,

f
i− E2n+1
q (y), E2n+1 ≤ i<E2n+2.

⎧⎪⎨

⎪⎩
(33)

-at is to say, ξi i≥ 0 � x, fp(x), · · · , f
a1− 1
p (x), y,

fq(y), · · · , f
a2− 1
q (y), x, · · · , f

a3− 1
p (x), · · ·}. -en, ξi i≥ 0 is a

δ-ergodic-pseudo-orbit for IFS(f0, f1), i.e., there is
ω � ω0ω1ω2 · · · ∈ Σ2 such that

lim
n⟶∞

1
n

i ∈ N: 0≤ i< n, d fωi
ξi( , ξi+1 < δ 



 � 1, (34)

where

ωi �
p, ξi � f

i− E2n
p (x),

q, ξi � f
i− E2n+1
q (y).

⎧⎪⎨

⎪⎩
(35)

Since IFS(f0, f1) has the d-shadowing property, there is
z ∈ X such that

lim inf
n⟶∞

1
n

i ∈ N: 0≤ i< n, d f
i
ω(z), ξi < ε1 



> 0. (36)

Let B � 0≤ i< n: d(fi
ω(z), ξi)< ε1 , then d(B)> 0.

According to Lemma 2, both B∩E andB∩F are infinite.
-erefore, we can find n0 ∈ B∩E andm0 ∈ B∩F such that
E2t0+1 − n0 ≥ 2N0 andE2s0+2 − m0 ≥ 2N0, where t0, s0 ∈ N,

t0 < s0. Suppose on the contrary that for any n0 ∈ B∩E,
E2t+1 − n0 < 2N0, where t ∈ N. We can see

d(B)

� lim inf
n⟶∞

1
n

i ∈ N: 0≤ i< n, d f
i
ω(z), ξi < ε1 





≤ lim
t⟶∞

1
E2t+1

B∩ 0, 1, . . . , E2t+1 − 1 




≤ lim
t⟶∞

a0 + 2N0 + a2 + 2N0 + a4 + · · · + a2t + 2N0

E2t+1

≤ lim
t⟶∞

a0 + a1 + · · · + a2t + 2N0

E2t+1

� lim
t⟶∞

a0 + a1 + · · · + a2t + 2N0

a0 + a1 + · · · + a2t + a2t+1

� lim
t⟶∞

a0 + a1 + · · · + a2t + 2N0

a0 + a1 + · · · + a2t + 2a0+a1+···+a2t

� 0,

(37)
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which is in contrast with d(B)> 0. Another proof can be
obtained similarly. Since n0 ∈ B∩E and m0 ∈ B∩F,
d(f

n0
ω (z), ξn0

)< ε1 and d(f
m0
ω (z), ξm0

)< ε1, where ξn0
�

f
n0− E2t0
p (x) and ξm0

� f
m0− E2s0+1
q (y). Owing to x, y ∈ A, there

are 0≤ n∗ and m∗ ≤N0 such that d(f
n0− E2t0+n∗

p (x), x)< (ε/2)

and d(f
m0− E2s0+1+m∗

q (y), y)< (ε/2). Obviously, f
n0− 1
ω (z),

ξn0
,ξn0+1, · · · ,ξn0+n∗, · · · ,ξn0+N0

 and f
m0− 1
ω (z),ξm0

,ξm0+1, · · · ,

ξm0+m∗, · · · ,ξm0+N0
 are ε1-chains. According to Lemma 1,

d(f
n0+n∗

ω (z), f
n0− E2t0+n∗

p (x))<ε/2andd(f
m0+m∗

ω (z),

f
m0− E2s0+1+m∗

q (y))<(ε/2). -erefore, d(f
n0+n∗

ω (z),x)<εand
d(f

m0+m∗

ω (z),y)<ε. -en, f
n0+n∗

ω (z) ∈B(x,ε)⊂U and
f

m0+m∗

ω (z) ∈B(y,ε)⊂V. Obviously, m0 + m∗>n0 + n∗. Put
N∗ � m0 + m∗ − (n0 + n∗) and ω1 �ω1

0ω
1
1 · · ·ω1

N∗− 1 · · · �

ωn0+n∗ · · ·ωm0+m∗− 1 · · ·, then fN∗

ω1 (f
n0+n∗

ω (z)) � f
m0+m∗

ω (z) ∈
B(y,ε)⊂V. Hence, fN∗

ω1 (U)∩V≠∅.
We write W � fN∗

ω1 (U)∩V≠∅. As f0, f1 are open sets,
fN∗

ω1 (U) is an open set. -erefore, W is an open set. -en,
there are z∗ ∈W∩A and ω2 ∈ Σ2 such that
J � n∈N: fn

ω2(z∗)∈W  is a syndetic set. For any m∈ J,
fm
ω2(W)∩W≠∅. -ere is ω3 �ω3

0ω3
1 · · · �ω1

0ω1
1 · · ·

ω1
N∗− 1ω

2 ∈Σ2 such that∅≠fm
ω2(W)∩W � fm

ω2 (fN∗

ω1 (U)∩V)∩
fN∗

ω1 (U)∩V⊂fN∗+m
ω3 (U)∩V. Since N∗+m: m∈ J{ }⊂

N(U,V) � n∈N: fN∗+m
ω3 (U)∩V≠∅ , N(U,V) is a syndetic

set. AsU and V are arbitrary, IFS(f0,f1) is strongly ergodic.
-en, we will prove if IFS(f0, f1) has the d-shadowing

property, then the conclusion is true. Put a0 � 0, a1 � N0,

a2 � 2· N0, . . . , an � n · N0, andEn � a0 + a1 + · · · + an.

E � 

+∞

n�0
E2n, E2n + 1, · · · , E2n+1 − 1 ,

F � 

+∞

n�0
E2n+1, E2n+1 + 1, · · · , E2n+2 − 1 .

(38)

We can see that d(E) � (1/2) and d(F) � (1/2). -en,
the proof of this case is the same as for case one.

Theorem 6. Let f0, f1 be open maps. For IFS(f0, f1) with
the d-shadowing property (respectively, d-shadowing prop-
erty), if A ⊂ X is dense in X, and s is a minimal point of f0 or
f1 for any s ∈ A, then Fk is strongly ergodic.

Proof. According to the condition, for any s ∈ S, s is a
minimal point of f0 or f1. For any k ∈ Z+, it is well known
that AP(f) � AP(fk) and then s is a minimal point of fk

0 or
fk
1. We can combine Corollary 1 and-eorem 5.-en,Fk is

strongly ergodic.
A point x ∈ X is called a stable point of IFS(f0, f1) if for

any ε> 0, there is δ > 0 satisfying d(fn
ω(x), fn

ω(y))< ε for
any y ∈ X with d(x, y)< δ and any ω ∈ Σ2, n ∈ N.
IFS(f0, f1) is called Lyapunov stable if any point of X is a
stable point of IFS(f0, f1).

Theorem 7. For IFS(f0, f1) with the d-shadowing property
(respectively, d-shadowing property), if IFS(f0, f1) is Lya-
punov stable, and f0 or f1 is surjective, then IFS(f0, f1) is
transitive. Hence, Fk is transitive for any k ∈ Z+.

Proof. Suppose that U and V are two nonempty open subsets
of X, then there are x ∈ U, y ∈ V, and ε> 0 such that
B(x, ε) ⊂ U andB(y, ε) ⊂ V, where x, y ∈ X are stable points
of IFS(f0, f1). -ere is ε1 > 0 such that for any u, v ∈ X,

d(u, v)< ε1, then d f
n
ω(u), f

n
ω(v)( <

ε
2
, for all n � 0, 1, 2 . . . .

(39)

Without loss of generality, suppose that f1 is surjective.
-en, there is a sequence y− j 

j≥ 0 such that y− j+1 � f(y− j)

for all j ∈ Z+ and y0 � y. Firstly, we will prove if IFS(f0, f1)

has the d-shadowing property, then the conclusion is true.
Put a0 � 0, a1 � 1, a2 � 2a0+a1 , . . . ,an � 2a0+a1+a2+···+an− 1 ,

and en � a0 + a1 + · · · + an Put

E � 

+∞

n�0
e2n, e2n + 1, · · · , e2n+1 − 1 ,

F � 

+∞

n�0
e2n+1, e2n+1 + 1, · · · , e2n+2 − 1 ,

(40)

then we can see that d(E) � 1 and d(F) � 1. For ε1 > 0, we
can find a number δ > 0 as in the definition of the
d-shadowing property for IFS(f0, f1). Construct a sequence
(ξi)i≥ 0 as follows:

ξi �
f

i− e2n

0 (x), e2n ≤ i< e2n+1,

yi− e2n+2
, e2n+1 ≤ i< e2n+2.

⎧⎨

⎩ (41)

-at is to say, ξi i≥ 0 � x, y− 1, x, · · · , f
a3− 1
0 (x),

y− a4
, · · · y− 1, · · ·. -en, ξi i≥ 0 is a δ-ergodic-pseudo-orbit

for IFS(f0, f1), i.e., there is ω1 � ω1
0ω

1
1ω

1
2 · · · ∈ Σ2 such that

lim
n⟶∞

1
n

i ∈ N: 0≤ i< n, d fω1
i
ξi( , ξi+1 < δ 




� 1,

(42)

where

ω1
i �

0, ξi � f
i− e2n

0 (x),

1, ξi � yi− e2n+2
.

⎧⎨

⎩ (43)

Since IFS(f0, f1) has the d-shadowing property, there is
z0 ∈ X such that

lim inf
n⟶∞

1
n

i ∈ N: 0≤ i< n, d f
i
ω1 z0( , ξi < ε1 



> 0. (44)

Let B � 0≤ i< n: d(fi
ω1(z0), ξi)< ε1 , then d(B)> 0.

According to Lemma 2, both B∩E andB∩F are infinite.
-erefore, there are n0 ∈ B∩E andm0 ∈ B∩F such that
e2t0
≤n0<e2t0+1ande2s0+1≤m0<e2s0+2, where t0, s0 ∈N, t0<s0;

then, d(f
n0
ω1(z0),ξn0

)<ε1 and d(f
m0
ω1 (z0),ξm0

)<ε1, where
ξn0

� f
n0− e2t0
0 (x) and ξm0

� ym0− e2s0+2
. According to (2.1),

d(f
e2s0+2

ω1 (z0),y) � d(fω1
e2s0+2− 1
∘ · · ·∘fω1

m0
(f

m0
ω1 (z0)), fω1

e2s0+2− 1
∘
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· · ·∘fω1
m0

(ym0− e2s0+2
))<(ε/2) and d(fω1

e2s0+2− 1
∘ · · ·∘ fω1

n0

(f
n0
ω1(z0)),fω1

e2s0+2− 1
∘ · · ·∘fω1

n0
(f

n0− e2t0
0 (x))) � d(f

e2s0+2

ω1 (z0),

fω1
e2s0+2− 1
∘ · · ·∘fω1

n0
(f

n0− e2t0
0 (x))) � d(f

e2s0+2

ω1 (z0),fω1
e2s0+2− 1
∘ · · ·∘

fω1
n0

(fω1
n0 − 1
∘ · · ·∘fω1

e2t0
(x)))<(ε/2).

-en, d(y, fω1
e2s0+2− 1
∘ · · · ∘fω1

n0
(fω1

n0 − 1
∘ · · · ∘fω1

e2t0
(x)))< ε.

Put ω2 � ω2
0ω

2
1 · · · � ω1

e2t0
ω1

e2t0+1
· · · ∈ Σ2 and N0 � e2s0+2 − e2t0

,

then f
N0
ω2 (U)∩V≠∅. Hence, IFS(f0, f1) is transitive.

According to Corollary 1, Fk is transitive for any k ∈ Z+.
-en, we will prove if IFS(f0, f1) has the d-shadowing

property, then the conclusion is true. Put a0 � 0, a1 � 1, a2 �

2, . . . , an � n, andEn � a0 + a1 + · · · + an.

E � 

+∞

n�0
E2n, E2n + 1, . . . , E2n+1 − 1 ,

F � 

+∞

n�0
E2n+1, E2n+1 + 1, . . . , E2n+2 − 1 .

(45)

We can see that d(E) � (1/2) and d(F) � (1/2). -en,
the proof of this case is the same as for case one.

3. The Average Shadowing
Property for IFS(f0, f1)

Bahabadi [10] introduced the definition of the average
shadowing property for IFS(f0, f1). In this section, we will
research the relationship among the average shadowing
property, ergodicity, and strong ergodicity.

Definition 4. A sequence ξi i≥ 0 is called a δ-average-
pseudo-orbit for IFS(f0, f1) if there are ω ∈ Σ2 and N ∈ Z+

such that for every n≥N,

1
n



n− 1

i�0
d fωi

ξi( , ξi+1 < δ. (46)

Definition 5. IFS(f0, f1) has the average shadowing
property (ASP) if for any ε> 0, there is δ > 0 such that every
δ-average-pseudo-orbit ξi i≥ 0 is ε-shadowed on average by
a point z ∈ X, i.e., there is ω ∈ Σ2 such that

lim sup
n⟶∞

1
n



n− 1

i�0
d f

i
ω(z), ξi < ε. (47)

Theorem 8. For IFS(f0, f1) with the ASP, if S ⊂ X is dense
in X, and s is a quasi-weakly almost periodic point of f0 or f1
for any s ∈ S, then IFS(f0, f1) is ergodic.

Proof. Suppose that U, V ⊂ X are two nonempty open sets.
We can find two points u ∈ U, v ∈ V, and ε> 0 such that
B(u, ε) ⊂ U andB(v, ε) ⊂ V. -ere is ε0 > 0 such that
x ∈ B(x, ε0) ⊂ B(u, (ε/2)), y ∈ B(y, ε0) ⊂ B(v, (ε/2)), where
x, y ∈ S. -erefore, J

p
x � i ∈N: fi

p(x) ∈B(u,(ε/2))  and
J

q
y � i ∈N: fi

q(y) ∈B(v,(ε/2))  have the positive upper

density, where p,q � 0or1. We can find k1,k2 ∈N such that
d(J

p
x) � α>(4/k1) ≥(4/k)>0, d(J

q
y) � β>4/k2≥4/k>0,

wherek �max k1,k2 . Since IFS(f0,f1) has the ASP, there
is δ>0 such that every δ-average-pseudo-orbit of IFS(f0,f1)

is (ϵ/2k)-shadowed on average by a point inX. We can find a
number N0 ∈N such that (3 D/N0)<δ, and N0 � t · k,
where D � diam(X), t ∈Z+. Define the sequence ξi i≥0 as
follows: ξi i≥0 � x,f p(x), · · · ,f

N0− 1
p (x), y,fq(y), · · · ,

f
N0− 1
q (y),f

N0
p (x), · · ·, f

2N0− 1
p (x),f

N0
q (y), · · ·.

We can choose

ωi �
p, d fp ξi( , ξi+1 < δ,

q, d fp ξi( , ξi+1 ≥ δ.

⎧⎪⎨

⎪⎩
(48)

ω � ω0ω1ω2 · · · ∈ Σ2. Obviously, for n≥N0,

1
n



n− 1

i�0
d fωi

ξi( , ξi+1 ≤
n/N0  · 3D

n
≤

3D

N0
< δ. (49)

So ξi i≥ 0 is a δ-average-pseudo-orbit for IFS(f0, f1).
Hence, there are z ∈ X andω1 ∈ Σ2 such that

lim sup
n⟶∞

1
n



n− 1

i�0
d f

i
ω1(z), ξi <

ε
2k

. (50)

Since d(J
p
x) � α>(4/k1)≥(4/k)>0,d (J

q
y) � β>(4/k2)≥

(4/k)>0,k �max k1,k2 , we have d(W
p
x)>(2/k),

d(W
q
y)>(2/k), where W

p
x � i ∈N: ξi ∈B(u,(ε/2)) , W

q
y �

i ∈N: ξi ∈B(v,(ε/2)) . Put F � i ∈N: d(fi
ω1(z),ξi)≥(ε/2) .

-en, d(F)<(1/k). Suppose on the contrary that
d(F)≥(1/k), then

lim sup
n⟶∞

1
n



n− 1

i�0
d f

i
ω1(z), ξi 

≥ lim sup
n⟶∞

1
n

|F∩ 0, 1, . . . , n − 1{ }| ·
ε
2



+ F
c ∩ 0, 1, . . . , n − 1{ }


 · 0

≥
1
k

·
ε
2

�
ε
2k

,

(51)

which is in contrast with (50). So d(F)< (1/k). -erefore,
d(Fc) � 1 − d(F)≥ 1 − (1/k) � (k − 1/k). According to
Lemma 2, d(W

p
x ∩Fc)> 0 and d(W

q
y∩Fc)> 0. -ere are

i0, j0, l, s, s> l such that f
i0
p (x) ∈ B(u, (ε/2)), f

j0
q (y) ∈

B(v, (ε/2)), and d(fl
ω1(z), ξl)< (ε/2), d(fs

ω1(z), ξs)< (ε/2),
where ξl � f

i0
p (x), ξs � f

j0
q (y). -en, d(fl

ω1(z), u)<
ε, d(fs

ω1(z), v)< ε. -erefore, fl
ω1(z) ∈ B(u, ε) ⊂ U and

fω1
s− 1
∘ · · · ∘fω1

l
fl
ω1(z) � fs

ω1(z) ∈ B(v, ε) ⊂ V. Let n0 � s − l,
and ω2 � ω2

0ω
2
1 · · · � ω1

l ω
1
l+1 · · ·ω1

s− 1 · · · ∈ Σ2, then N(U, V) �

n0 ∈ Z+: f
n0
ω2(U)∩V,ω2 ∈ Σ2 ≠∅. Obviously,
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lim sup
n⟶∞

n0: n0 � s − l, s> l, l ∈W
p
x ∩Fc, s ∈W

q
y ∩Fc ∩ 0, . . . , n − 1{ }





n
> 0. (52)

-erefore, d(N(U, V)) > 0. As U andV are arbitrary,
IFS(f0, f1) is ergodic.

Theorem 9. Let f0, f1 be open maps. For IFS(f0, f1) with
the ASP, if S ⊂ X is dense in X, and s is a minimal point of f0
or f1 for any s ∈ S, then IFS(f0, f1) is strongly ergodic.

Proof. Suppose thatU andV are two nonempty open subsets
of X. Obviously, the syndetic set has the positive upper
density. By -eorem 8, there are n0 ∈ N,ω2 � ω
2
0ω

2
1 · · ·ω2

n0− 1 · · · ∈ Σ2 such that f
n0
ω2(U)∩V≠∅. We write

W � f
n0
ω2(U)∩V≠∅. As f0, f1 are open sets, f

n0
ω2(U) is an

open set. -erefore, W is an open set. -en, there are
z∗ ∈W∩S, ω3 ∈ Σ2 such that J � n ∈ N: fn

ω3(z∗) ∈W  is a
syndetic set. If m ∈ J, then fm

ω3(W)∩W≠∅. -ere is ω4 �

ω4
0ω

4
1 · · · �ω2

0ω
2
1 · · ·ω2

n0− 1ω
3 ∈Σ2 such that ∅≠fm

ω3(W)∩W �

fm
ω3 (f

n0
ω2(U)∩V)∩fn0

ω2(U)∩V⊂f
n0+m

ω4 (U)∩V. Since n0+

m: m ∈ J}⊂N(U,V) � n ∈N: f
n0+m

ω4 (U)∩V≠∅ , N(U,V) is
a syndetic set. As U and V are arbitrary, IFS(f0,f1) is
strongly ergodic.

Lemma 4 (Theorem 3.1 in [13]). If IFS(f0, f1) has the ASP,
then Fk has the ASP for any k ∈ Z+.

Theorem 10. Let f0, f1 be open maps. For IFS(f0, f1) with
the ASP, if S ⊂ X is dense in X, and s is a minimal point of f0
or f1 for any s ∈ S, then Fk is strongly ergodic.

Proof. According to the condition, for any s ∈ S, s is a
minimal point of f0 or f1. For any k ∈ Z+, it is well known
that AP(f) � AP(fk) and then s is a minimal point of fk

0 or
fk
1. We can combine Lemma 4 and -eorem 9. -en, Fk is

strongly ergodic.

4. A Remark on the Asymptotic Average
Shadowing Property for IFS(f0, f1)

-edefinition of the asymptotic average shadowing property
for IFS(f0, f1) is introduced by Nia [11]. Here, we will come
up with a situation to show that an example does not have
the asymptotic average shadowing property.

Definition 6. A sequence ξi i≥ 0 is called an asymptotic
average pseudo-orbit for IFS(f0, f1) if there is ω ∈ Σ2 such
that

lim
n⟶∞

1
n



n− 1

i�0
d fωi

ξi( , ξi+1  � 0. (53)

Definition 7. IFS(f0, f1) has the asymptotic average
shadowing property (AASP) if every asymptotic average

pseudo-orbit is shadowed on average by a point z ∈ X, i.e.,
there is ω ∈ Σ2 such that

lim
n⟶∞

1
n



n− 1

i�0
d f

i
ω(z), ξi  � 0. (54)

For any A, B ⊂ X,

d(A, B) � min
a∈A,b∈B

d(a, b). (55)

Theorem 11. If U ⊂ X is an open set, then U is invariant
under ft(t � 0, 1)(ft(U) ⊂ U, t � 0, 1). Assume that there is
x ∈ X such that fi

0(x) i≥ 0 ⊂ U or fi
1(x) i≥ 0 ⊂ U. Suppose

that y ∈ X is a point whose orbit is metrically separated from
U (for any ω ∈ 

2, d( f
j
ω(y) 

j≥ 0, U)> 0). Ien, IFS(f0, f1)

does not have the AASP.

Proof. Without loss of generality, suppose fi
0(x) i≥0 ⊂U.

Construct ξi i≥0 as follows: ξi i≥0� x,y,x,f0(x),y, f1(y),

x,f0(x),f2
0(x), f3

0(x),y,f1(y),f2
1(y),f3

1(y),x, f0(x), · · ·,
f7
0(x),y, . . .}.

For any k ∈ N, we can find l ∈ N with



l

i�1
2i ≤ k≤ 

l+1

i�1
2i

. (56)

We can choose

ωi �
0, d f0 ξi( , ξi+1(  � 0,

1, d f0 ξi( , ξi+1( > 0.
 (57)

ω � ω0ω1ω2 · · · ∈ Σ2. We can see that



k− 1

i�0
d fωi

ξi( , ξi+1 ≤ 3l · D, D � diam(X). (58)

-is implies that

lim
n⟶∞

1
n



n− 1

i�0
d fωi

ξi( , ξi+1 ≤ lim
l⟶∞

3l · D

2l
� 0. (59)

So ξi i≥ 0 is an asymptotic average pseudo-orbit of
IFS(f0, f1). We will prove that IFS(f0, f1) does not have
the AASP. Suppose that IFS(f0, f1) has the AASP. For
asymptotic average pseudo-orbit ξi i≥ 0, there are
z ∈ X,ω1 ∈ Σ2 such that ξi i≥ 0 is asymptotically shadowed
on average by the point z. Meanwhile, the orbit of z has to
enter U at some point. Otherwise,

1
2n



2n− 1

i�0
d f

i
ω1(z), ξi ≥

1
2

d f
j

ω1(z) 
j≥ 0, U > 0, (∀n ∈ N).

(60)
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So IFS(f0, f1) does not have the AASP. -erefore, there
is N0 ∈ N such that f

N0
ω1 (z) ∈ U. -en, fn

ω1(z) ∈ U for any
n≥N0. -erefore, for n that is large enough,

1
2n



2n− 1

i�0
d f

i
ω1(z), ξi ≥

1
4

d f
j
1(y) 

j≥ 0, U > 0, (61)

which contradicts with the hypothesis. IFS(f0, f1) does not
have the AASP.

-e following example comes from the study in [13]. It is
a vitally important example of IFS(f0, f1). It is controversial
whether it has the AASP. We can use the above theorem to
prove that it does not have the AASP.

Example 2. Let f0, f1: [0, 1]⟶ [0, 1] be two continuous
maps such that f1(x)>f0(x)> x if and only if
x ∈ [0, (1/2)) andf0(0) � f1(0) � (1/4). Obviously, we can
see that fi

0(1/8) i≥ 0 ⊂ U � (0, (1/2)), ft(U) ⊂ U, where
t � 0, 1. And for any ω ∈ 

2, d( f
j
ω(7/8) 

j≥ 0, U)> 0.
According to -eorem 11, IFS(f0, f1) does not have the
AASP.
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