
Research Article
Analysis of Multitasking Evolutionary Algorithms under the
Order of Solution Variables

Lei Wang,1,2 Qian Sun,1 Qingzheng Xu ,3,4 Wei Li,1 and Qiaoyong Jiang1

1School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
2Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China
3College of Information and Communication, National University of Defense Technology, Xi’an 710106, China
4Youth Innovation Team of Shaanxi Universities, National University of Defense Technology, Xi’an 710106, China

Correspondence should be addressed to Qingzheng Xu; xuqingzheng@hotmail.com

Received 21 July 2020; Revised 3 September 2020; Accepted 21 September 2020; Published 14 October 2020

Academic Editor: Kailong Liu

Copyright © 2020 Lei Wang et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, it was demonstrated that multitasking evolutionary algorithm (MTEA), a newly proposed algorithm, can solve multiple
optimization problems simultaneously through a single run, breaking through the limitations of traditional evolutionary al-
gorithms (EAs), with good convergence and exploration performance. As a novel algorithm, MTEA still has a lot of unexplored
space. Generally speaking, the order of solution variables has no significant influence on the single-tasking EAs. To our knowledge,
the effect of the order of variables in the multitasking scenario has not been explored. To fill in this research gap, three orders of
variables in the multitasking scenario are proposed in this paper, including full reverse order, bisection reverse order, and
trisection reverse order. An important feature of these orders of variables is that an individual can recover as himself after two
times of changing the order of variables. In order to verify our idea, these orders of variables are embedded into MTEA. +e
experiment results revealed that the effect of the different orders of variables is universal but not significant enough in the practical
application. Furthermore, tasks with high similarity and high degree of intersection are sensitive to the order of variables and get
great impact between tasks.

1. Introduction

Optimization problems exist in all fields of science, engi-
neering, and industry. In many cases, such optimization
problems involve various decision variables, complex
structured goals, and multiform constraints [1, 2]. In gen-
eral, traditional mathematical optimization techniques will
encounter difficulties in solving such practical optimization
problems in their original form. Inspired by the natural
selection mechanism of “survival of the fittest” and the laws
of genetic information transmission in the process of bio-
logical evolution, evolutionary algorithms (EAs) were pro-
posed to solve this kind of complex optimization problem.
Evolutionary algorithms simulate the process of species
reproduction through program iteration and consider the
problem to be solved as the environment, seeking the op-
timal solution through natural evolution. EA has many

advantages such as being powerful, efficient, flexible, and
reliable, and the research work of evolutionary algorithm has
been very rich [3–6]. +us, evolutionary algorithms have
been widely used in real-life applications, including battery
health diagnosis and management [7–10].

+e emergence of evolutionary algorithms has helped
solve many tricky practical problems, but there is still room
for improvement. In practice, real-world problems are rarely
isolated, but some of them are similar or related. +erefore,
we can handle some similar or complementary problems at
the same time. As a new paradigm in evolutionary com-
putation, multitasking evolutionary algorithm (MTEA) is
very different from the traditional evolutionary algorithm,
which utilizes experience (individual and global optimal
guidance) and selective pressure intelligence to solve single-
objective or multiobjective problems [11]. +e biological
basis of EA is single gene inheritance [12, 13]. In contrast,

Hindawi
Complexity
Volume 2020, Article ID 4609489, 18 pages
https://doi.org/10.1155/2020/4609489

mailto:xuqingzheng@hotmail.com
https://orcid.org/0000-0001-8212-1073
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4609489

MTEA incorporates the concept of coordinated evolution
between genes and cultures. Intuitively, multitasking is the
equivalent of a multigene environment. +e task can use the
similarity of different gene evolution to learn information
which is beneficial to its own evolution when multiple tasks
are optimized at the same time. Obviously, knowledge
drawn from past learning experiences can be constructively
applied to more complex or invisible tasks. Multitasking
optimization (MTO) significantly improves the efficiency of
evolutionary optimization by solving multiple problems at
once [11–13]. In the process of MTO, both gene migration
and diversity play an important role when multiple tasks are
optimized at the same time. In contrast, positive or negative
gene migration demonstrates the nature of MTO [14]. In
literature [13], MTEA is used to solve the practical appli-
cation of multiobjective problems. At the same time, MTEA
has a good universality and can be combined with operators
with good search ability in evolutionary algorithms. For
example, both the classical evolutionary algorithm and
particle swarm optimization (PSO) can be combined with
the MTEA [15].

In traditional single-tasking optimization, the order of
variables has less significant influence on the solution
process [16–18]. Undoubtedly, under the action of selective
pressure, the solution will eventually approach the global
optimum [12]. For single-objective optimization and mul-
tiobjective optimization problems, the order of variables
does not obviously play a major role in EAs. In a sense, the
implication of new order of variables for a special objective
function can be thought of as a different objective function
with the same optimal solution value. As a result, it has been
intentionally or unintentionally ignored in the community
of evolutionary algorithm and optimization. On the con-
trary, the situation is significantly different for MTO
problems. In MTO, the optimization process of one task can
affect the optimization process and the results of other tasks.
At present, the influence of the order of variables on MTO
has not been studied. Keeping this in mind, we demonstrate
the effect of variable order on single-tasking and multi-
tasking evolutionary algorithms in this paper.

In the experimental part, three kinds of transformation
methods are designed to explore the influence of the order of
variables on the quality of the solution in multitasking
scenarios. +e experiments show that the variable order
affects the multitasking optimization process, and the degree
of influence is related to the correlation degree between
tasks, such as the task similarity and the same magnitude of
the optimal solution between tasks. As a result, the actual
impact is not significant. Furthermore, experiments have
also shown that this effect is universal in the multitasking
scenario.

To summarize, the core contributions of the current
work are multifaceted, which are outlined as follows. (1) +e
influence of the order of solution variables on single-tasking
optimization problems and multitasking optimization
problems is analyzed in the view of evolutionarymechanism.
+e order of variables has no impact on the single-tasking
evolutionary algorithm while has an impact on multitasking
evolutionary algorithm. (2) +ree orders of variables are

proposed in this paper, including full reverse order, bisection
reverse order, and trisection reverse order. An important
feature of these orders of variables is that an individual can
recover as himself after two times of changing the order of
variables. (3) In order to verify our idea, these orders of
variables are embedded into MTEA. +e experiment results
revealed that the effect of the different orders of variables is
universal but not significant enough in the practical ap-
plication. Furthermore, tasks with high similarity and high
degree of intersection are sensitive to the order of variables
and get great impact between tasks.

+e rest of this paper is organized as follows. Section 2
gives a brief overview of the original multifactorial evolu-
tionary algorithm (MFEA) and introduces MTEA based on
the multipopulation evolution model. In addition, multi-
factorial differential evolution (MFDE) and the related
works of MTEA are also explained in this part. In Section 3,
the influence of the order of solution variables on single-
tasking optimization and multitasking optimization algo-
rithms is demonstrated. Besides, three orders of variable are
also introduced here. Next, we carried out relevant exper-
iments to verify our conjectures including the design ideas of
the experiment and the discussion of the experimental re-
sults in Section 4. Finally, Section 5 summarizes this paper
and looks forward to the future research field.

2. Background

2.1. Multifactorial Evolutionary Algorithm. In practice,
many problems are related to each other to varying degrees.
In other words, universal similarity between problems is the
motivation for multitasking optimization. With the utiliz-
ability of similarity, the multitasking optimization algorithm
makes solving multiple problems at the same time come
true. Assume that there are K tasks: T1, T2, . . ., and TK. A
realistic task Tj can be represented by the function fj(x);
here j ∈ 1, 2, 3, . . . , |K|{ }. Mathematically, a multitasking
optimization problem can be expressed as
G(X) � min f1(x), f2(x), . . . , fK(x)􏼈 􏼉. MFEA maps mul-
tiple problems into a unified space by the uniform random-
key scheme [13], and each individual in the search space has
the following four characteristics.

Definition 1. Factorial fitness: the factorial cost φk
i denotes

the objective fitness or value of an individual pi on a par-
ticular task Tk. Every individual will calculate K factorial
fitness based on K tasks.

Definition 2. Factorial rank: the factorial rank rk
i simply

denotes the index of individual pi in the list of population
members which is sorted in ascending order with respect to
their factorial costs on task Tk. It should be noted that in the
process of multiobjective multitasking optimization, the
factor ordering is calculated according to the nondominant
ordering and the crowding distance. +is paper only focuses
on single-objective multitasking optimization, and thus it
will not be stated here.

2 Complexity

Definition 3. Skill factor: the factorial rank τi of individual
pi represents the task corresponding to the most advanced
index in the order of factorial rank. Skill factor is regarded as
the computational equivalent of cultural characteristics. In
the principle of meme calculation, the cultural character-
istics of one individual can be transmitted to another.

Definition 4. Scalar fitness: the scalar fitness of individual pi

is calculated by ci � 1/τi.
As shown in Algorithm 1, it is assumed that K opti-

mization tasks have to be performed simultaneously. First,
we initialize N individuals in the search space Y and then
evaluate the initial population current-pop by calculating the
factorial fitness φk

i of each individual pi in the current-pop,
where i ∈ 1, 2, 3, . . . , |N|{ }. +en, we calculate the skill factor
of pi in the population according to φk

i . After the initiali-
zation, as shown in line 5 in Algorithm 1, the iteration begins
to produce the offspring-pop which contains N children
according to Algorithm 2. Algorithm 3 is used to assign skill
factors to each individual. Next, the offspring and the parent
are merged to form the transitional-pop which have 2N
individuals, and then the N best individuals are selected as
the new population for the next generation.

+e traditional genetic algorithm applies crossover and
mutation operators, which are also used in the multitasking
evolutionary algorithm. Furthermore, how the offspring are
produced depends on the skill factor of the parents and
random mating probability (rmp). +e detailed description
is given in Algorithm 2.+e offspring will be produced using
crossover directly when both parents have the same skill
factors. Otherwise, either the offspring will be generated
through crossover given the random mating probability or
the offspring will produced by mutation when the parents
have different skill factors.+e parameter rmp permits cross-
cultural mating among different tasks. A larger rmp means
more knowledge exchanging between two tasks, while a
smaller value indicates the opposite. An appropriate rmp can
balance the thorough scanning of small areas in the search
space with the exploration of the whole space. Unlike tra-
ditional evolutionary algorithms, it is not evaluated
straightforward after offspring have been generated. After
the offspring generation, skill factors are assigned to the
offspring according to the mating mode of the offspring
selection, and this procedure is detailed in Algorithm 3.

2.2. MTEA as Multipopulation Evolution Model. Different
from the classical MFEA, the multipopulation multitasking
evolutionary algorithm no longer adopts one population but
initializes K subpopulations according to the number of
tasks. Individuals in a subpopulation evolve for a specific
task throughout the optimization process [19].

Figure 1 illustrates a multipopulation optimization
model with two optimization tasks. Clearly, task 1 and task 2
have their own populations. +e dotted lines in Figure 1
represent possible scenarios. In reproductive selection,
parents may come from the same task-specific subgroups or
other groups. In this way, knowledge sharing and optimi-
zation efficiency can be improved during reproduction. A

core feature of the multipopulation evolution model is that
the crossover or mutation operators are deemed to help
exchange information and assist to find the promising
solutions.

Another important feature is that parental and progeny
individuals must belong to the same subpopulation and
evolve within the same subpopulation. One of the benefits of
this is to keep the population as stable as possible. At the end
of optimization, the optimal solution of subpopulation
corresponding to the task is solved.

It should be noted here that interpopulation crossover
probability (icp) in MTEA which controls the density of
knowledge transfer between different tasks is different from
rmp in MFEA. Parameter icp in MTEA directly controls
knowledge transfer between tasks, whereas rmp is used to
control knowledge sharing when parents have skill factors in
MFEA.

2.3. Differential Evolution and Multifactorial Differential
Evolution. As a branch of stochastic EAs, differential evo-
lution (DE) originally proposed by Price and Storn in 1995
[20] has been proven to be an effective, robust, and reliable
global optimizer. DE distinguishes itself from other EAs with
the individual difference-based mutation and crossover. DE
produces a new candidate solution component based on the
weighted difference between two randomly selected pop-
ulation individuals that is added to a third individual. For the
original DE, mutation, crossover, and selection are the three
key components in DE which are described as follows.

+emutation operation enables DE to explore the search
space andmaintain diversity. In [21], fivemutation strategies
have been commonly used, which are minutely given as
follows:

DE/rand/1: Vi,g � xr1,g + F × xr2,g − xr3,g􏼐 􏼑,

DE/best/1: Vi,g � xbest,g + F × Xr1,g − Xr2,g􏼐 􏼑,

DE/current-best/1: Vi,g � Xi,g + F

× Xbest,g − Xi,g + Xr1,g − Xr2,g􏼐 􏼑,

DE/best/2: Vi,g � Xbest,g + F

× Xr1,g − Xr2,g + Xr3,g − Xr4,g􏼐 􏼑,

DE/rand/2: Vi,g � Xr1,g + F

× Xr2,g − Xr3,g + Xr4,g − Xr5,g􏼐 􏼑,

(1)

where Vi,g denotes the mutant vector with respect to each
individual Xi,g at generation g, D is the dimension of
problem, r1, r2, r3, r4, and r5 are random and mutually
exclusive integers chosen from the interval [1, D], F is the
scaling factor which controls the amplitude of the difference
vector, and Xbest,g gives the best individual found so far at
generation g.

+e goal of crossover operator is to build trial vectors by
recombining the current vector and the mutant one. +e
family of DE algorithms employs two crossover schemes:
exponential crossover and binomial crossover. +e binomial

Complexity 3

crossover is utilized in this paper and is briefly discussed
below. In binomial crossover, the trial vector
Ui,g � (u1

i,g, u2
i,g, . . . , uD

i,g) is defined as follows:

ui,j,g �
vi,j,g, if (rand<CR) or j � randj􏼐 􏼑,

xi,j,g, otherwise,

⎧⎨

⎩ (2)

where CR ∈ [0, 1] is the predefined crossover rate, rand is a
uniform random number within [0, 1], and
randj ∈ 1, 2, . . . , D{ } is a randomly selected index which is
used to ensure that at least one dimension of trial vector is
changed.

After the crossover, a greedy selection mechanism is
used to select the better one between the parent vector Xi,g

and the trial vector Ui,g according to their fitness values as
described below.

Xi,g+1 �
Ui,g, if f Ui,g􏼐 􏼑≤f Xi,g􏼐 􏼑,

Xi,g, otherwise.

⎧⎨

⎩ (3)

In recent research, MTO has been conducted with dif-
ferential evolution, named multifactorial differential evo-
lution (MFDE). MFDE is similar to the classic MFEA
process, except for the operation of children production.+e

(1) Generate N individuals in Y to form initial population P0 as the current-pop (C).
(2) Calculate φk

i and of each individual pi in the current-population and then get the factorial rank rk
i of each individual.

(3) Compute the skill factor τi for each Pi.
(4) Set gen� 0.
(5) while (stopping conditions are not satisfied) do

Generate offspring-pop (O) according to Algorithm 2.
Evaluate the individuals in offspring-pop according to Algorithm 3.
Combine C and O into transitional-pop (T).
For Pi in T

Update the scalar fitness (ci) and skill factor (τi) of Pi.
end
Select N fittest members from T to form C.

Set gen� gen+ 1
(6) end while

ALGORITHM 1: Basic framework of the MFEA.

Consider candidate parents c1 and c2 in C
(1) Generate a random number rand between 0 and 1.
(2) if τ1 �� τ2 or rand< rmp then

(o1, o2)�Crossover +Mutate (c1, c2)
(3) else

o1�Mutate (c1)
o2�Mutate (c2)

(4) end if

ALGORITHM 2: Assortative mating.

Consider offspring o ∈O
(1) Generate a random number rand between 0 and 1.
(2) if r�Crossover +Mutate (c1, c2) and rand ≤ 0.5

o imitates skill factor of c1
(3) else if o�Crossover +Mutate (c1, c2) and rand > 0.5

o imitates skill factor of c2
(4) else if r�Mutate (c1)

o imitates skill factor of c1
(5) else

o imitates skill factor of c2
(6) end if

ALGORITHM 3: Vertical cultural transmission via selective imitation.

4 Complexity

assortative mating of MFDE for producing children is
summarized in Algorithm 4. Firstly, in the first generation, a
random number is generated in the range of [0, 1]. +en, if
this arbitrary number is less than rmp, two solutions x′

g

r2
and

x′
g

r3
which have different skill factor with V

g
r1 will be ran-

domly selected to generate the new solution V
g
i . V

g
r1 is a

randomly selected solution that shares common skill factor
with V

g

i . Otherwise, V
g
r1 will be generated by the originalDE/

rand/1 strategy.

2.4. Related Works on MTEA. Since MFEA was first pro-
posed in 2016, the research work of multitasking EA has
gained wide attention. As a universal framework, multi-
tasking EA can be implemented in a variety of ways [22]. At
present, the main research directions of this community are
algorithm framework, algorithm improvement, and typical
application. At present, the algorithm framework is mainly
divided into two frameworks, one is the multitasking op-
timization algorithm framework based on dynamic sub-
groups, and the directional optimization task of individuals
in the population will continuously change during the whole
optimization process [23].+e other is that individuals in the
population will directly assign a task based on the number of
optimized tasks and follow the assigned task throughout the
optimization process. Experimental results showed that the
multitasking evolutionary algorithm based on multi-
population is also very advantageous [22, 24–26].

Many improvements to the multitasking optimization
algorithm have been proposed [27–30]. Generally speaking,
the operation of knowledge transfer between different tasks
has a crucial impact on the algorithm performance [31].
Migration mode and frequency are the directions of mul-
titasking optimization research. Multitasking evolutionary
algorithm can also be combined well with other evolutionary
algorithms to absorb the advantages of other EAs. For

example, differential evolutionary and particle swarm op-
timization can well combine with MTEA and perform better
than MFEA [32–34]. In addition, the improved crossover
operator and search mechanism can be combined with a
MTEA prejudice to improve the algorithm performance
[35]. At the same time, the idea of machine learning can be
well combined with multitasking optimization [36, 37].

Multitasking optimization algorithm is not only proved
to be feasible in theory [38] but also shows good efficiency in
practical problems. Multitasking algorithm can be used to
solve complex engineering design and expensive optimi-
zation problems. In the literature, there exist a lot of works to
apply MTEA to tackle real-world problems, such as vehicle
routing problem [39–42], optimization and control of
photovoltaic systems [43], bilevel optimization problem
[44], complex supply chain network management [45],
double-pole balancing problem [46], and composite
manufacturing problem [47].

3. Order of Variables on Optimization Problem

3.1. Single-Task Optimization Evolution Model. We take
single-objective optimization problem as an example to
investigate the effect of the order of variables. In general, an
optimization problem can be formulated as

minimizef(x), x � x1, x2, . . . , x D(􏼁 ∈ R
D

, (4)

subject to

hi(x) � 0, (i � 1, 2, . . . , I),

gj(x)≤ 0, (j � 1, 2, . . . , J),
(5)

where hi(x) and gj(x) are the equality constraints and
inequality constraints, respectively.

When the order of variables of candidate solution x is
changed, the new solution xnew can be identified as an in-
dividual of the other function fnew(x). It is noteworthy that
two functions have the same search space and optimal so-
lution (after coordinate transformation). For example, as
shown in Figure 2, xA � (1, 2) and xB � (3, 4) are two in-
dividuals of function f(x) � x1 + x2

2. After changing their
order of variables, xnew

A � (2, 1) and xnew
B � (4, 3) are two

individuals of function fnew(x) � x2
1 + x2. Obviously, they

have identical function values, respectively.
Evenmore important is that, as illustrated in Figure 2, no

matter what genetic mechanism (crossover, mutation, etc.)
is involved for a given evolutionary algorithm, their off-
spring are identical due to the same input of the given
genetic mechanism. From this, we can discuss the effect of

Pop1 Pop2

Parent1 Parent2 Parent1 Parent2

Crossover or mutation Crossover or mutation

Children

SelectionSelection

New pop2New pop1

Children

Figure 1: Model of multipopulation evolution for two tasks.

(1) Generate a random number rand between 0 and 1.
(2) if rand< rmp then

V
g

i � V
g
r1 + F∗ (x′

g

r2
− x′

g

r3
)

(3) else
V

g

i � V
g
r1 + F∗ (x

g
r2 − x

g
r3)

ALGORITHM 4: Assortative mating in MFDE.

Complexity 5

order on single-task optimization. We have no reason to
doubt that, although the change in the order of variables is
quite a transformation of the objective function in a single-
task optimization scenario, there is virtually no change in the
optimization problem itself. Actually, the optimization re-
sult obtained by any evolutionary algorithm will not be
influenced by changing the order of variables.

3.2. Multitasking Optimization Problem. Mathematically, a
multitasking optimization problem can be defined as
follows:

x1, x2, . . . , xK􏼈 􏼉 � argmin f1 x1(􏼁, f2 x2(􏼁, . . . , fK xK(􏼁􏼈 􏼉,

(6)

where fk(xk): Xk⟶ RD represents the k-th optimization
task with search space Xk and xk � xk,1, xk,2, . . . , xk,Dk

􏽮 􏽯 is a
feasible solution in the solution space, in which Dk is the
dimensionality of search space Xk.

In a multitasking optimization problem, the effect of
changes in the order of variables is no longer insignificant.
Before analyzing, we need to explain the concepts of order-
dependent functions and order-independent functions.
According to the role of variable order, the optimization
functions can be divided into two classes: order-independent
function and order-dependent function. For order-inde-
pendent functions, the order of variables does not have an
effect on the objective function of special forms. For in-
stance, for Sphere function f(x) � 􏽐

D
i�1x

2
i , no matter how

the order of its variables changes, the objective function is
kept unchanged. +us, it cannot influence the performance
of any multitasking optimization algorithm, including
MFEA. Correspondingly, the order of variables has an effect
on order-dependent functions, such as Rosenbrock function
f(x) � 􏽐

D
i�1(100(x2

i − xi+1)
2 + (xi − 1)2).

Here, we take a simple example to further understand the
variable order change onmultitasking. As shown in Figure 3,
we take 2-task optimization as an example to further in-
vestigate the effect of the order of variables. Two objective
functions are f1(x) � x1 + x2

2 and f2(x) � x3
1 + x4

2. Ex-
pressly, two functions can change their order of variables in
the same way. However, this is a trivial case that is not of
interest.+us, only the order of variables of the first function
f1(x) is changed in the next discussion. Note that the order of
variables has an effect on two functions and the first function
is selected to change the order of its variables.

Generally speaking, for any multitasking optimization
algorithm, two parent candidates will undergo intrapopu-
lation and interpopulation reproduction processes, such as
crossover in MFEA. Based on the analysis in Section 3.1,
when the individuals in population undergo intragenetic
mechanism, they will produce the same offspring even after
changing the order of variables. At the same time, these
individuals may undergo intergenetic mechanism. In this
case, two parent candidates come from different pop-
ulations. As shown in Figure 3, two individuals xA and xC

undergo inter-crossover in the original situation, and two
individuals xnew

A and xC undergo inter-crossover after
changing the order of variables. Due to the changed order of
variables of the first objective function f1(x), they will
produce different offspring, such as dotted lines① vs.⑤,②
vs.⑥,③ vs.⑦, and④ vs.⑧ in Figure 3. +us, it is obvious
that ① and ⑤ have a wealth of opportunity to produce
different offspring through cross mutation operator. +e
same one goes for the other three control groups. +erefore,
changes in the order of variables in a multitasking scenario
are analyzed to have a real impact on the optimization
process.

3.3. <ree Orders of Variables. In this paper, our purpose is
to study the influence of the order of solution variables on
the multitasking optimization. As we have analyzed before,
the order of variables makes the original function become a
new one, so the way to solve the order transformation has an
impact on the optimization process. In our work, we design
and study three orders of variables. +ey are defined as
equations (7)–(9). For the first order named full reverse
order, all variables of function are coded in reverse order.
Similarly, for the bisection/trisection reverse order, all
variables are divided into two/three parts evenly and then
coded in reverse order in each part.

FuR(x) � x D, xD−1, . . . , x2, x1(􏼁, (7)

BiR(x) � x(D/2), . . . , x1, x D, . . . , x(D/2−1)􏼐 􏼑, (8)

TrR(x) � x(D/3), . . . , x1, x(2D/3), . . . x(D/3)−1, x D, . . . , x(2D/3+1)􏼐 􏼑. (9)

f (x) = x1 + x2
2 f new(x) = x1

2 + x2

xA = (1, 2) xB = (3, 4)

Crossover, mutation, etc. Crossover, mutation, etc.

xA
new = (2, 1) xB

new = (4, 3)

Figure 2: Corresponding relationship between two individuals
before and after changing the order of variables for single-objective
optimization problem.

6 Complexity

+ere are two advantages of these variable order
transformations. On the one hand, the important feature of
these orders of variables is that an individual can recover as
himself after changing the order of variables twice. Let x �

(x1, x2, . . . , x D) be an arbitrary point in D-dimensional
space; mathematically, x� FuR(FuR(x)), x�BiR(BiR(x)),
and x�TrR(TrR(x)). On the other hand, the complexity of
the transformation of the incremental design solution can
lay a foundation for studying the influence of the complexity
of the solution order transformation on the optimization
process and facilitate analysis. Specifically, the corre-
sponding output of the transformation of the order of so-
lutions can be obtained by the above three equations.

Here, we need to make a small distinction between our
designed transformation strategy for variable order and the
strategy in [48]. First of all, the application scenarios are
different. Literature [48] is about the multiobjective problem
in single task, but our work mainly focuses onmultiple tasks.
Secondly, in [48], it studies the effect of principle selection
and variable priority selection on convergence when dif-
ferent principles learned during innovization [49] involve
different numbers of variables or different rules involve the
same variables. +e goal of the variable related strategy in
[48] is to explore how dimensional repair order and repair
rules combined can improve algorithm convergence to the
greatest extent in a multiobjective environment. However, in
this paper, three variable order change strategies are
designed to explore the sensitivity of the whole multitasking
optimization process to different variable orders, and the
change of variables is not dynamic. Obviously, these three
strategies are not intended to improve the convergence
performance of MTEA.

4. Experiment Results and Discussion

4.1. Experiment Setup. In this paper, the basic algorithm
adopted is multipopulation MFEA to highlight the direct

effect of solution order in the multitasking scenario. In order
to eliminate the randomness in individuals’ generation, the
initial seed of the random function is set to a fixed value so
that it can always provide the same individual setting. In
other words, the fixed result is obtained by using a given
algorithm. In addition, MFDE is also used to verify the
universality of the effect of the variable orders in the paper.

Seven commonly used optimization functions are used
as components of 9 synthetic MTO problems. Among them,
two functions (Rosenbrock and Griewank) are order-de-
pendent functions that affect the four MTO problems. +ese
problems can be divided into three categories: complete
intersection (CI), partial intersection (PI), and no inter-
section (NI). Moreover, based on the similarity between the
fitness landscapes, they can also be categorized into three
groups: high similarity (HS), medium similarity (MS), and
low similarity (LS). For more details about these benchmark
problems, one can refer to the technical report [11]. For
experimental convenience, task 1 and task 2 in the fifth task
group are swapped so that the first task in all task groups is
sequential dependent functions.

All parameter settings are listed as follows:

(1) Population size: Np � 100
(2) Maximum number of function evaluations:

MaxF� 105

(3) Parameter settings in MFDE

(i) Differential amplification factor: F� 0.5
(ii) Crossover probability: CR� 0.9
(iii) Random mating probability: rmp� 1.0

(4) Parameter settings in MFEA

(i) Index of simulated binary crossover: mu� 2
(ii) Index of polynomial mutation: mum� 5
(iii) Probability of mutation: pm � 1
(iv) Interpopulation crossover probability: icp� 1.0

It is noted that, in order to minimize the effect of sto-
chastic nature on each measured metric, the reported result
is the average over 50 trials. Lastly, the empirical studies
presented in this paper are conducted under Windows10
using a computer with a 2.4GHz Intel Corei5 processor and
4GB RAM.

4.2. Parameter Sensitivity Analysis. In order to test the ef-
fectiveness of interpopulation crossover probability, ex-
periments on a suite of single-objective multitasking
benchmark problems are carried out in this part. First, the
importance of parameter icp in the multitasking scenario is
analyzed. After that, the analysis and discussion of the
empirical results are also presented.

In the process of simultaneous optimization of multiple
tasks, the similarity and complementarity between tasks play
an important role [4]. High similarity between tasks tends to
influence each other in a positive way, while complemen-
tarity helps tasks skip unnecessary searching. In the mul-
tifactorial optimization algorithm based onmultipopulation,
the crossover probability among the populations controls

Crossover, mutation, etc.

Crossover, mutation, etc.

Crossover, mutation, etc.

1 2 3 6 7 8

4 5

f1(x) = x1 + x2
2

f2(x) = x1
3 + x2

4

f1
new(x) = x1

2 + x2

xA = (1, 2) xB = (3, 4)

xC = (5, 6) xD = (7, 8)

xA
new = (2, 1) xB

new = (4, 3)

Figure 3: Corresponding relationship between two individuals
before and after changing the order of variables for multitasking
optimization problem.

Complexity 7

the influence of knowledge transfer between multiple tasks.
+e closer the crossover probability is to 1, the greater the
mutual influence will be. Conversely, the smaller the
probability of crossover between populations, the smaller the
interaction between tasks.

When the similarity between task groups is low, the high
probability of interpopulation crossover will make the op-
timization result counterproductive. Of course, high simi-
larity and icp are not necessarily conducive to the
optimization of the problem. For example, when an opti-
mization problem falls into local optimization, other tasks
may also fall into local optimization.

In this paper, we set the value of the icp as a linear
increment to explore the influence of icp onMFEA. It should
be noted that the intrapopulation crossover probability is set
to 0.5 in the experiment. Table 1 shows the performance of
MFEA with various probabilities between different pop-
ulations. +e best results are shown in bold. It can be seen
that in the fully intersectingmultitasking groups, the optimal
results always occur simultaneously in the case of the same
population crossover probability, indicating that a bigger icp
will enhance the interaction between tasks. However, the
results are not ideal to achieve good performance when the
parameter icp reaches the maximum.

+e reason may be that one problem in the multitasking
group appears to stall, which affects the optimization process
of other tasks. On the other hand, in the case that the
optimization problem in multitasking group does not in-
tersect at all, the effect between the tasks is opposite, and the
algorithm performance is better in the case that the arbitrary
mating rate between the populations is relatively low.
+erefore, in order to enhance the influence of variable order
on multitasking optimization, we set the crossover proba-
bility between populations as 1 in the following experiments.

4.3. Comparison of<ree Orders of Variables. In this section,
empirical studies are conducted to compare the solution
quality of the MFEA with three orders of variables. And the
experimental results are presented and discussed. Subse-
quently, we have made a proper cause analysis of the ex-
perimental results.

+e optimal solutions obtained byMFEA on the 9 single-
objective MFO benchmark problems are summarized in
Table 2, the corresponding standard deviation is also given in
the brackets, and the Wilcoxon rank sum test is adopted at a
significance level of 5%. T1 and T2 denote the two tasks
contained in MTO benchmark. Not surprisingly, as can be
seen from Table 2, MFEA algorithm with different variable
orders can obtain different optimal solutions, but the gap
between these optimal solutions is very small. In a total of 18
optimization problems, the third order of variables per-
formed better than the others seven times. +e first and
second ones do better three and five times, respectively.
However, the difference between the results obtained by
different variable orders is not regular. Better results can be
obtained in all three orders, but the frequency in the third
order is relatively high. For some reason, the complexity of
the variables order has an impact on the optimization

algorithm. And the multitasking algorithm is sensitive to the
complexity of the order of variables.

Surprisingly, on the other hand, the effect on algorithm
performance in practice is not significant for all cases. Some
of the possible reasons include the following. (1) Essentially,
the optimal solution is fixed after changing the order of
variables. It means that the algorithm with different variable
orders can evolve in the same direction. (2) At the opera-
tional level, when across-population crossover is executed in
one generation, the offspring of different order strategies of
variables are very similar because their parents come from
the fixed-position individuals.

Figures 4–12 show the convergence plots of 9 groups of
multitasking problems under different variable orders.
Original order means there is no change in the order of
variables, and order1, order2, and order3 indicate full re-
verse order, bisection reverse order, and trisection reverse
order, respectively. It can be seen from Figures 4–12 that the
convergence curves of the three variables orders are con-
sistent. And the order of variables has no significant effect on
the convergence of the algorithm. With the increase of
generation, the convergence of the algorithm is almost the
same as that without the change of the order of variables.
After the evolution of a generation, the fitness value of the
problem is the same in the order of different variables. Only
in PI + LS, the convergence of the order of different variables
has obvious difference in the later period. +is may be
because the PI + LS category has a low intertask similarity.

4.4. Universality of the Effect of Variable Order. In order to
further verify the universal effect of variable order, we give
the performance of MFDE algorithm with three different
variable orders. Relevant experimental parameters about
MFDE have been introduced in Section 4.1. Its performance
on nine single-objectiveMTO benchmarks is summarized in
Table 3, and the convergence of MFDE is illustrated in
Figures 13–21.

It can be seen from the experimental results that the
effect of variable order on MFDE is similar to MFEA. +e
relevant experimental data are shown in Table 3, which are
the optimal value, the mean value in brackets, and the
Wilcoxon rank sum test at a significance level of 5%. No-
tably, MFDE algorithm with different variable orders can
also get different results but the difference between the
different results is small. In the total 18 optimization tasks,
the third variable order performs better than other orders
four times. +e first and second categories outperform
others three times, respectively. In general, the third variable
order has advantages over the other two, which is consistent
with the performance of MFEA algorithm. Furthermore, the
effect on the algorithm performance is also not significant. In
the MFDE algorithm, there is no obvious difference in the
convergence curve trend under different variable orders.
Only in CI + LS and PI + LS, the convergence of different
variable order shows a significant difference in the later
stage, which is closely related to the similarity of the mul-
titasking group itself. +e effect of different variable orders is
similar in MFDE and MFEA. +e effect of variable order on

8 Complexity

Table 1: Results obtained by MFEA under different interpopulation crossover probabilities.

Problem Task icp� 0.2 icp� 0.4 icp� 0.6 icp� 0.8 icp� 1.0

CI +HS

Griewank
(T1) 0.39991 (0.047121) 0.46988 (0.071905) 0.59349 (0.076058) 0.71105 (0.09389) 0.77662 (0.06994)

Rastrigin
(T2) 194.2837 (45.6755) 214.4473 (45.8036) 209.6063 (38.6149) 235.6761 (30.4896) 280.2167 (28.5509)

CI +MS
Ackley (T1) 4.7949 (0.83182) 4.4248 (0.64978) 3.8739 (0.43937) 3.9432 (0.46339) 3.9887 (0.39822)
Rastrigin
(T2) 233.0182 (53.0107) 221.7842 (38.1883) 216.1091 (38.7009) 254.6503 (33.776) 285.4752 (34.862)

CI + LS
Ackley (T1) 20.1832 (0.070467) 20.2581 (0.076936) 21.1314 (0.18667) 21.1755 (0.095171) 21.2042 (0.035706)
Schwefel
(T2) 3824.8672 (496.1597) 4127.384 (543.3295) 4983.5594 (674.4369) 6483.7105 (651.6798) 9190.921 (809.3925)

PI +HS
Rastrigin
(T1) 581.7632 (105.6933) 523.3279 (105.1762) 487.0637 (75.8617) 551.2203 (52.6853) 703.3003 (53.7786)

Sphere (T2) 10.4851 (2.938) 23.4939 (5.4039) 77.4685 (18.854) 279.6843 (60.0515) 925.112 (136.8732)

PI +MS
Rosenbrock

(T1) 704.2483 (194.3793) 847.7707 (444.2602) 827.9882 (262.5255) 921.319 (274.8149) 994.1248 (360.4791)

Ackley (T2) 3.536 (0.47139) 3.5078 (0.44899) 3.184 (0.52678) 3.0892 (0.35566) 3.065 (0.44793)

PI + LS
Ackley (T1) 20.0635 (0.11943) 18.5992 (4.4149) 8.1149 (5.0013) 12.1763 (4.2508) 17.6463 (1.985)
Weierstrass

(T2) 21.1636 (2.9837) 17.1749 (4.5975) 7.1416 (3.7411) 9.5313 (2.9627) 12.7291 (2.4443)

NI +HS

Rosenbrock
(T1) 893.3438 (461.7737) 1270.6183 (464.4725) 1975.3255 (830.198) 3119.4286 (1320.8244) 3371.1812 (930.8882)

Rastrigin
(T2) 256.4173 (72.8876) 270.6796 (56.3406) 258.0463 (42.4254) 289.2213 (37.8549) 314.6832 (25.0243)

NI +MS

Griewank
(T1) 0.43002 (0.055528) 0.62839 (0.069078) 0.91277 (0.067813) 1.1003 (0.055504) 1.1685 (0.048888)

Weierstrass
(T2) 26.604 (2.6594) 25.9726 (2.6735) 24.5367 (3.3814) 24.7251 (4.1937) 24.0061 (1.8508)

NI + LS

Rastrigin
(T1) 591.6303 (109.6072) 581.8746 (95.9773) 575.5375 (77.6449) 812.6911 (94.0908) 3809.7344

(371.7017)
Schwefel

(T2 3808.2556 (433.1423) 4299.1473 (452.9019) 5202.6947 (583.6562) 7050.294 (686.6561) 13849.5465
(430.4324)

Table 2: Results obtained by MFEA under different order of variables.

Problem Task MFEA MFEA+FuR MFEA+BiR MFEA+TrR

CI +HS

Griewank (T1) 0.79685 (0.088892) 0.79888 (0.058188) 0.79729 (0.074131) 0.79109 (0.05881)
Wilcoxon rank sum test 5.19E− 01 8.31E− 01 1.84E− 01

Rastrigin (T2) 280.4036 (23.6354) 287.1282 (23.6655) 283.5717 (21.8295) 277.5894 (23.7234)
Wilcoxon rank sum test 1.61E− 01 3.95E− 01 5.74E− 01

CI +MS

Ackley (T1) 4.1489 (0.45834) 4.1138 (0.42517) 4.1355 (0.46903) 4.1242 (0.34747)
Wilcoxon rank sum test 7.93E− 01 9.42E− 01 6.82E− 01

Rastrigin (T2) 282.8841 (38.8602) 279.624 (31.4245) 274.3095 (33.3069) 269.5314 (31.1258)
Wilcoxon rank sum test 5.65E− 01 2.57E− 01 7.25E− 02

CI + LS

Ackley (T1) 21.2074 (0.031213) 21.2065 (0.036889) 21.2037 (0.032431) 21.2064 (0.043875)
Wilcoxon rank sum test 8.07E− 01 4.59E− 01 5.56E− 01

Schwefel (T2) 9011.6603 (966.4514) 9018.0075 (703.2951) 9071.5538 (742.7758) 8916.1799 (743.8885)
Wilcoxon rank sum test 9.92E− 01 6.03E− 01 7.59E− 01

PI +HS

Rastrigin (T1) 700.4356 (35.1205) 707.0006 (49.4823) 701.6282 (44.2691) 697.3025 (54.6428)
Wilcoxon rank sum test 4.18E− 01 9.48E− 01 9.42E− 01

Sphere (T2) 887.5937 (106.2772) 923.7637 (137.3392) 902.241 (141.8804) 900.9727 (135.6369)
Wilcoxon rank sum test 2.16E− 01 4.46E− 01 9.31E− 01

PI +MS

Rosenbrock (T1) 911.6519 (252.3363) 921.8783 (279.7278) 900.0996 (304.4695) 966.8524 (354.607)
Wilcoxon rank sum test 9.04E− 01 5.15E− 01 7.49E− 01

Ackley (T2) 2.9614 (0.42019) 2.9664 (0.43933) 3.0137 (0.40994) 3.0059 (0.41482)
Wilcoxon rank sum test 7.75E− 01 5.06E− 01 5.65E− 01

PI + LS

Ackley (T1) 18.0366 (2.04) 18.1503 (2.1495) 17.7703 (1.9321) 17.9673 (1.9811)
Wilcoxon rank sum test 5.88E− 01 3.65E− 01 8.01E− 01

Weierstrass (T2) 13.3105 (2.5385) 13.0705 (2.797) 12.4545 (3.0842) 13.1271 (2.5272)
Wilcoxon rank sum test 7.54E− 01 1.50E− 01 6.72E− 01

Complexity 9

Table 2: Continued.

Problem Task MFEA MFEA+FuR MFEA+BiR MFEA+TrR

NI +HS

Rosenbrock (T1) 3799.9063 (1200.8935) 3728.7994 (1250.5653) 3830.1883 (1485.8082) 3814.4974 (1146.8015)
Wilcoxon rank sum test 7.07E− 01 6.17E− 01 9.70E− 01

Rastrigin (T2) 320.2278 (28.0176) 305.4074 (29.0316) 304.0652 (30.8981) 312.4591 (28.8615)
Wilcoxon rank sum test 2.71E− 02 2.86E− 02 3.19E− 01

NI +MS

Griewank (T1) 1.1668 (0.052264) 1.2348 (0.34088) 1.1743 (0.051695) 1.1642 (0.046497)
Wilcoxon rank sum test 3.34E− 01 2.95E− 01 8.23E− 01

Weierstrass (T2) 23.8683 (2.1485) 25.0279 (3.4603) 23.5277 (2.1507) 23.5026 (1.6825)
Wilcoxon rank sum test 8.17E− 02 4.32E− 01 5.63E− 01

NI + LS

Rastrigin (T1) 3764.2782 (456.731) 3742.6071 (494.4649) 3753.2077 (436.1078) 3790.9051 (425.3387)
Wilcoxon rank sum test 9.97E− 01 8.23E− 01 6.37E− 01

Schwefel (T2) 13985.3097 (452.5025) 13987.3431 (621.4383) 14004.3855 (519.2037) 14004.714 (347.8701)
Wilcoxon rank sum test 4.63E− 01 6.08E− 01 7.70E− 01

T1 in CI + HS

Order1
Order2

Order3
Original

0

10

20

30

40

Fi
tn

es
s

200 400 600 800 10000
Generation

(a)

Order1
Order2

Order3
Original

T2 in CI + HS

0

× 104

1

2

3

4

Fi
tn

es
s

200 400 600 800 10000
Generation

(b)

Figure 4: Convergence of MFEA for problem 1 (CI +HS).

T1 in Cl + MS

Order1
Order2

Order3
Original

0

5

10

15

20

25

Fi
tn

es
s

200 400 600 800 10000
Generation

(a)

T2 in Cl + MS×104

Order1
Order2

Order3
Original

0

1

2

3

4

Fi
tn

es
s

200 400 600 800 10000
Generation

(b)

Figure 5: Convergence of MFEA for problem 2 (CI +MS).

10 Complexity

4

3

2
Fi

tn
es

s

1

0
0 200 400

Generation

T1 in PI + HS

600 800 1000

×104

Order1
Order2

Order3
Original

(a)

T1 in CI + LS
21.5

21.4

21.3

Fi
tn

es
s

21.2
0 500

Generation
1000

Order1
Order2

Order3
Original

(b)

Figure 6: Convergence of MFEA for problem 3 (CI + LS).

1.8

1.6

1.4

1.2

1

0
0 200 400

Generation

T2 in CI + LS

600 800 1000

Fi
tn

es
s

×104

Order1
Order2

Order3
Original

(a)

15

10

5

0
0 200 400

Generation

T2 in PI + HS

600 800 1000

Fi
tn

es
s

×104

Order1
Order2

Order3
Original

(b)

Figure 7: Convergence of MFEA for problem 4 (PI +HS).

4

3

2

1

0
0 200 400

Generation

T1 in PI + MS

600 800 1000

Fi
tn

es
s

×104

Order1
Order2

Order3
Original

(a)

25

20

15

10

5

0
0 200 400

Generation

T2 in PI + MS

600 800 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(b)

Figure 8: Convergence of MFEA for problem 5 (PI +MS).

Complexity 11

22

21

20

19

18

17
0 200 400

Generation

T1 in PI + LS

600 800 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(a)

40

30

20

10
0 200 400

Generation

T2 in PI + LS

600 800 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(b)

Figure 9: Convergence of MFEA for problem 6 (PI + LS).

4

3

2

1

0
0 500

Generation

T1 in NI + HS

1000

Fi
tn

es
s

×109

Order1
Order2

Order3
Original

(a)

4

3

2

1

0
0 500

Generation

T2 in NI + HS

1000

Fi
tn

es
s

×104

Order1
Order2

Order3
Original

(b)

Figure 10: Convergence of MFEA for problem 7 (NI +HS).

40

30

20

10

0
0 200 400

Generation

T1 in NI + MS

600 800 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(a)

80

60

40

20
0 200 400

Generation

T2 in NI + MS

600 800 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(b)

Figure 11: Convergence of MFEA for problem 8 (NI +MS).

12 Complexity

1.8

1.7

1.6

1.5

1.4

1.3
0 200 400

Generation

T1 in NI + LS

600 800 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

×104

(a)

4

3

2

1

0
0 200 400

Generation

T2in NI + LS

600 800 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

×104

(b)

Figure 12: Convergence of MFEA for problem 9 (NI + LS).

Table 3: Results obtained by MFDE under different order of variables.

Problem Task MFDE MFDE+FuR MFDE+BiR MFDE+TrR

CI +HS

Griewank (T1) 0.80067 (0.091715) 0.78732 (0.095784) 0.79683 (0.070848) 0.78042 (0.069597)
Wilcoxon rank sum test 5.60E− 01 6.42E− 01 9.53E− 02

Rastrigin (T2) 383.6669 (17.341) 384.4004 (16.4345) 383.5204 (20.6672) 378.5814 (18.5215)
Wilcoxon rank sum test 7.75E− 01 8.44E− 01 2.32E− 01

CI +MS

Ackley (T1) 3.7113 (0.31961) 3.7194 (0.27625) 3.7487 (0.39913) 3.8279 (0.52028)
Wilcoxon rank sum test 4.40E− 01 4.14E− 01 1.51E− 01

Rastrigin (T2) 394.1759 (19.8874) 394.3457 (15.2135) 395.1253 (23.0533) 396.4384 (30.0564)
Wilcoxon rank sum test 8.50E− 01 6.82E− 01 7.80E− 01

CI + LS

Ackley (T1) 21.2139 (0.039246) 21.1924 (0.037366) 21.2083 (0.035688) 21.2038 (0.031897)
Wilcoxon rank sum test 2.56E− 03 3.45E− 01 7.93E− 02

Schwefel (T2) 14311.2877 (389.6504) 14320.5211 (437.0273) 14287.7195 (372.0728) 14289.9965 (402.3736)
Wilcoxon rank sum test 6.67E− 01 5.56E− 01 8.60E− 01

PI +HS
Rastrigin (T1) 375.0134 (22.5836) 374.088 (34.9124) 378.3802 (21.5986) 377.1392 (19.3592)

4.93E− 01 4.67E− 01 6.08E− 01
Sphere (T2) 38.3998 (11.9496) 39.5629 (11.8708) 39.3453 (9.7899) 43.3497 (11.5134)

Wilcoxon rank sum test 4.88E− 01 5.98E− 01 4.03E− 02

PI +MS

Rosenbrock (T1) 3846.5413 (18670.6884) 618.9605 (988.0615) 436.7277 (1004.12) 611.279 (1394.7849)
Wilcoxon rank sum test 1.78E− 01 8.03E− 03 1.80E− 01

Ackley (T2) 1.0478 (1.1419) 0.90033 (0.61353) 0.89653 (0.67087) 1.0164 (0.73335)
Wilcoxon rank sum test 9.20E− 01 5.79E− 01 3.72E− 01

PI + LS

Ackley (T1) 10.2738 (3.9853) 10.549 (3.7654) 9.8559 (3.405) 9.8476 (3.2562)
Wilcoxon rank sum test 4.34E− 01 9.53E− 01 7.80E− 01

Weierstrass (T2) 7.8839 (4.8432) 7.1112 (3.9246) 7.2987 (3.6848) 7.2383 (3.856)
Wilcoxon rank sum test 6.82E− 01 1.00 E+00 9.53E− 01

NI +HS

Rosenbrock (T1) 4064.8109 (2340.4547) 3802.5141 (1764.8427) 4099.375 (1685.5901) 3746.2983 (1596.6946)
Wilcoxon rank sum test 9.09E− 01 3.50E− 01 6.92E− 01

Rastrigin (T2) 391.4913 (23.9269) 392.2342 (18.6947) 394.6522 (19.2541) 394.4849 (16.4735)
Wilcoxon rank sum test 8.93E− 01 7.12E− 01 7.33E− 01

NI +MS

Griewank (T1) 0.072548 (0.04229) 0.090939 (0.083529) 0.10188 (0.083764) 0.082862 (0.047972)
Wilcoxon rank sum test 5.01E− 01 6.32E− 02 3.68E− 01

Weierstrass (T2) 8.2862 (2.948) 8.7113 (3.2989) 8.8365 (3.4151) 8.6162 (2.8182)
Wilcoxon rank sum test 4.34E− 01 5.28E− 01 5.42E− 01

NI + LS

Rastrigin (T1) 1675.7148 (1015.8628) 1970.881 (1243.1416) 1723.1033 (1029.3855) 1832.1993 (846.6522)
Wilcoxon rank sum test 2.66E− 01 7.28E− 01 2.08E− 01

Schwefel (T2) 7007.7273 (1682.6573) 7469.9128 (1992.2856) 7259.8229 (1652.9156) 7492.6559 (1495.1018)
Wilcoxon rank sum test 2.93E− 01 5.42E− 01 1.80E− 01

Complexity 13

40

30

20

10

0
0 500

Generation

T1 in CI + HS

1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(a)

4

3

2

1

0
0 500

Generation

T2 in CI + HS

1000

Fi
tn

es
s

×104

Order1
Order2

Order3
Original

(b)

Figure 13: Convergence of MFDE for problem 1 (CI +HS).

25

20

15

10

5

0
0

Generation

T1 in CI + MS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(a)

4

3

2

1

0
0

Generation

T2 in CI + MS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

×104

(b)

Figure 14: Convergence of MFDE for problem 2 (CI +MS).

21.5

21.4

21.3

21.2

21.1
0

Generation

T1 in CI + LS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(a)

1.8

1.7

1.6

1.5

1.4
0

Generation

T2 in CI + LS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

×104

(b)

Figure 15: Convergence of MFDE for problem 3 (CI + LS).

14 Complexity

4

3

2

1

0
0

Generation

T1 in PI + HS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

×104

(a)

15

10

5

0
0

Generation

T2 in PI + HS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

×104

(b)

Figure 16: Convergence of MFDE for problem 4 (PI +HS).

4

3

2

1

0
0

Generation

T1 in PI + MS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

×109

(a)

25

20

15

10

5

0
0

Generation

T2 in PI + MS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(b)

Figure 17: Convergence of MFDE for problem 5 (PI +MS).

25

20

15

10

5
0

Generation

T1 in PI + LS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(a)

40

30

20

10

0
0

Generation

T2 in PI + LS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(b)

Figure 18: Convergence of MFDE for problem 6 (PI + LS).

Complexity 15

4

3

2

1

0
0

Generation

T1 in NI + HS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

×109

(a)

4

3

2

1

0
0

Generation

T2 in NI + HS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

×104

(b)

Figure 19: Convergence of MFDE for problem 7 (NI +HS).

40

30

20

10

0
0

Generation

T1 in NI + MS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(a)

80

60

40

20

0
0

Generation

T2 in NI + MS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

(b)

Figure 20: Convergence of MFDE for problem 8 (NI +MS).

1.8

1.6

1.2

1.4

1

0.8

0.6
0

Generation

T1 in NI + LS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

×104

(a)

4

3

1

2

0
0

Generation

T2 in NI + LS

500 1000

Fi
tn

es
s

Order1
Order2

Order3
Original

×104

(b)

Figure 21: Convergence of MFDE for problem 9 (NI + LS).

16 Complexity

multitasking optimization does not change significantly due
to the change of the framework of the multitasking
algorithm.

5. Conclusion

In this paper, we investigate the effect of order of variables on
the algorithm performance when solving multitasking op-
timization problems. +e corresponding relationship be-
tween two individuals before and after changing the order of
variables for single-task optimization problem and MTO
problems is analyzed, respectively. When the order of
variables of one optimization function is changed, different
offspring will be generated for the MTO problem.+erefore,
we design and study three orders of variables, namely, full
reverse order, bisection reverse order, and trisection reverse
order. An important feature of these orders of variables is
that an individual can recover as himself after two times of
changing the order of variables twice.

+e experiment results showed that the effect of the
order of variables on MFEA algorithm is not significant for
all MTO problems in practice. Keeping this in mind, we
analyze the difference of optimization results among dif-
ferent variable orders in different evolution stages. We find
that the algorithm convergence does not change significantly
because of the order of variables. In order to prove further,
we also carried out the same order change onMFDE, and the
results obtained are basically consistent with MFEA.
However, MTO with high degree of similarity and inter-
section is more susceptible to be influenced by variable order
and is more sensitive to complex variable order.

For future work, we would like to further study the effect
of the order of variables under other situations, such as the
position of optimal solution and multitasking optimization
problem which contains more than two problems.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is study was partially supported by the National Natural
Science Foundation of China under grant nos. 61773314 and
61803301, Natural Science Basic Research Program of
Shaanxi under grant nos. 2019JZ-11 and 2020-JM-709, and
Scientific Research Foundation of the National University of
Defense Technology under grant no. ZK18-03-43.

References

[1] F. Feng, X. S. Hu, J. F. Liu, X. K. Lin, and B. Liu, “A review of
equalization strategies for series battery packs: variables,
objectives, and algorithms,” Renewable and Sustainable En-
ergy Reviews, vol. 116, Article ID 109464, 2019.

[2] K. Liu, K. Li, Q. Peng, and C. Zhang, “A brief review on key
technologies in the battery management system of electric
vehicles,” Frontiers of Mechanical Engineering, vol. 14, no. 1,
pp. 47–64, 2019.

[3] J. T. Tsai, J. H. Chou, and W. H. Ho, “Improved quantum-
inspired evolutionary algorithm for engineering design op-
timization,”Mathematical Problems in Engineering, vol. 2012,
Article ID 836597, 27 pages, 2012.

[4] G. Q. Liu, W. Y. Chen, H. D. Chen, and J. H. Xie, “A quantum
particle swarm optimization algorithm with teamwork evo-
lutionary strategy,” Mathematical Problems in Engineering,
vol. 2019, Article ID 1805198, 12 pages, 2019.

[5] L. Cao, L. Xu, and E. D. Goodman, “A guiding evolutionary
algorithm with greedy strategy for global optimization
problems,” Computational Intelligence and Neuroscience,
vol. 2016, Article ID 2565809, 10 pages, 2016.

[6] J. F. Lin, K. W. Zhang, Y. L. Yao, Y. Xue, and T. Z. Guan, “A
heuristic quasi-physical algorithm with coarse and fine ad-
justment for multi-objective weighted circles packing prob-
lem,” Computers & Industrial Engineering, vol. 101, no. 1,
pp. 416–426, 2016.

[7] K. Liu, C. Zou, K. Li, and T. Wik, “Charging pattern opti-
mization for lithium-ion batteries with an electrothermal-
aging model,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 12, pp. 5463–5474, 2018.

[8] F. Feng, S. Teng, K. Liu et al., “Co-estimation of lithium-ion
battery state of charge and state of temperature based on a
hybrid electrochemical-thermal-neural-network model,”
Journal of Power Sources, vol. 455, p. 227935, 2020.

[9] K. L. Liu, Y. L. Shang, Q. Ouyang, and W. D. Widanage, “A
data-driven approach with uncertainty quantification for
predicting future capacities and remaining useful life of
lithium-ion battery,” IEEE Transactions on Industrial Elec-
tronics, 2020.

[10] Q. Ouyang, Z. Wang, K. Liu, G. Xu, and Y. Li, “Optimal
charging control for lithium-ion battery packs: a distributed
average tracking approach,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 5, pp. 3430–3438, 2020.

[11] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolution:
toward evolutionary multitasking,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 3, pp. 343–357, 2016.

[12] Q. Z. Xu, H. Yang, N. Wang, G. H. Wu, and Q. Y. Jiang,
“Recent advances in multifactorial evolutionary algorithm,”
Computer Engineering and Applications, vol. 54, no. 11,
pp. 15–20, 2018, in Chinese.

[13] Z. Wang, Q. Zhang, A. Zhou, M. Gong, and L. Jiao, “Adaptive
replacement strategies for MOEA/D,” IEEE Transactions on
Cybernetics, vol. 46, no. 2, pp. 474–486, 2016.

[14] A. Gupta, Y.-S. Ong, and L. Feng, “Insights on transfer op-
timization: because experience is the best teacher,” IEEE
Transactions on Emerging Topics in Computational Intelli-
gence, vol. 2, no. 1, pp. 51–64, 2018.

[15] L. Feng, W. Zhou, L. Zhou et al., “An Empirical Study of
Multifactorial PSO and Multifactorial DE,” in Proceedings of
the IEEE Congress on Evolutionary Computation, pp. 921–928,
San Sebastian, Spain, June 2017.

[16] T. Back, U. Hammel, and H.-P. Schwefel, “Evolutionary
computation: comments on the history and current state,”
IEEE Transactions on Evolutionary Computation, vol. 1, no. 1,
pp. 3–17, 1997.

[17] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments—A survey,” IEEE Transactions on Evolutionary
Computation, vol. 9, no. 3, pp. 303–317, 2005.

Complexity 17

[18] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic
optimization: a survey of the state of the art,” Swarm and
Evolutionary Computation, vol. 6, no. 1, pp. 1–24, 2012.

[19] N. Wang, Q. Xu, R. Fei, J. Yang, and L. Wang, “Rigorous
analysis of multi-factorial evolutionary algorithm as multi-
population evolution model,” International Journal of Com-
putational Intelligence Systems, vol. 12, no. 2, pp. 1121–1133,
2019.

[20] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[21] S. Das and P. N. Suganthan, “Differential evolution: a survey
of the state-of-the-art,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 1, pp. 4–31, 2011.

[22] R. Hashimoto, H. Ishibuchi, N. Masuyama, and Y. Nojima,
“Analysis of evolutionary multi-tasking as an island model,”
in Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1894–1897, Kyoto, Japan, July 2018.

[23] B. S. Da, Y. S. Ong, L. Feng et al., “Evolutionary multi-tasking for
single-objective continuous optimization: benchmark problems,
performance metric and baseline results,” Technical Report,
Nanyang Technological University, Singapore, 2017.

[24] G. H. Li, Q. F. Zhang, and W. F. Gao, “Multipopulation
evolution framework for multifactorial optimization,” in
Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 215-216, Kyoto, Japan, July 2018.

[25] H. Song, A. K. Qin, P. W. Tsai, and J. J. Liang, “Multitasking
multi-Swarm optimization,” in Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 1937–1944,
Wellington, New Zealand, June 2019.

[26] G. Li, Q. Lin, and W. Gao, “Multifactorial optimization via
explicit multipopulation evolutionary framework,” Informa-
tion Sciences, vol. 512, no. 1, pp. 1555–1570, 2020.

[27] Y. Chen, J. Zhong, L. Feng, and J. Zhang, “An adaptive ar-
chive-based evolutionary framework for many-task optimi-
zation,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 4, no. 3, pp. 369–384, 2020.

[28] Q. J. Chen, X. L. Ma, Y. W. Sun, and Z. X. Zhu, “Adaptive
memetic algorithm based evolutionary multi-tasking single-
objective optimization,” in Proceedings of the Asia-Pacific
Conference on Simulated Evolution and Learning, pp. 462–
472, Shenzhen, China, November 2017.

[29] X. Zheng, Y. Lei, A. K. Qin, D. Y. Zhou, J. Shi, and
M. G. Gong, “Differential evolutionary multi-task optimiza-
tion,” in Proceedings of the IEEE Congress on Evolutionary
Computation Optimization, pp. 1914–1921, Wellington, New
Zealand, June 2019.

[30] X. X. Hao, R. Qu, and J. Liu, “A unified framework of graph-
based evolutionary multitasking hyper-heuristic,” IEEE
Transactions on Evolutionary Computation, vol. 14, no. 8,
pp. 1–1, 2020.

[31] A. Gupta and Y. S. Ong, “Genetic transfer or population
diversification? Deciphering the secret ingredients of evolu-
tionary multitask optimization,” in Proceedings of the IEEE
Symposium Series on Computational Intelligence, pp. 1–7,
Athens, Greece, December 2016.

[32] Z. Tang andM. Gong, “Adaptive multifactorial particle swarm
optimisation,” CAAI Transactions on Intelligence Technology,
vol. 4, no. 1, pp. 37–46, 2019.

[33] Y. Q. Cai, D. N. Peng, S. K. Fu, and H. Tian, “Multi-tasking
differential evolution with difference vector sharing mechanism,”
in Proceedings of the IEEE Symposium Series on Computational
Intelligence, pp. 3039–3046, Xiamen, China, December 2019.

[34] L. Zhou, L. Feng, K. Liu et al., “Towards effective mutation for
knowledge transfer in multifactorial differential evolution,” in
Proceedings of the IEEE Congress on Evolutionary Computa-
tion, pp. 1541–1547, Wellington, New Zealand, June 2019.

[35] L. Fen, L. Zhou, J. H. Zhong et al., “Evolutionary multi-tasking
via explicit autoencoding,” IEEE Transactions on Cybernetics,
vol. 49, no. 9, pp. 3457–3470, 2019.

[36] J. B. Lin, H. L. Lin, B. Xue, M. J. Zhang, and F. Q. Gu, “Multi-
objective multi-tasking optimization based on incremental
learning,” IEEE Transactions on Evolutionary Computation,
vol. 24, no. 5, pp. 824–838, 2019.

[37] C. E. Yang, J. L. Ding, K. C. Tan, and Y. C. Jin, “Two-stage
assortative mating for multi-objective multifactorial evolu-
tionary optimization,” in Proceedings of the IEEE 56th Annual
Conference on Decision and Control, pp. 76–81, Melbourne,
Australia, December 2017.

[38] Y. C. Lian, Z. X. Huang, Y. R. Zhou, and Z. F. Chen, “Improve
theoretical upper bound of jumpk function by evolutionary
multitasking,” in Proceedings of the High Performance Com-
puting and Cluster Technologies Conference, pp. 44–50,
Guangzhou, China, June 2019.

[39] M.-Y. Cheng, A. Gupta, Y.-S. Ong, and Z.-W. Ni, “Coevo-
lutionary multitasking for concurrent global optimization:
with case studies in complex engineering design,” Engineering
Applications of Artificial Intelligence, vol. 64, no. 1, pp. 13–24,
2017.

[40] J. Ding, C. Yang, Y. Jin, and T. Chai, “Generalized multi-
tasking for evolutionary optimization of expensive problems,”
IEEE Transactions on Evolutionary Computation, vol. 23,
no. 1, pp. 44–58, 2019.

[41] J. L. Ding, C. E. Yang, Y. C. Jin, C. Z. Wang, and T. Y. Chai,
“Multitasking multiobjective evolutionary operational indices
optimization of beneficiation processes,” IEEE Transactions
on Automation Science and Engineering, vol. 16, no. 3,
pp. 1046–1057, 2019.

[42] L. Feng, L. Zhou, A. Gupta et al., “Solving generalized vehicle
routing problem with occasional drivers via evolutionary
multitasking,” IEEE Transactions on Cybernetics, 2019.

[43] J. Liang, K. Qiao, M. Yuan et al., “Evolutionary multi-task
optimization for parameters extraction of photovoltaic
models,” Energy Conversion and Management, vol. 207, no. 1,
p. 112509, 2020.

[44] A. Gupta, J. Mańdziuk, and Y. S. Ong, “Evolutionary mul-
titasking in bi-level optimization,” Complex Intelligent System,
vol. 1, no. 1–4, pp. 83–95, 2015.

[45] S. Jiang, C. Xu, A. Gupta et al., “Complex and intelligent
systems in manufacturing,” IEEE Potentials, vol. 35, no. 4,
pp. 23–28, 2016.

[46] K. K. Bali, Y.-S. Ong, A. Gupta, and P. S. Tan, “Multifactorial
evolutionary algorithm with online transfer parameter esti-
mation: MFEA-II,” IEEE Transactions on Evolutionary
Computation, vol. 24, no. 1, pp. 69–83, 2020.

[47] A. Gupta, Y.-S. Ong, L. Feng, and K. C. Tan, “Multiobjective
multifactorial optimization in evolutionary multitasking,”
IEEE Transactions on Cybernetics, vol. 47, no. 7, pp. 1652–
1665, 2017.

[48] A. Gaur and K. Deb, “Effect of size and order of variables in
rules for multi-objective repair-based innovization proce-
dure,” in Proceedings of the IEEE Congress on evolutionary
computation, pp. 2177–2184, San Sebastian, Spain, June 2017.

[49] K. Deb and A. Srinivasan, “Innovization: innovating design
principles through optimization,” in Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation,
pp. 1629–1636, Seattle, WA, USA, July 2006.

18 Complexity

