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In this paper, we study the nonlinear adaptive boundary control problem of the modi�ed generalized Korteweg–de Vries–Burgers
equation (MGKdVB) when the spatial domain is [0, 1]. Four di�erent nonlinear adaptive control laws are designed for the
MGKdVB equation without assuming the nullity of the physical parameters ], μ, c1, and c2 and depending whether these
parameters are known or unknown. en, using Lyapunov theory, the L2-global exponential stability of the solution is proven in
each case. Finally, numerical simulations are presented to illustrate the developed control schemes.

1. Introduction

In various problems of �uid dynamics and physics, the evolution
of small amplitude long waves is described by the so-called
dispersive equations which are governed by nonlinear partial
di�erential equations (PDEs) [1–5]. is topic has attracted the
e�orts of many researchers from di�erent disciplines to study
the dynamics and the control problem of these dispersive
equations. e analysis of such equations usually combines
rigorous techniques of modern analysis and physics promoting
numerous interdisciplinary research articles in the �eld.

In this paper, we will explore the nonlinear adaptive
stabilization of the following form of the dispersive equation
called the modi�ed generalized Korteweg–de Vries–Burgers
(MGKdVB) equation:
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subject to the boundary conditions

u(0, t) � 0, (2)
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(1, t) � f1(t), (4)

z2u

zx2
(1, t) � f2(t), (5)

and the initial condition

u(x, 0) � u0(x). (6)

Here, the variable u � u(x, t) is a real-valued function
that may represent the displacement of the medium or the
velocity and depends on two real variables x and t, where
x ∈ [0, 1] is the distance in the direction of propagation of
the medium and t≥ 0 is the elapsed time. Furthermore, α is
assumed throughout this article as a positive integer and the
physical parameters c1, ], c2, and µ are positive real numbers
which represent nonlinearity, dissipation (di�usion), and
dispersion coe�cients, respectively. Last, f1(t) and f2(t)
are nonlinear boundary control functions to be designed so
that the solutions of the whole system of equations are stable.

Recently, the derivation of the MGKdVB equation (1)
when α � 3 has been presented by means of the long-wave
approximation and perturbation method [6]. Furthermore,
the existence and uniqueness of solutions of the MGKdVB
equation (1) have been investigated in [7] where linear
boundary conditions are considered. Since our main concern
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in the current work is the adaptive stabilization of the
MGKdVB equation (1), we shall assume the existence of a
unique regular solution u(x, t) of the MGKdVB equation (1).

As several variants of equation (1) have been actively and
continuously used, we are going to highlight some results
obtained in the literature. For instance, setting μ � 0, α � 1,
c1 � 1, and c2 � 0 reduces equation (1) to the well-known
Burgers equation. During the last decades, many researchers
devoted their time to study this equation including the
adaptive and nonadaptive boundary control problem
[1, 8–16]. In 1999, the boundary control of the Burgers
equationwas tackled by designing a nonlinear adaptive control
law when the viscosity is unknown [9]. In 2001, an adaptation
law for Burgers equation, where the viscosity is unknown was
proposed, and the L2- and H1-global stability of the solution
were proven [12]. In [14, 15], the generalized Burgers equation
(α≥ 1, μ � 0, c1 � 1, and c2 � 0) is considered under the
action of an adaptive control when all the parameters of the
equation are unknown.+en, the L2-regulation of the solution
to the steady state solution was achieved. Furthermore, the
global control of the generalized Burgers equation was also
studied both analytically and numerically. +e distributed and
boundary stabilization problems of the Burgers equation have
been considered in [16].

+e so-called Kuramoto–Sivashinsky (KS) is obtained by
setting μ � 0, c1 � c2 � 1, α � 1, and ]< 0 in equation (1).
Such an equation was first derived in 1978 by Kuramoto [3] to
model a chaotic state in a chemical reaction system. It was also
derived in 1980 by Sivashinsky [4] to understand the dynamics
of flame front propagation. Since then many researchers
further explored the KS equation [17–32]. For instance, as-
suming a space variable x ∈ R, the Cauchy problem of the KS
equation has been proven to admit a unique smooth and
exponentially decaying solution that is continuously depen-
dent on its initial data [17]. In turn, a distributed output
feedback control has been put forward to obtain the global
stabilization of the KS equation [22]. Such a stabilization result
has been improved by proposing appropriate boundary
controls [23]. In [24], an adaptive control law when the pa-
rameters of the KS equation are unknown has been designed
and the global asymptotic stability and the convergence of
solutions to zero have been established.

In addition, setting μ> 0, c1 � c2 � 1, α � 1, and ]< 0 in
equation (1), the MGKdVB equation reduces to the gener-
alized Kuramoto–Sivashinsky (GKS) equation which was used
to model turbulence. +is equation has received considerable
attention bymany researchers [19, 20, 26, 27, 30]. For instance,
Kudryashov [19] investigated several classes of analytical so-
lutions of the GKS equation and Guo and Xiang [20] proved
the existence and uniqueness of the global and smooth so-
lution for the periodic initial value problem of the GKS
equation. In 2002, Iosevich and Miller [26] analyzed the case
where the dispersive effects cannot be neglected and obtained
solutions to the KdV equation as the limit of the GKS equation
when the dispersive and dissipative terms are large. Later on,
Larkin [27] considered the GKS equation in a bounded do-
main as a model of long waves in a viscous fluid flow down on
an inclined plane and proved that the solutions to a mixed
problem for the KdV equation may be obtained as singular

limits of solutions to a corresponding mixed problem for the
KS equation.

In turn, when c1 � 1 and c2 � 0 in equation (1), the
MGKdVB equation leads to the generalized Korteweg–de
Vries–Burgers (GKdVB) equation. +is equation is useful in
modelingmany physical phenomena such as the unidirectional
propagation of planar waves [33], strain waves and longitudinal
deformation in a nonlinear elastic rod [34], and pressure waves
in a liquid-gas bubble mixture [5]. Note that there has been a
growing interest in the analysis and control of the GKdVB
equation [2, 33, 35–41]. Specifically, long-time behavior of
periodic solutions of the GKdVB equation has been investi-
gated [2]. +en, the global solutions of the periodic GKdVB
equation when α< 4 are obtained and the periodic initial value
problem is shown to be well-posed for sufficiently large initial
data in the case when α≥ 4 [33]. In the context of control
systems, nonadaptive boundary control laws have been pro-
posed in [38, 40, 41, 42]. Smaoui and Al-Jamal [38] designed
three nonadaptive boundary control laws to show that the
dynamics of the GKdVB equation is globally exponentially
stable in L2(0, 1) and globally asymptotically stable and
semiglobally exponentially stable in H1(0, 1) when α is a
positive integer. +en, the controllers developed in [38] have
been improved when α is even and when α is odd [41]. Later
on, Smaoui et al. [40] designed three different nonadaptive
boundary control laws, when α is a positive real number, and
showed numerically for certain values of α that the proposed
controllers outperform those designed in [38]. On the other
hand, the adaptive boundary control of the GKdVB equation
was discussed in [39, 42] when either the kinematic viscosity ν
or the dynamic viscosity µ is unknown or when both viscosities
] and µ are unknown.

Up to our knowledge, the adaptive boundary stabiliza-
tion problem of the MGKdVB equation has not been ex-
amined in the literature. In fact, as previously discussed, the
adaptive control stabilization of the MGKdVB equation (1)
has been dealt with in the following specific cases: μ � c2 � 0
in [9, 12, 14, 15], c2 � 0 in [39, 42], and μ � 0 in [24].

In contrast to [9, 12, 14, 15, 24, 39, 42], the novelty of this
paper is to consider the adaptive boundary control of the
MGKdVB equation (1) by designing four different nonlinear
boundary control laws without assuming the nullity of the
physical parameters and depending whether these param-
eters are known or unknown (i.e., when ] is unknown or c1
is unknown or ] and c1 are unknown or when ], c1, µ, and c2
are unknown). Furthermore, an exhaustive list of numerical
simulations will be presented for each proposed control to
support and validate the theoretical outcome.

+is paper is arranged as follows. In Section 2, the first
adaptive boundary nonlinear control law is proposed for the
MGKdVB equation when the parameter ν is unknown. In
Section 3, the second adaptive nonlinear boundary control
law is designed for the MGKdVB equation when the pa-
rameter c1 is unknown. In Section 4, the third adaptive
nonlinear boundary control law is designed for the
MGKdVB equation when the parameters ] and c1 are un-
known. In Section 5, the fourth adaptive nonlinear boundary
control law is designed for the MGKdVB equation when the
parameters ], μ, c1, and c2 are unknown. Also, the global
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exponential stability of the solutions in L2(0, 1) is presented
analytically and numerically for each of the designed con-
troller proposed in Sections 2–5. Section 6 compares the
rates of convergence of the solutions of the four adaptive
presented controllers provided in Sections 2–5. Finally, some
concluding remarks are presented in Section 7.

2. Design of the First Nonlinear
Adaptive Controller

In this section, we present the first nonlinear adaptive
boundary control law for the MGKdVB equation. A control
law for the MGKdVB equation is proposed when the pa-
rameter ] is unknown. +e next theorem illustrates the first
result of our nonlinear adaptive boundary control law.

Theorem 1. *e MGKdVB equation given by equation (1),
subject to the boundary conditions stated in equations (2)–(5)
and the initial condition u0 ∈ L2(0, 1), is globally exponen-
tially stable in L2(0, 1), provided that the following nonlinear
control law is proposed:

f1(t) � − η1u(1, t), (7)

f2(t) �
− c1

(α + 2) μ + c2η1( 
u
α+1

(1, t)

−
c2

μ + c2η1( 

z3u

zx3 (1, t) +
μη21/2(  + μη2( 

μ + c2η1( 
u(1, t),

(8)

where
dη1
dt

� r1u
2
(1, t), r1 > 0, (9)

dη2
dt

� r2u
2
(1, t), r2 > 0. (10)

Proof 1. Let

V(t) �
1
2


1

0
u
2
(x, t)dx, (11)

be a Lyapunov function candidate.
Differentiating V(t) with respect to time, we obtain

dV
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� 

1
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(x, t)u(x, t)dx. (12)

Referring to equation (1), one can write equation (12) as
follows:
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Integrating by parts and using the boundary conditions
(2)–(5), we obtain

dV

dt
≤ − ]

1

0
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2

dx + ]u(1, t)f1(t) − μu(1, t)f2(t)

+
μ
2
f
2
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α + 2
u
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(1, t) − c2u(1, t)
z3u
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+ c2f1(t)f2(t).

(14)

Using control laws (7) and (8), we obtain

dV
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≤ − ]

1

0
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2

dx − ]η1u
2
(1, t) − μη2u

2
(1, t). (15)

Applying Poincaré’s inequality gives

dV

dt
≤ − ]

1

0
u
2dx − ]η1u

2
(1, t) − μη2u

2
(1, t). (16)

Now let E(t) be the following energy function:

E(t) � V(t) +
1

2vr1
vη1 − a( 

2
+

1
2μr2

μη2 − b( 
2
, a≥ 0, b≥ 0.

(17)

It is clear from this equation that E(t)≥ 0, ∀t≥ 0. Dif-
ferentiating E(t) with respect to time yields:

dE

dt
�
dV

dt
+
1
r1

dη1
dt

]η1 − a(  +
1
r2

dη2
dt

μη2 − b( . (18)

By virtue of inequality (16) and equations (9) and (10),
we deduce from equation (18) that

dE

dt
≤ − ]

1

0
u
2dx − au

2
(1, t) − bu

2
(1, t). (19)

Since − au2(1, t) − bu2(1, t)≤ 0, for all t≥ 0 then equa-
tion (19) reduces to

dE

dt
≤ − ]

1

0
u
2dx≤ 0, ∀t≥ 0. (20)

+ereby, E(t)≤E(0), ∀t≥ 0 and hence both of η1 and η2
are bounded for all t> 0.+is implies that u(1, t) ∈ L2(0,∞).
Invoking inequality (16), we obtain

dV

dt
≤ − 2]V(t) − ]η1 + μη2( u

2
(1, t). (21)

Applying Gronwall–Bellman’s inequality, we obtain

V(t)≤V(0)e
− 2]t

+ C 
t

0
e

− 2](t− τ)
u
2
(1, τ)dτ, (22)

where C � supt>0|]η1(t) + μη2(t)|. Since u(1, t) ∈ L2(0,∞),
we conclude that V(t) approaches zero as t⟶∞.
+erefore, u(x, t) exponentially tends to zero as
t⟶∞. □

In the next subsection, we give a numerical presentation
of the dynamical behavior of the MGKdVB equation by
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applying the first nonlinear adaptive boundary control law
presented in equations (7) and (8).

2.1. Numerical Solutions. Numerical solutions for the
MGKdVB equation (i.e., equations (1)–(6)) under the presence
of the controls f1(t) and f2(t) as presented by equations (7)
and (8) were simulated using COMSOLMultiphysics software.
+e solutions are computed for α � 1, 2, 3, and 4.

From equations (7) and (8), one can observe that the first
adaptive control law proposed in +eorem 1 does not re-
quire the preknowledge of the kinematic viscosity ] which is
assumed to be unknown. Nevertheless, for simulation
purposes, the value of v is set to be 0.01 in the MGKdVB
equation (i.e., equation (1)). +e dynamic viscosity µ is
chosen to be 0.001. +e parameters c1 and c2 are set to be 1
and 0.0005, respectively. Moreover, r1 and r2 are chosen to
equal 0.2. +e initial values of η1 and η2 are set to be such as
η1(0) � 0.2 and η2(0) � 0.1. Moreover, let the initial datum
u(x, 0) � sin(πx). Figures 1(a)–1(d) show a 3D view of the
solution of the MGKdVB equation utilizing the control law
presented in +eorem 1 for several values of α. Figure 2
shows the L2-norm of the solutions. It can be noticed from
these figures that as α increases, the decay rate of the solution
to the steady state solution decreases. +is is due to the effect
of the nonlinear term which causes the instability in the
behavior of the MGKdVB equation.

Figures 3 and 4 depict the behavior of the functions η1
and η2 that are utilized in the first control law. Figure 3
shows that, for 0< t≤ 5, _η1 decreases as the value of α in-
creases from 2 to 4 and increases after t≃ 5. Figure 4 in-
dicates that _η2 behaves similar to _η1 as α increases. +e
choice of the feedback gains r1 and r2 will definitely affect the
values of η1 and η2 and therefore the stability of the solution.
Fixing the initial conditions, η1(0) and η2(0), and increasing
the values of r1 and r2 will increase the values of η1 and η2
which in turn speeds up the convergence of the solution to
zero as can be deduced from inequality (21).

It should be noted that the parameters of the controllers
f1(t) and f2(t) are η1, η2, c1, c2, µ, and α. For given values
of c1, c2, µ, and α, the parameters η1 and η2 can be computed
from the uncoupled system of ODE equations (9) and (10)
once the value at the right boundary u(1, t) is known, the
control gains r1 and r2 are chosen, and the initial conditions
η1(0) and η2(0) are fixed. When these parameters are
evaluated, the controllers f1(t) and f2(t) can be easily
computed using equations (7) and (8).

3. Design of the Second Nonlinear
Adaptive Controller

In this section, we present the second nonlinear adaptive
boundary control law for the MGKdVB equation. A control
scheme for the MGKdVB equation is proposed when the
parameter c1 is unknown. Furthermore, numerical results will
be also discussed to reveal the effectiveness of this control law.

+e following theorem illustrates the result of our second
nonlinear adaptive boundary control.

Theorem 2. *eMGKdVB equation given by equation (1) with
the boundary conditions given by equations (2)–(5) and the
initial condition u0 ∈ L2(0, 1) is globally exponentially stable in
the L2(0, 1), by considering the following nonlinear control law:

f1(t) � −
η1
]

u(1, t), (23)

f2(t) �
μη21

2v c2η1 + ]μ( 
u(1, t) −

]c2

c2η1 + ]μ
z3u
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+
]η2

c2η1 + ]μ
u
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(1, t),

(24)

where
dη1
dt

� r1u
2
(1, t), r1 > 0, (25)

dη2
dt

� r2u
2α+2

(1, t), r2 > 0. (26)

Proof 2. Consider

V(t) �
1
2


1

0
u
2
(x, t)dx, (27)

and differentiate V(t) with respect to time and arguing as for
estimate (14), we obtain

dV

dt
≤ − ]

1

0
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2

dx + ]u(1, t)f1(t) − μu(1, t)f2(t)

+
μ
2
f
2
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u
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(1, t) − c2u(1, t)
z3u
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+ c2f1(t)f2(t).

(28)

Using the control law given by equations (23) and (24),
inequality (28) becomes

dV

dt
≤ − ]

1

0
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zx
 

2

dx − η1u
2
(1, t) − η2u

2α+2
(1, t)

−
c1

α + 2
u
α+2
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By using Poincaré’s inequality, we obtain
dV

dt
≤ − ]

1

0
u
2dx − η1u

2
(1, t) − η2u

2α+2
(1, t) −

c1
α + 2

u
α+2

(1, t).

(30)

+e last term of inequality (30) can be bounded as
follows:

(1) If uα+2(1, t)≤ 0, then u(1, t)≤ 0, and in this case α is
odd. +erefore,

−
c1

α + 2
u
α+2

(1, t) �

��
c1

√

�����
α + 2

√ u
α+1

(1, t) 
−

��
c1

√

�����
α + 2

√ u(1, t) ≥ 0.

(31)
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Figure 1: A 3D view of the dynamics of the MGKdVB equation utilizing the first nonlinear adaptive controller μ � 0.001, c1 � 1,
c2 � 0.0005, r1 � 0.2, r2 � 0.2, and u0(x) � sin(πx). (a) α � 1; (b) α � 2; (c) α � 3; (d) α � 4.
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Figure 2:+e L2-norm of u(x, t), ‖u(x, t)‖, over time for various values of αwhen applying the first nonlinear adaptive controller μ � 0.001,
c1 � 1, c2 � 0.0005, r1 � 0.2, r2 � 0.2, and u0(x) � sin(πx).
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By using Young’s inequality, we obtain

−
c1

α + 2
u
α+2

(1, t) �

��
c1

√

�����
α + 2

√ u
α+1

(1, t) 
−

��
c1

√

�����
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√ u(1, t) 

≤
c1

2(α + 2)
u
2α+2

(1, t) +
c1

2(α + 2)
u
2
(1, t).

(32)

(2) If uα+2(1, t)≥ 0, then

−
c1

α + 2
u
α+2

(1, t)≤
��
c1

√

�����
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√ u
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(1, t) 

��
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√

�����
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≤
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u
2α+2

(1, t) +
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2(α + 2)
u
2
(1, t).

(33)

+us, in both cases, we have

−
c1

α + 2
u
α+2

(1, t)≤
c1

2(α + 2)
u
2α+2

(1, t) +
c1

2(α + 2)
u
2
(1, t).

(34)

Combining (30) and (34) gives

dV

dt
≤ − ]

1

0
u
2dx − η1u

2
(1, t) − η2u

2α+2
(1, t)

+
c1

2(α + 2)
u
2α+2

(1, t) +
c1

2(α + 2)
u
2
(1, t).

(35)

Now, let us define a nonnegative energy function E(t) as
follows:

E(t) � V(t) +
1
2r1

η1 −
c1

2(α + 2)
 

2

+
1
2r2

η2 − a −
c1

2(α + 2)
 

2

,

(36)

where a> 0.
Differentiating E(t), we obtain

dE

dt
�
dV

dt
+
1
r1

dη1
dt

η1 −
c1

2(α + 2)
 

+
1
r2

dη2
dt

η2 − a −
c1

2(α + 2)
 .

(37)

Using inequality (35) and equations (25) and (26), we
have

dE

dt
≤ − ]

1

0
u
2dx − η1u

2
(1, t) − η2u

2α+2
(1, t)

+
c1

2(α + 2)
u
2α+2

(1, t) +
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2(α + 2)
u
2
(1, t)

+ u
2
(1, t) η1 −

c1

2(α + 2)
 

+ u
2α+2

(1, t) η2 − a −
c1

2(α + 2)
 .

(38)

+e latter leads to
dE

dt
≤ − ]

1

0
u
2dx − au

2α+2
(1, t). (39)

Noting that − au2α+2(1, t)≤ 0 for all t≥ 0, the estimate
(39) gives
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Figure 3: η1 over time for various values of α when applying the
first nonlinear adaptive controller.
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dE

dt
≤ − ]

1

0
u
2dx, (40)

that is,
dE

dt
≤ − 2]V(t). (41)

Hence, E(t)≤E(0), ∀t≥ 0. One can conclude that η1
and η2 are bounded functions for all t> 0 and thus
u(1, t) ∈ L2(0,∞)∩L(2α+2)(0,∞) when α is a positive
integer.

Using inequality (35), we have
dV

dt
≤ − 2]V(t) − η1 −

c1

2(α + 2)
 u

2
(1, t)

− η2 −
c1

2(α + 2)
 u

(2α+2)
(1, t).

(42)

Exploiting the Gronwall–Bellman’s inequality, we obtain

V(t)≤V(0)e
− 2]t

+ C 
t

0
e

− 2](t− τ)
u
2
(1, τ) + u

2α+2
(1, τ) dτ,

(43)

where C�max{supt>0|η1(t)− (c1/(2(α+2)))|, supt>0|η2(t)−

(c1/(2(α+2)))|}.
Using the fact that u(1, t) ∈ L2(0,∞)∩L(2α+2)(0,∞),

we conclude that V(t)⟶ 0 exponentially as t⟶∞.
Hence, u(x, t) exponentially tends to zero as t⟶∞. □

In the next subsection, we give a numerical presentation
of the dynamical behavior of the MGKdVB equation when
using the second nonlinear adaptive boundary control law
presented in equations (23) and (24).

3.1. Numerical Solutions. Numerical solutions for the
MGKdVB equation (i.e., equations (1)–(8)) with the controls
f1(t) and f2(t) as presented by equations (23) and (24)
were simulated using COMSOL Multiphysics software. +e
solutions are computed for α � 1, 2, 3, and 4.

It follows from equations (23) and (24) that the pre-
knowledge of the parameter c1 is not required in the second
adaptive control law proposed in +eorem 2. However, the
value of c1 is set to be 1 in the MGKdVB equation (i.e.,
equation (1)) for simulation purposes. +e kinematic vis-
cosity ] is chosen to be 0.01 and the dynamic viscosity µ is set
to be 0.001. +e parameter c2 is chosen to be 0.0005.
Moreover, r1 and r2 are chosen to equal 0.2. +e initial
values of η1 and η2 are set to be such as η1(0) � η2(0) � 1
and u(x, 0) � sin(πx). Figures 5(a)–5(d) show a 3D view of
the solution of the MGKdVB equation under the action of
the control law presented in +eorem 2 for different values
of α. Moreover, the L2-norm of these solutions is presented
in Figure 6. It can be concluded from the figures that as α
increases, the convergence rate of the solution to the steady
state solution becomes smaller. +is is due to the presence of
the nonlinear term (uα(zu/zx)) which dominates over the
other terms in the MGKdVB equation.

Figures 7 and 8 present the behavior of the functions η1
and η2 that act in the second control law. Indeed, Figure 7
shows that the function η1 grows as the value of α increases
from 1 to 4. Unlike Figure 7, Figure 8 shows that the function
η2 decreases as the value of α increases from 1 to 4. Also, it
should be noted that the choice of the feedback gains r1 and
r2 has an impact on the values of η1 and η2 and consequently
on the stability of the solution. One can observe that fixing
the initial conditions, η1(0) and η2(0), and increasing the
values of r1 and r2 will increase the values of η1 and η2 which
in turn speeds up the convergence of the solution to zero, as
shown in estimate (42).

4. Design of the Third Nonlinear
Adaptive Controller

In this section, we present the third nonlinear adaptive
boundary control law for the MGKdVB equation. A control
scheme for the MGKdVB equation is proposed when the
parameters ] and c1 are unknown. +e following theorem
illustrates the result of our third nonlinear adaptive
boundary control law.

Theorem 3. *e MGKdVB equation given by equation (1)
with the boundary conditions given by equations (2)–(5) and
the initial condition u0 ∈ L2(0, 1) is globally exponentially
stable in the L2(0, 1), by considering the following nonlinear
control law:

f1(t) � 0, (44)

f2(t) � −
c2

μ
z3u

zx3 (1, t) + η1u(1, t) + η2u
2α+1

(1, t), (45)

where
dη1
dt

� r1u
2
(1, t), r1 > 0, (46)

dη2
dt

� r2u
2α+2

(1, t), r2 > 0. (47)

Proof 3. Let

V(t) �
1
2


1

0
u
2
(x, t)dx, (48)

be a Lyapunov function candidate. Differentiating V(t) and
utilizing a similar reasoning as in Section 2, we have the
following inequality:

dV

dt
≤ − ]

1

0

zu

zx
 

2

dx + vu(1, t)f1(t) − μu(1, t)f2(t)

+
μ
2

f
2
1(t) −

c1

α + 2
u
α+2

(1, t) − c2u(1, t)
z3u

zx3 (1, t)

+ c2f1(t)f2(t).

(49)
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Figure 5: A 3D view of the dynamics of the MGKdVB equation utilizing the second nonlinear adaptive controller ] � 0.01, μ � 0.001,
c2 � 0.0005, r1 � 0.2, r2 � 0.2, and u0(x) � sin(πx). (a) α � 1; (b) α � 2; (c) α � 3; (d) α � 4.
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Figure 6: +e L2-norm of u(x, t), ‖u(x, t)‖, over time for various values of α when applying the second nonlinear adaptive controller
μ � 0.001, ] � 0.01, c2 � 0.0005, r1 � 0.2, r2 � 0.2, and u0(x) � sin(πx).
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Using the control law given by equations (44) and (45),
the above inequality yields:

dV

dt
≤ − ]

1

0

zu

zx
 

2

dx − μη1u
2
(1, t) − μη2u

2α+2
(1, t)

−
c1

α + 2
u
α+2

(1, t).

(50)
+anks to Poincaré’s inequality, we obtain

dV

dt
≤ − ]

1

0
u
2dx − μη1u

2
(1, t) − μη2u

2α+2
(1, t)

−
c1

α + 2
u
α+2

(1, t).

(51)

Arguing as for inequality (34), the last term in (51) can be
bounded as follows:

−
c1

α + 2
u
α+2

(1, t)≤
c1

2(α + 2)
u
2α+2

(1, t) +
c1

2(α + 2)
u
2
(1, t).

(52)
+us, inequality (51) gives
dV

dt
≤ − ]

1

0
u
2dx − μη1u

2
(1, t) − μη2u

2α+2
(1, t)

+
c1

2(α + 2)
u
2α+2

(1, t) +
c1

2(α + 2)
u
2
(1, t),

(53)

that is,
dV

dt
≤ − ]

1

0
u
2dx − μη1 −

c1

2(α + 2)
 u

2
(1, t)

− μη2 +
c1

2(α + 2)
 u

2α+2
(1, t).

(54)

Now, let us define a nonnegative energy function E(t) as
follows:

E(t) � V(t) +
1

2μr1
μη1 − a −

c1

2(α + 2)
 

2

+
1

2μr2
μη2 − b −

c1

2(α + 2)
 

2

,

(55)

where a, b> 0.
Differentiating E(t) with respect to time, we obtain

dE

dt
�
dV

dt
+
1
r1

dη1
dt

μη1 − a −
c1

2(α + 2)
 

+
1
r2

dη2
dt

μη2 − b −
c1

2(α + 2)
 .

(56)
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Figure 7: η1 over time for various values of α when applying the second nonlinear adaptive controller.
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Figure 8: η2 over time for various values of α when applying the
second nonlinear adaptive controller.
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Using inequality (54) and equations (46) and (47), we have
dE

dt
≤ − ]

1

0
u
2dx + μη1 − a −

c1

2(α + 2)
 u

2
(1, t)

− μη1 −
c1

2(α + 2)
 u

2
(1, t)

+ μη2 − b −
c1

2(α + 2)
 u

2α+2
(1, t)

− μη2 −
c1

2(α + 2)
 u

2α+2
(1, t).

(57)

Inequality (57) leads to

dE

dt
≤ − ]

1

0
u
2dx − au

2
(1, t) − bu

2α+2
(1, t). (58)

Noting that − au2(1, t) − bu2α+2(1, t)≤ 0, inequality (58)
reduces to

dE

dt
≤ − 2]V(t). (59)

Hence, E(t)≤E(0), ∀t≥ 0. One can conclude that η1
and η2 are bounded functions for all t> 0 and thus
u(1, t) ∈ L2(0,∞)∩L(2α+2)(0,∞) when α is a positive
integer.

From inequality (54), we have
dV

dt
≤ − 2]V(t) − μη1 −

c1

2(α + 2)
 u

2
(1, t)

− μη2 −
c1

2(α + 2)
 u

2α+2
(1, t).

(60)

Exploiting the Gronwall–Bellman’s inequality, we have

V(t) ≤V(0)e
− 2]t

+ C 
t

0
e

− 2](t− τ)
u
2
(1, τ) + u

2α+2
(1, τ) dτ,

(61)

where C � max{supt>0|μη1(t) − (c1/(2(α + 2)))|, supt>0
|μη2(t) − (c1/(2(α + 2)))|}.

Using the fact that u(1, t) ∈ L2(0,∞)∩L(2α+2)(0,∞), we
can show that V(t) tends to zero as t⟶∞. Hence, u(x, t)

exponentially tends to zero as t⟶∞. □

4.1. Numerical Solutions. Numerical solutions for the
MGKdVB equation (i.e., equations (1)–(6)) in the presence
of the control f1(t) and f2(t) as presented by equations
(59) and (60) were simulated using COMSOL
Multiphysics software. +e solutions are computed for
α � 1, 2, 3, and 4.

We deduce from equations (44) and (45) that the third
adaptive control law presented in+eorem 3 is independent of
the values of the kinematic viscosity ] and the parameter c1
which are assumed to be unknown. For simulation purposes,
the values of ] and c1 are chosen to be 0.01 and 1, respectively.
+e dynamic viscosity µ is set to be 0.001 and the parameter c2

is chosen to equal 0.0005. Moreover, r1 and r2 are chosen to be
0.2. +e initial values of η1 and η2 are set to be such as
η1(0) � η2(0) � 1, and u(x, 0) � sin(πx). Figures 9(a)–9(d)
show a 3D view of the solution of the MGKdVB equation
utilizing the control law presented in +eorem 3 for different
values of α. Figure 10 shows the L2-norm of these solutions. It
demonstrates how the nonlinear term (uα(zu/zx)) affects the
dynamics of the MGKdVB equation. When the value of α
increases, the solution takes a longer time to approach the
steady state solution.

Figures 11 and 12 depict the behavior of the functions η1
and η2 that are utilized in the third control law. Figure 11
indicates that the function η1 gets bigger as α increases from 1
to 4. Figure 12 indicates that η2 decreases as α increases unlike
the behavior of η1. Again similar to the previous two con-
trollers, the choice of the feedback gains r1 and r2 will defi-
nitely affect the values of η1 and η2 and therefore the stability
of the solution. Fixing the initial conditions, η1(0) and η2(0),
and increasing the values of r1 and r2 will increase the values of
η1 and η2 which in turn speeds up the convergence of the
solution to zero as can be deduced from inequality (54).

5. Design of the Fourth Nonlinear
Adaptive Controller

In this section, we present the fourth nonlinear adaptive
boundary control law for the MGKdVB equation. A control
scheme for the MGKdVB equation is proposed when all the
parameters are unknown. +e following theorem presents the
result of our fourth nonlinear adaptive boundary control law.

Theorem 4. *e MGKdVB equation given by equation (1)
with the boundary conditions given by equations (2)–(5) and
the initial condition u0 ∈ L2(0, 1) is globally exponentially
stable in the L2(0, 1)-sense, under the presence of the following
nonlinear control law:

f1(t) � 0, (62)

f2(t) � 1 + η1( 
z3u

zx3 (1, t) + η2u(1, t) + η3u
2α+1

(1, t),

(63)

where

dη1
dt

� r1u(1, t)
z3u

zx3 (1, t), r1 > 0, (64)

dη2
dt

� r2u
2
(1, t), r2 > 0, (65)

dη3
dt

� r3u
2α+2

(1, t), r3 > 0. (66)

Proof 4. Letting

V(t) �
1
2


1

0
u
2
(x, t)dx, (67)
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Figure 9: A 3D view of the dynamics of the MGKdVB equation utilizing the third nonlinear adaptive controller μ � 0.001, c2 � 0.0005,
r1 � 0.2, r2 � 0.2, and u0(x) � sin(πx). (a) α � 1; (b) α � 2; (c) α � 3; (d) α � 4.
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Figure 10: +e L2-norm of u(x, t), ‖u(x, t)‖, over time for various values of α when applying the third nonlinear adaptive controller
μ � 0.001, c2 � 0.0005, r1 � 0.2, r2 � 0.2, and u0(x) � sin(πx).
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be a Lyapunov function candidate and differentiating V(t),
we obtain as in the previous sections the following
inequality:

dV

dt
≤ − ]

1

0

zu

zx
 

2

dx + ]u(1, t)f1(t) − μu(1, t)f2(t)

+
μ
2
f
2
1(t) −

c1

α + 2
u
α+2

(1, t) − c2u(1, t)
z3u

zx3 (1, t)

+ c2f1(t)f2(t).

(68)

Using the control law given by equations (44) and (45),
the above inequality yields:

dV

dt
≤ − ]

1

0

zu

zx
 

2

dx − μu(1, t)
z3u

zx3 (1, t)

− μη1u(1, t)
z3u

zx3 (1, t) − μη2u
2
(1, t)

− μη3u
2α+2

(1, t) −
c1

α + 2
u
α+2

(1, t)

− c2u(1, t)
z3u

zx3 (1, t),

or
dV

dt
≤ − ]

1

0

zu

zx
 

2

dx + u(1, t)
z3u

zx3 (1, t)

· − μ − μη1 − c2(  − μη2u
2
(1, t) − μη3u

2α+2
(1, t)

−
c1

α + 2
u
α+2

(1, t).

(69)

In light of (34), the last term of inequality (69) can be
expanded as follows:

−
c1

α + 2
u
α+2

(1, t)≤
c1

2(α + 2)
u
2α+2

(1, t) +
c1

2(α + 2)
u
2
(1, t).

(70)

+us, inequality (69) can be written as follows:

dV

dt
≤ − v 

1

0

zu

zx
 

2

dx − u(1, t)
z3u

zx3 (1, t) μ + μη1 + c2( 

− μη2 −
c1

2(α + 2)
 u

2
(1, t) − μη3 −

c1

2(α + 2)
 u

2α+2
(1, t).

(71)

Applying Poincaré’s inequality in (71), we obtain

dV

dt
≤ − v 

1

0
u
2dx − u(1, t)

z3u

zx3 (1, t) μ + μη1 + c2( 

− μη2 −
c1

2(α + 2)
 u

2
(1, t) − μη3 −

c1

2(α + 2)
 u

2α+2
(1, t).

(72)
Now, we define an energy function E(t) as follows:

E(t) � V(t) +
1

2μr1
μ + μη1 + c2( 

2

+
1

2μr2
μη2 − a −

c1

2(α + 2)
 

2

+
1

2μr3
μη3 − b −

c1

2(α + 2)
 

2

,

(73)

where a, b> 0.
Taking the derivative of E(t), we obtain
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Figure 11: η1 over time for various values of α when applying the
third nonlinear adaptive controller.
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Figure 12: η2 over time for various values of α when applying the
third nonlinear adaptive controller.
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dE

dt
�
dV

dt
(t) +

1
r1

dη1
dt

μ + μη1 + c2( 

+
1
r2

dη2
dt

μη2 − a −
c1

2(α + 2)
 

+
1
r3

dη3
dt

μη3 − b −
c1

2(α + 2)
 .

(74)

+anks to inequality (72) and equations (64)–(66), we
have

dE

dt
≤ − v 

1

0
u
2dx − u(1, t)

z3u

zx3 (1, t) μ + μη1 + c2( 

− μη3 −
c1

2(α + 2)
 u

2α+2
(1, t)

− μη2 −
c1

2(α + 2)
 u

2
(1, t)

+ u(1, t)
z3u

zx3 (1, t) μ + μη1 + c2( 

+ u
2
(1, t) μη2 − a −

c1

2(α + 2)
 

+ u
2α+2

(1, t) μη3 − b −
c1

2(α + 2)
 .

(75)

+e above inequality gives

dE

dt
≤ − v 

1

0
u
2dx − au

2
(1, t) − bu

2α+2
(1, t). (76)

Noting that − au2(1, t) − bu2α+2(1, t)≤ 0, inequality (76)
yields:

dE

dt
≤ − v 

1

0
u
2dx. (77)

One can conclude that E(t)≤E(0), ∀t≥ 0. Hence, η1, η2,
and η3 are bounded functions for all t> 0. +us, from
(64)–(66), we obtain

u(1, t) ∈ L
2
(0,∞)∩L

2(α+1)
(0,∞). (78)

From inequality (72), we have

dV

dt
≤ − 2vV(t) − u(1, t)

z3u

zx3 (1, t) μ + μη1 + c2( 

− μη2 −
c1

2(2α + 2)
 u

2
(1, t)

− μη3 −
c1

2(α + 2)
 u

2α+2
(1, t).

(79)

Exploiting Gronwall–Bellman’s inequality, we obtain

dV

dt
≤V(0)e

− 2vt
+ 

t

0
e

− 2v(t− τ)
u(1, τ)

z3u

zx3 (1, τ)

μ + μη1 + c2(  − μη2 −
c1

2(2α + 2)
 u

2
(1, τ)

− μη3 −
c1

2(α + 2)
 u

2α+2
(1, τ)dτ.

(80)

+us,

dV

dt
≤V(0)e

− 2vt
+ C 

t

0
e

− 2v(t− τ)
u(1, τ)

z3u

zx3 (1, τ)






+ u
2
(1, τ)


 + u

2α+2
(1, τ)


dτ,

(81)

where

C � max sup
t>0

μη2(t) −
c1

2(α + 2)




, sup

t>0
μη3(t) −

c1

2(α + 2)




,

sup
t>0

μ + μη1(t) + c2


.

(82)

Hence, using the fact that u(1, t) ∈ L2(0,∞)∩ L2(α+1)

(0,∞), one can show that V(t) tends to zero as t⟶∞.
+erefore, u(x, t) exponentially tends to zero as
t⟶∞. □

5.1. Numerical Solutions. Numerical solutions for the
MGKdVB equation (i.e., equations (1)–(6)) in the pres-
ence of the control f1(t) and f2(t) as presented by
equations (62) and (63) were simulated using COMSOL
Multiphysics software. +e solutions are computed for
α � 1, 2, 3, and 4.

+e fourth adaptive control law designed in equations
(62) and (63) is independent of the values of the kinematic
viscosity v, the dynamic viscosity μ, c1, and c2. Although these
parameters are assumed to be unknown, we set in our nu-
merical simulations the values of v, μ, c1, and c2 as 0.01, 0.001,
1, and 0.0005, respectively.Moreover, r1, r2, and r3 are chosen
to equal 0.2, 0.2, and 0.5, respectively, while the initial values
of η1, η2, and η3 are set to be such as η1(0) � η2(0) � η3(0) �

1 and u(x, 0) � sin(πx). A 3D view of the solution of the
MGKdVB equation coupled with the control law presented in
+eorem 4 is shown in Figures 13(a)–13(d) for several values
of α. Figure 14 shows the L2-norm of these solutions.

Figures 15–17 show the behavior of the functions η1, η2,
and η3 that are given in the fourth control law. For instance, it
can be concluded from Figure 15 that the function η1 in-
creases as the value of α increases from 1 to 4. Furthermore,
Figure 16 indicates that η2 also increases as α increases from 2
to 4. Also, one can notice from Figure 17 that η3 decreases as α
increases. Again similar remarks to the previous controllers
can be made here; the choice of the feedback gains r1, r2, and
r3 will definitely affect the values of η1, η2, and η3 and
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Figure 13: A 3D view of the dynamics of the MGKdVB equation utilizing the fourth nonlinear adaptive controller r1 � 0.2, r2 � 0.2,
r3 � 0.4, and u0(x) � sin(πx). (a) α � 1; (b) α � 2; (c) α � 3; (d) α � 4.
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Figure 14: +e L2-norm of u(x, t), ‖u(x, t)‖, over time for various values of α when applying the fourth nonlinear adaptive controller
r1 � 0.2, r2 � 0.2, r3 � 0.4, and u0(x) � sin(πx).
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therefore the stability of the solution. Fixing the initial
conditions, η1(0), η2(0), and η3(0), and increasing the values
of r1, r2, and r3, will definitely increase the values of η1, η2,
and η3 which in turn increase the convergence rate of the
solution to zero, as can be shown from inequality (69).

Obviously, the parameters of the controller f2(t) are η1,
η2, η3, and α. Fixing α, the parameters η1, η2, and η3 can be
computed from the uncoupled system of ODE equations
(64)–(66) once the value at the right boundary u(1, t) and
(z3u/zx3)(1, t) are known, the control gains r1, r2, and r3
are chosen, and the initial conditions η1(0), η2(0), and η3(0)

are fixed.+en, the controller f2(t) can be simply computed
using equation (63). +is clearly shows that the computa-
tions in the fourth adaptive boundary controller are also
reasonable.

Remark 1. +e design of the four adaptive boundary con-
trollers proposed in Sections 2–5 involves low-computa-
tional complexity since it is computationally bounded by the
time it takes to solve the uncoupled system of first order
differential equations.
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Figure 15: η1 over time for various values of α when applying the fourth nonlinear adaptive controller.
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Figure 16: η2 over time for various values of α when applying the
fourth nonlinear adaptive controller.
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Figure 17: η3 over time for various values of α when applying the
fourth nonlinear adaptive controller.
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6. Comparison of the Nonlinear Adaptive
Controllers Proposed in Sections 2–5

In this section, we compare the performances of the nonlinear
controllers presented in Sections 2–5 for several values of α.
+is comparison illustrates the efficiency of the adaptive
control laws when either ] or c1 is unknown, when both ] and
c1 are unknown, and when all the parameters are unknown.

+e L2-norm of the solutions u(x, t) of the MGKdVB
equation will be used for comparison. Figures 18(a)–18(d)
show the L2-norm of u(x, t) over time for several values of α
when u0(x) � sin(πx).+ese figures show that, for all values
of α, the solutions of the MGKdVB equation obtained
utilizing the first control law given when v is unknown takes
a longer time to reach the steady state solution than the other

control laws. A careful look at the figures also demonstrates
that, for α � 1, 2, and 3, solutions of the MGKdVB equation
obtained utilizing the second, third, and fourth control laws
seem to have a similar decay rate. Figure 18(d) indicates that,
when α � 4, the second control law which is proposed when
c1 is unknown outperforms the other control laws.

7. Concluding Remarks

+e adaptive boundary stabilization problem of the
MGKdVB equation (1) was tackled in this paper. Four
different nonlinear adaptive control schemes were intro-
duced for this equation when the physical parameters ], μ,
c1, and c2 are unknown and positive and when α is a positive
integer. +e global exponential stability of the solution in
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Figure 18: +e L2-norm of u(x, t), ‖u(x, t)‖, over time for various values of α; comparison between the behavior of the equation for the
fourth nonlinear adaptive controller, u0(x) � sin(πx). (a) α � 1; (b) α � 2; (c) α � 3; (d) α � 4.
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L2(0, 1) has been established analytically and numerically. In
addition, the rates of convergence of the four presented
controllers were compared.

For future work, we should investigate the adaptive and
nonadaptive stabilization of the MGKdVB equation (1)
under the presence of a time-delay in the boundary control.
It would be also interesting to investigate the same problem
when equation (1) itself is subject to the effect of the time
delay in one of the terms, especially the nonlinear one
uα(zu/zx).
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