

Review Article

Analysis of the Strategic Emission-Based Energy Policies of Developing and Developed Economies with Twin Prediction Model

Yulian Jiang,¹ Wuchang Wei,² Ramesh Chandra Das ^(b),³ and Tonmoy Chatterjee ^(b)

¹School of International Trade and Economics, Jiangxi University of Finance and Economics, Nanchang 330013, China
 ²School of Architectural Engineering, Hezhou University, Hezhou 542899, China
 ³Department of Economics, Vidyasagar University, Midnapore, WB, India
 ⁴Department of Economics, Ananda Chandra College, Jalpaiguri, WB, India

Correspondence should be addressed to Ramesh Chandra Das; ramesh051073@gmail.com

Received 10 July 2020; Revised 2 October 2020; Accepted 28 October 2020; Published 11 November 2020

Academic Editor: Qingling Wang

Copyright © 2020 Yulian Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Upholding sustainability in the use of energies for the increasing global industrial activity has been one of the priority agendas of the global leaders of the West and East. The projection of different GHGs has thus been the important policy agenda of the economies to justify the positions of their own as well as of others. Methane is one of the important components of GHGs, and its main sources of generation are the agriculture and livestock activities. Global diplomacy regarding the curtailment of the GHGs has set the target of reducing the levels of GHGs time to time, but the ground reality regarding the reduction is far away from the targets. Sometimes, the targets are fixed without the application of scientific methods. The aim of the present study is to examine sustainability of energy systems through the forecasting of the methane emission and agricultural output of the world's different income groups up to 2030 using the data for the period 1981–2012. The work is novel in two senses: the existing studies did not use both the Box–Jenkins and artificial neural network methods, and the present study covers all the major economic groups in the world which is unlike to any existing studies. Two methods are used for forecasting of the two. One is the Box–Jenkins method, where linear nature of the two variables is considered and the other is artificial neural network methods where nonlinear nature of the variables is also considered. The results show that, except the OECD group, all the remaining groups display increasing trends of methane emission, but unquestionably, all the groups display increasing trends of agricultural output, where middle- and upper middle-income groups hold the upper berths. The forecasted emission is justified to be sustainable in major groups under both methods of estimations since overall growth of agricultural output is greater than that of methane emission.

1. Introduction

From the last half of 19th century to till date, economic growth turns into the most important particle of almost all socioeconomic systems in our mother earth. To achieve the higher growth trajectory, each and every economy put all of their resources on the board without giving any potentiality to future generations. It is only in late 90s, when scarcity of resources and a relatively new term "global warming" knocking the door of the policy and law makers around the world, human beings push forward the agenda of sustainability. In the wake of the issues related to sustainability, researchers are often engaged themselves in a debate over the existence of whether substitutability or complementarity are working between the association of growth and environment [1, 2].

It has been historically evidenced that growth can revolutionize the structural changes in both production and consumption. Such changes may occur from either directions or both, that is, either from level or composition or from both of them [3]. Interestingly, both the level and the composition of production and consumption activities affect environmental degradation and raise the scope of greenhouse gas (GHG) emissions, owing to which the prospects of sustainable economic development may hamper in future [4, 5]. It is evidenced that GHG contributes global warming and, consequently, generates severe environmental matters. It is to be noted that, to control the global emissions of GHG, the Kyoto Protocol was proposed and signed by almost all the countries in the world. The Kyoto Protocol specified six GHGs, including methane (CH_4) , carbon dioxide (CO_2) , nitrous oxide (N2O), perfluorocarbons (PFCS), hydrofluorocarbons (HFCS), and sulphur hexafluoride (SF₆) [6]. In 2014, the concentration of carbon dioxide (CO_2) , methane (CH_4) , and nitrous oxide (N_2O) in the atmosphere was 397.7 ppm, 1833 ppb, and 325.9 ppb, respectively (World Meteorological Organization, 2015). On the average, the anthropogenic emissions grew 1.3% annually from 1970 to 2000 and 2.2% annually from 2000 to 2010 [7]. Moreover, after carbon dioxide, methane is the second most emitted GHG; its potential to catch heat in the atmosphere is 23 times higher than carbon dioxide [8] and so a clinical examination on increase in methane gas emission needs more attention.

Under 1996 IPCC revised guidelines, national GHG inventories includes energy, industrial process, solvent and other products, agriculture, land-use change and forestry, and waste, while the above-stated list is modified under 2006 IPCC guidelines [6, 9, 10]. Following the just-stated segregation of GHG, methane emissions are also generated from several production sectors. For instance, anthropogenic methane is emitted from sectors like cattle breeding, rice cultivation, extraction and transport of fossil fuels, and waste management [11]. These emissions result from very heterogeneous processes with several scopes for abatement. Accordingly, existing heterogeneity of production structures across countries introduces cross-country asymmetries broadly based on agriculture-based methane or industrybased methane emissions. Interestingly, methane emission and sectoral composition are rarely analyzed in the literature. However, such gap is widened enough in case of agricultural methane emissions. Methane is produced and emitted from the decomposition of livestock manure and the organic components in agro-industrial wastewater. These wastes are typically stored or treated in waste management systems that promote anaerobic conditions and produce biogas, a mixture of about 70 percent methane, 30 percent carbon dioxide, and less than 1 percent hydrogen sulfide. Globally, manure management added an approximated 237 million metric tons of carbon dioxide equivalent of methane emissions in 2010, roughly 4 percent of total anthropogenic methane emissions. Out of total emitted agro-based methane, almost 85 percent is accompanied by USA, China, and India together, followed by Brazil, Pakistan, and Vietnam [12]. It is to be noted that the agriculture methane may emit also from nations which use more capital-intensive production technique, and hence, a critical analysis between agriculture and methane emissions is needed abruptly.

Amalgamation of methane emission with agriculture production creates doubt over the efficacy of sustainability issue. Massive agriculture production can emit more vulnerable methane along with other GHGs. Again, such methane emissions may affect weather variability and

multiply climate change risks and the magnitude of global warming. This can affect dairy cattle feeding sector along with other agriculture-based activities more severely. As a consequence, the vulnerability of agriculture-based livelihoods may increase with induced disaster risks. However, there is no definite and robust model which can estimate social costs from such emissions [13]. Hence, by minimizing environmental degradation and pollution risks along with adaptation to climate and weather, variability risks should not only increase resilience of farmers' production systems but also stabilize their output and income [14]. Identification and reduction of above-stated uncertainties and risk factors in terms of anticipatory adaptation may raise the potentiality of sustainability paradigm [15]. Therefore, climate change adaptation policies in the agricultural sector along with adaptation to control methane emission are to be implemented for getting sustainable development. Therefore, the question still remains in mind: "does complementarity between methane emission and agriculture production generate sustainability?" This paper also tries to locate, screen, and evaluate this issue for major income groups of the world.

This paper contributes original findings concerning methane emission and agriculture production with special emphasis on sustainability. First, it goes for forecasting of methane emission and agricultural output using the Box–Jenkins (BJ) and artificial neural network (ANN) methods. Second, it goes for testing the sustainability of methane emission vis-à-vis agricultural output.

The paper is organized as follows: literature review is presented first, followed by data, methodology, analysis of results, and conclusion.

2. Literature Review

Table 1 exhibits the brief information on the highly relevant works reviewed so far for the present study.

Analysis related to GHG emission and economic activities are not new in the literature. Study related to GHG emission and economic growth has been discussed in the literature quite rigorously [16-19]. All these studies used the similar kinds of methodology to relate GHG emission with growth. In fact, these studies have used CO₂ as a measure of GHG and per capita income for panel data to show the presence of EKC. Again, there are a few studies that have used several GHGs, and they have confirmed the existence of EKC for methane emissions [20-22]. In this context, using a dataset for 22 OECD countries, it has shown a quadratic relationship between methane emission and GDP in the long run [20]. Such quadratic relationship between methane emission and GDP has also been established in the literature for different datasets [22]. Again, industrial methane emission of 39 countries explicitly claims N-shaped relationship between the methane emission and economic growth [21].

In a notable working series titled "OECD Environmental Outlook to 2030," it studies the prediction of GHG emissions in 2030 if the present inaction on environment remains unchanged [24]. The report reveals that, by 2030, the world economy is expected to nearly double and world population

Comple	xity
--------	------

Article	Year	Link with present study	Methodology	Outcomes
Acaravci and Ozturk [16]	2010	This study examines the causal relationship between GHGs, energy consumption, and economic growth	Uses autoregressive distributed lag (ARDL) bounds testing approach of cointegration for nineteen European countries	Shows long-run relationship between GHGs, energy consumption per capita, real GDP per capita, and the square of per capita real GDP
Apergis and Ozturk [17]	2015	This study focuses on both GDP and policies in fourteen Asian countries to capture income-emission relationship	Uses GMM method to a multivariate panel data framework	Illustrates inverted U-shaped association between emissions and per capita GDP for selected Asian economies over the period 1990-2011
Coondoo and Dinda [18]	2002	This study presents the results of a study of income and major GHG emission	Granger causality test is used to cross-country panel data on per capita income and the corresponding per capita CO ₂ emission	For the group of developed economies, the causality is found to run from GHG emission in terms of CO ₂ emission to income
Kasman and Duman [19]	2015	This article examines the causal relationship among energy consumption, carbon dioxide emissions, economic growth, trade openness, and urbanization for a panel of new EU member and candidate countries	Panel cointegration methods and panel causality tests are used to investigate such associations	Short-run unidirectional panel causality running from energy consumption, trade openness, and urbanization to carbon emissions and long-run associations are claimed
Cho et al. [20]	2014	This study investigates the EKC hypothesis by using the total GHG and methane emission	Uses panel cointegration tests as well as the fully modified ordinary least squares (FMOLS) approach	Shows that a quadratic relationship may exist in the long run for twenty- two OECD countries
Fujii and Managi [21]	2016	This study analyzes the relationship between economic growth and emissions of major GHGs including methane	Uses of both time series and panel data analysis	Shows doubt over presence of EKC for several individual industries and illustrates the presence of EKC at the country and total industrial sector level data
Kubicová [22]	2014	Examines both EKC and PHH in the context of GHGs for Slovak Republic	Granger causality test	Concludes that the volume of per capita per capita greenhouse gas emissions in the present period and in any of the previous four periods has no effect on the amount of net FDI inflows as a percentage of GDP in the Slovak Republic
Marchal et al. [23]	2011	This study searches for the policy implications of the climate change challenge in the context of methane emission and growth	Cross-sectional data and forecasting method are used	Methane and nitrous oxide emissions are projected to increase to 2050; although agricultural land is expected to expand slowly along with the escalation of agricultural productions in developing countries
OECDEO [24]	2008	This study predict the GHGs emissions in 2030 under unchanged environmental conditions	Employs simulations exercise in order to find policy actions to address the key challenges, including their potential environmental, economic and social impacts	Claims a rise in income and aspirations for better living standards will increase the pressure on the planet's natural resources
Ali and Abdullah [25]	2015	This study examines the association between the major GHG emission and its determinants like economic growth, financial development, and trade openness for the time period 1970-2012	Uses vector error correction model (VECM) approach to investigate the relationship between the variables	Claims economic growth, financial development, and trade openness are still very important in determining the CO_2 emissions
Benavides et al. [26]	2017	This study investigates the relationship between methane emissions, GDP, electricity production from renewable energy sources, and trade openness	Uses ARDL and Granger causality test	Shows unidirectional causality between CH ₄ and the variables involved

TABLE 1: Continued.	
---------------------	--

Article	Year	Link with present study	Methodology	Outcomes
Du et al. [27]	2018	Illustrates methane emissions from 2000 to 2014 that originated from wastewater from different provinces in China	Adopts artificial neural network model	Shows an increasing trend in methane emissions in China and a spatial transition of industrial wastewater emissions
Fernández- Amador et al. [28]	2018	Estimates the income elasticity of per capita methane emissions	Uses threshold models with piecewise-linear income elasticity	Income elasticity decreases at high income levels but the rate is diminishing
Shahbaz et al. [29]	2015	Examines the EKC hypothesis in Portugal in the context of major GHG emission	Adopts ARDL bounds testing approach	Shows existence of EKC hypothesis in both the short run and long run
Shahbaz et al. [30]	2014	Investigates the existence of EKC hypotheses in case of Tunisia using annual time series data for the period of 1971–2010	ARDL bounds testing approach, vector error correction model, and innovative accounting approach are employed	Claims long run association among economic growth, energy consumption, trade openness, and CO_2 emissions
Bates [31]	2001	Considers agriculture GHG emission with reference to methane and nitrous oxide emissions in EU	Time series and panel data analysis are used	Predicts that the baseline emissions of methane and nitrous oxide in the agricultural sector are likely to decline by 7%
Fernández- Amador et al. [11]	2018	Considers global dataset on methane inventories derived from production, final production, and consumption for the time period 1997-2011	Uses panel data regression	Shows the presence of relative decoupling between methane and growth, and the relationship is nonlinear in nature
Hasegawa and Matsuoka [32]	2010	Introduces an integrated model to predict global CH ₄ and N ₂ O emissions and reduction potentials related to agricultural production over the period 2000 to 2030	Agricultural model and countermeasure selection model are introduced	Claims that the livestock manure management and rice paddy are expected to be emission sources that have high reduction potentials
Adger et al. [33]	2005	This study reviews the nature of adaptation and also examines the implications of different spatial scales for these processes	Uses normative evaluative criteria	Shows that elements of effectiveness, efficiency, equity, and authenticity are important in claiming success in terms of the sustainability
Asghar et al. [34]	2006	Introduces the ideas of disasters management with GHG emission	Model of integrated disaster management is used	Findings have claimed that proper policy investigations, plans, programmes and adaptation in terms of risks, and opportunities can make GHG emissions as sustainability indicators
Barnett and O'Neill [35]	2010	Relates adaptation and GHGs in the context of Melbourne	Considers comparative analysis	Claims in favour of introduction a line of investigation that the policy- makers should ask and seek answers before committing resources to adaptation decisions
Haddad [14]	2005	Relates HDI with GHGs	Introduces sociopolitical model	Advocates that adaptive capacity based on national sociopolitical aspirations is needed
Maredia and Minde [36]	2002	Examines association among agriculture, technology, and environmental degradation	Uses Africa-based analysis with descriptive statistics	Finds lack of adaptation may degrade environment with more higher agricultural productivity in Africa
Mimura et al. [37]	2014	Relates adaptation with climate change	Adaptation strategy is employed	Recognizing the importance of mainstreaming adaptation and the integration of adaptation policies within those of development increases
Volenzo [38]	2015	Relates methane emission, agriculture, and adaptation	Simulation exercises has been introduced	Claims failure to adopt proper adaptation may aggravate small-scale farmers' vulnerability to climate change and weather variability and in return economy will produce suboptimal outcomes

Article	Year	Link with present study	Methodology	Outcomes
Volenzo et al. [39]	2019	Related to methane emission, agriculture, and adaptation	Uses simulation exercises	Encouraged to design and implement policies and strategies that take cognizance of poverty- maladaptation-environmental degradation nexus

to grow from 6.5 billion today to over 8.2 billion. Most of the growths in income and population will be in the emerging economies of Brazil, Russia, India, Indonesia, China, and South Africa (the BRIICS) and in other developing countries. Rising income and aspirations for better living standards will increase the pressure on the planet's natural resources. In another series titled "OECD Environmental Outlook to 2050," it envisages that, without more ambitious policies than those in force today, GHG emissions will increase by another 50% by 2050, primarily driven by a projected 70% growth in CO₂ emissions from energy use [23]. This is primarily due to a projected 80% increase in global energy demand. Furthermore, it claims that, historically, although OECD economies have been responsible for most of the emissions, in the coming decades, increasing emissions will also be caused by high economic growth in some of the major emerging economies. Again, global energy-related carbon dioxide (CO₂) emissions are projected to increase by one-third between 2012 and 2040. The continuing increase in total emissions occurs despite a moderate decrease in the carbon intensity (CO_2 per unit of energy) of the global energy supply [40].

From the international trade angle, a few studies have found positive relationship between trade openness and CO₂ emissions [25, 29, 30]. Positive association between methane emission and trade openness is also acknowledged in the literature [26]. Moreover, economic growth and several socioeconomic activities are claimed responsible for methane emission [25]. In fact, rapid growth, population size, and foreign direct investment are made as the responsible factors behind methane emission for different cross-sections [30]. Again, through an interesting study, it is reported that the elasticity of methane emissions with respect to income per capita income is low and it may decrease over time [28]. In a recent study based on country specific efforts, it has been calculated by neural network method that the predicted methane emission from wastewater in China will be an increasing trend and a spatial transition of industrial wastewater emissions from eastern and southern regions to central and southwestern regions and from coastal regions to inland regions will occur [27].

Again, some studies are focused on the reduction potentiality of methane emission from agriculture [31, 41]. Usually, such studies have used static methodology and derived short-run estimates to locate the reduction possibility of methane emission from agricultural sector [31, 41]. However, long-run analysis has also been established, in which methane emissions from agriculture and reduction prospective under several marginal abatement costs, huge drop likely regions, and emission sources are claimed for long-run [32]. Again, establishing the significance of agricultural sector in the context of GHGs emission, it has been claimed that the anthropogenic methane emissions are mostly produced by a few economic sectors such as cattle breeding and rice cultivation [11].

Issues related to sustainable development in the context of agriculture production and methane gas emission have been discussed critically in the literature. Furthermore, it is argued that proper policy investigations, plans, programmes, and adaptation in terms of risks and opportunities can make GHG emissions as sustainability indicators to uphold sustainable development [34, 42]. To get sustainability, investigators are usually advocated for the attractive adaptation measures to pursue efficiently in long run [37]. Investigation in this aspect has revealed that, by controlling environmental degradation and pollution risks along with adaptation to climate and weather, variability risks may increase resilience of farmers' production systems and also side by side stabilize their output and income [14]. In another series titled "Sendai framework for disaster risk reduction 2015-2030," it has been argued that minimization of uncertainties and risk factors owing to climate change attached to agriculture can be optimized through anticipatory adaptation [15]. Sustainable development in terms of improvement of farmer's livelihood is claimed and argued in favour of proper adaptation of changing policy regimes in the context of environmental degradation to opt sustainability [36]. Again, with inability to screen, evaluate, and treat risks augmented in dairy feeding, adaptation initiatives are declared as responsible factors to enhance risks embedded in climate change. Furthermore, studies claim that just-stated failure to adopt proper adaptation may aggravate small-scale farmers' vulnerability to climate change and weather variability, and in return, economy will produce suboptimal outcomes [33, 35, 38]. In a more recent study, it has been claimed that methane gas emission along with other GHGs emissions from agriculture production and in dairy feeding strategies can be used as a measure and indicator of sustainability. It has been further argued that policy implementation to curb risks associated with agriculture production owing to methane emission must be embedded with the cognizance of poverty, maladaptation, and environmental degradation nexus [39].

3. Rationale of the Present Study

The review of literature highlights different aspects of GHG emission in general and methane emission in particular and their impacts in different sectors of different economies but does not cover studies related to forecasting of methane emission in world's leading methane emitting countries. The present study has tried to fill the gap in the literature by means of forecasting methane emission for world's leading economic groups up to the year 2030. Furthermore, the sustainability of the forecast values of methane emission has been analyzed by means of forecast values of agricultural output of the same economic groups. It is thus a novel work in our view.

3.1. Data. The study uses the time series data on methane emission (in kt CO_2 equivalent) for the five groups of economies (high income, upper middle income, middle income, lower middle income, and low income) for the period 1981–2012. It also uses the time series data for the same period and same groups of economies on the total agricultural value added measured in current USD. Both the data series are borrowed from the World Bank (http://www.wordbank.org).

3.2. Methodology. Twin methods, not actually hybrid in usual sense, are used for forecasting of methane emission and agricultural value added. One is the Box–Jenkins method, where linear nature of the two variables is considered, and the other is artificial neural network methods, where nonlinear nature of the variables is also considered.

3.3. Box-Jenkins Method of Forecasting. Before going into the details of Box and Jenkins method of forecasting, we need to see how a time series data of a particular variable is generated.

There are three processes behind generation of a time series data:

- (1) AR process: past values of the variable and error term generate the data
- (2) MA process: only the errors or the disturbance term generate the data
- (3) ARMA process: data are generated by the combination of AR and MA processes

Sometimes, it is taken as ARIMA model, where "*I*" stands for integration of the series or how many differencing

Complexity

is done for making the time series of the variable to stationary.

In the AR (p) process, the current value of a variable "y" depends on only the past values plus an error term. If there are "p order in the process, i.e., the current value of y depends on the p order of past values and an error term of the current period," then the AR(p) can be written as

$$y_{t} = \mu + \varphi_{1}y_{t-1} + \varphi_{2}y_{t-2} + \varphi_{3}y_{t-3} + \varphi_{4}y_{t-4} + \dots + \varphi_{p}y_{t-p} + u_{t} = \mu + \Sigma \varphi_{i}y_{t-i} + u_{t},$$
(1)

where u_t is the white noise (WN) error term with zero mean, constant variance, and zero auto-covariance.

On the contrary, an MA(q) process is the linear combination of all the "q" terms of white noise terms depending on time. It is a white noise process in which the current value of y_t depends on the current value of the WN error term and all past values of the error terms. Because all the errors are WN, an MA process is necessarily a stationary process further because it is the linear combination of all plus and minus values of the errors which hover around zero.

So, an MA (q) process can be written as

$$y_{t} = u_{t} + \theta_{1}u_{t-1} + \theta_{2}u_{t-2} + \theta_{3}u_{t-3} + \theta_{4}u_{t-4} + \dots + \theta_{q}u_{t-q}$$

= $u_{t} + \sum \theta_{i}u_{t-i}$. (2)

An AR process is stationary if the characteristic root lies outside the unit circle or having values >1, then φ becomes less than 1. This means the condition $\varphi < 1$ leads to the values lying inside the unit circle representing stationarity of the AR process, and the model will thus have stability property.

An ARIMA (p, q) process is the combination of AR and MA processes, "*I*" being the order of integration, which can be represented by "*d*," number of differencing to convert the series from nonstationary to stationary. The model for ARMA (p, d, q) can then be written as

$$y_{t} = \mu + \varphi_{1}y_{t-1} + \varphi_{2}y_{t-2} + \varphi_{3}y_{t-3} + \varphi_{4}y_{t-4} + \dots + \varphi_{p}y_{t-p}$$
$$+ u_{t} + \theta_{1}u_{t-1} + \theta_{2}u_{t-2} + \theta_{3}u_{t-3} + \theta_{4}u_{t-4} + \dots + \theta_{q}u_{t-q}.$$
(3)

Using Lag operator, we have

$$(1 - \varphi_1 L - \varphi_2 L^2 - \varphi_3 L^3 - \varphi_4 L^4 - \dots - \varphi_p L^p) y_t = \mu + (1 + \theta_1 L + \theta_2 L^2 + \theta_3 L^3 + \theta_4 L^4 + \dots + \theta_q L^q) u_t Or,$$

$$\varphi(L) y_t = \mu + \theta(L) u_t.$$
(4)

This relation stands for invertibility between the AR and the MA process.

3.4. Forecasting in ARIMA Model: Box-Jenkins Method. The BJ methodology to determine which model is appropriate follows a four-step procedure: Step 1: identification: to determine the appropriate values of p, d, and q.

(i) The main tools in this search are the correlogram and partial correlogram.

Step 2: estimation: to estimate the parameters of the chosen model.

Step 3: diagnostic checking: to check if the residuals from the fitted model are white noise.

- (i) If they are, accept the chosen model; if not, start afresh.
- (ii) That is why the BJ methodology is an *iterative process*.

Step 4: forecasting. The ultimate test of a successful ARIMA model lies in its forecasting performance, within the sample period as well as outside the sample period. On the basis of the acceptable results obtained from steps 1 to 3, forecasting is made on the appropriate model of ARIMA. The forecasting results are accepted on the basis of the acceptable values of root mean square error (RMSE), bias proportion, variance proportions, and covariance proportions. The acceptable forecasted values will be those whose RMSE will be minimum possible, and covariance proportions will be greater than bias proportions and variance proportions.

4. Methodology of ANN-Based NAR

Real-world data always contains nonlinearity, and specifically, its behaviour is dynamic and depends on their current period. Under such circumstances, the nonlinear autoregressive (NAR) neural network structure is effective to make efficient prediction about future [43]. The first advantage of NAR networks is that they can accept dynamic inputs represented by time series sets. Time series forecasting using a neural network is a nonparametric method, which implies that knowledge of the process that causes the time series is not necessary. Moreover, the NAR model utilizes the past values of the time series to predict future values. This fact makes it hard to model time series using a linear model; therefore, a nonlinear approach should be preferred, and the present study has also attempted the method. A nonlinear autoregressive neural network, applied to time series forecasting, describes a discrete, nonlinear, autoregressive model that can be expressed in the following manner [44, 45]:

$$x(t) = f(x(t-1), x(t-2), x(t-3), \dots, x(t-q)) + v(t),$$
(5)

where x(t) is data series of x variable at time t; f(.) is unknown in advance, and the training of the neural network aims to approximate the function by means of the optimization of the network weights and neuron bias; and v(t) is the error of the approximation of x at time t.

This training function is often operated efficiently with backpropagation-type algorithm, and to perform this with our stated f(.), we use Levenberg–Marquardt backpropagation procedure (LMBP) [46, 47] to solve any specified NAR neural network. In Figure 1, we present the topology of a standard NAR network.

After getting the forecasted values of both the series for methane emission and agricultural value added up to the year 2030, we try to test whether the forecasted methane emission is sustainable by means of looking at the forecasted values in agricultural outputs for the selected five groups of economies. For this purpose, we have first calculated the growth of these two indicators over the forecast period and average values of these two growth rates for all the groups. After that, we have tested the mean difference of these two indicators, methane emission and agricultural value added, and tested their significance statistically. If the average growth of agricultural output is tested to be greater than that of methane emission, then it may be said that the emission is sustainable as it contributes positively and largely to agricultural output. The reverse results may say the unsustainable methane emission in the forecasted period.

4.1. Analysis of Results. As mentioned earlier, the study applies Box–Jenkins (BJ) and artificial neural network (ANN) for forecasting methane emission and agriculture output for the period 2013–2030 on the basis of data for the period 1981–2012. The results of both the methods are given one by one.

4.1.1. Forecasting by Box–Jenkins Method. For the BJ method, the following four steps are followed which are mentioned in Methodology:

Step 1: identification: to determine the appropriate values of *p*, *d*, and *q*, we have done unit root test through ADF test and correlogram methods. The results for both the series are presented in Tables 2 and 3. Looking at the autocorrelation functions (ACFs) and partial autocorrelation functions (PACFs), we have identified the orders of AR and MA processes. There may be more than one alternative of the shapes of ACF and PACF, and we will have to determine the optimum structure of ARIMA. For this purpose, steps 2 and 3 are followed.

Step 2: estimation: to estimate the parameters of the chosen model, we run equation (4).

Step 3: diagnostic checking: to check if the residuals from the fitted model are white noise. The acceptable regression results are taken on the basis of where both AR and MA coefficients are significant, adjusted R^2 is highest, and information criteria (AIC and SIC) are of lowest values. The results of steps 1 to 3 are given in Table 2 for methane emission and in Table 2 for agriculture output for all the groups of economies. The roots of the AR and MA should lie inside the unit circle, indicating stability of the models.

Let us first discuss the results (for steps 1 to 3) on the methane emission with the help of Table 2. The results from the table show that, in all the groups of economies, the series are integrated of order 1. The optimum orders of the autoregressive and moving average terms are marked bold. They are (4, 4) for the OECD and lower middle group, (11, 11) for the upper middle group, (6, 6) for the middle group, and (1, 1) for the low group. And all of these terms are less than unity in values, indicating the stability of the models.

FIGURE 1: Nonlinear autoregressive neural network.

Now come to the discussion on the results (for steps 1 to 3) of agriculture output with the help of Table 3. The results from the table show that, in all the groups of economies, the series are integrated of order 1. The optimum orders of the AR and MA terms are marked bold. They are (2, 12) for the OECD group, (4, 1) for the upper middle group, (3, 1) for the middle group, (3, 3) for the lower middle group, and (1, 1) for the low group. And the models in all the groups are stable.

Step 4: forecasting: on the basis of the acceptable results obtained from steps 1 to 3, forecasting is made on the appropriate model of ARIMA. The forecasting results are accepted on the basis of the acceptable values of root mean square error (RMSE), bias proportion, variance proportions, and covariance proportions. Figures 2 and 3 present the graphical plots of forecasted values of methane emission and agricultural output, respectively. The numerical values of the two forecasted series are given in the Appendix (Tables 4 and 5).

It is observed from Figure 2 that, except the OECD group, all the remaining four groups of economies demonstrate rising trends of forecasted values of methane emission. Middle-income group leads the club followed by the upper middle-income group and low-income group. The lower middle-income group maintains a constant forecasted path for the entire period of prediction. The positive improvements are observed only for the countries in the OECD group. The results thus show that the agriculture activity in particular and all the economic activity in general is not going to put pressure on the pollution level measured by methane emission for the developed countries, whereas the countries in the remaining world are going to pollute the environment. The derived forecasted values of methane emission have maintained the desirable properties of forecasting as their RMSE is low and the covariance proportions are greater than the bias and variance proportions (the results are not shown to avoid crowding of figures and tables in the text).

On the contrary, the forecasted values of agricultural value added for all the groups under the BJ method, as depicted in Figure 3 and Table 5, show rising trends for all up to 2030. But the difference is observed in their relative positions. The middle-income group is at the top, followed by the upper middle-, lower middle-, OECD, and low-income group. The rate of growth is steeper for the middle-income group as well.

4.1.2. Forecasting by ANN-Based NAR. In the ANN method, only one hidden layer has been used while number of

neurons in hidden layer has been varied at four levels (5, 10, 15, and 20 number of neurons). Our experiments suggest employing 2 feedback delays of the variables for model building. Here, we have used backpropagation algorithm proposed by Levenberg–Marquardt for training. Figures 4 and 5, respectively, present the predicted values of methane emission and agriculture output. The quantitative figures for both are presented in the Appendix (Tables 6 and 7).

It is observed from Figure 4 that the OECD group demonstrates falling trend of the predicted methane emission, while the other four groups from low- to upper middle-income countries produce rising trends of the said emission. Furthermore, it is to note that the results under the ANN method are similar to that under the BJ method.

Figure 5 depicts that all the groups' predicted trends of agriculture output are upward rising over time which are alike to that under BJ method. But a little difference under ANN is observed for the OECD group as it turned downward trend after 2015.

Hence, the two methods of forecasting by and large produce the same results for both methane emission and agricultural output for all the groups of economies. Whatever differences observed are due to the differences in methodological structures. As mentioned in related literature [48–50] that the ANN is applied for linear and nonlinear data and BJ only for linear data, the former one can be used as better predictor for a dynamic variable like methane emission. As having association between methane emission and agricultural output, it is now required to examine whether the predicted methane emission is sustainable for all the groups for the period 2013–2030. This is the second objective of the study.

One way of examining such sustainability is to see whether growth of the predicted agricultural output is greater than that of methane emission. In other words, whether good economic effect is greater than bad pollution effect. For the said purpose, we have calculated the average growth rates of predicted methane emission and agricultural output and took their difference and test statistically (by *t*test) whether such mean difference is positive statistically. We have done these tests for all the groups of economies separately for BJ and ANN results. The test results are given in Table 8.

It is observed from both the two methods of forecasting that the average growth for predicted methane emission is negative for the OECD group and positive for all the remaining four groups. Furthermore, the average growth of agricultural output is greater than that of the methane emission for all the groups of economies. The correlation between the growth of methane emission and that of agriculture output is positive and significant for all in case of the BJ method, but the correlation result is not significant for all the groups in case of the ANN method.

The results for mean difference test are positive and significant under the BJ method for all the groups which mean that the forecasted values of agriculture output are significantly greater than that of methane emission. This

Groups	ADF	Possible forms of ARIMA	Regression coefficients (prob)	\bar{R}^2	AIC	SIC
		(2, 1, 2)	AR(2) = -0.67 (0.00) MA(2) = 0.71(0.05)	0.14	21.79	21.83
26 OECD	-5.83 (0.00)	(4, 1, 4)	AR(4) = 0.50 (0.00) MA(4) = -0.91(0.02)	0.27	21.5	21.65
		(11, 1, 11)	AR(11) = -0.17(0.23) MA(11) = 0.87 (0.05)	0.62	20.6	20.75
TT	4.11(0.00)	(3, 1, 4)	AR(3) = 0.39 (0.02) MA(4) = -0.24 (0.22)	0.07	25.05	25.19
Upper middle income	-4.11(0.00)	(11, 1, 11)	AR(11) = -0.8(0.01) MA(11) = -0.94 (0.00)	0.91	22.84	22.99
	-8.15(0.00)	(1, 1, 6)	AR(1) = -0.18 (0.35) MA(6) = -0.16 (0.42)	0.001	27.33	27.47
Middle income		(6, 1, 6)	AR(6) = -0.57 (0.00) MA(6) = 0.96(0.00)	0.38	26.96	27.11
		(15, 1, 15)	AR(15) = 0.01 (0.48) MA(15) = -0.99 (0.02)	0.99	7.64	7.78
		(1, 1, 4)	AR(1) = -0.38 (0.00) MA(4) = -0.08 (0.24)	0.12	27.31	27.45
Lower middle income	-8.5(0.00)	(4, 1, 4)	AR(4) = 0.6 (0.02) MA(4) = -0.94(0.01)	0.15	27.30	27.42
		(15, 1, 4)	AR(15) = 0.15 (0.16) MA(4) = -0.94 (0.01)	0.77	26.48	26.49
T	7.27 (0.00)	(1, 1, 1)	AR(1) = 0.45 (0.00) MA(1) = -0.99 (0.01)	0.24	24.68	24.82
Low income	-/.3/ (0.00)	(1, 1, 4)	AR(1) = -0.31 (0.28) MA(4) = -0.17 (0.21)	0.05	24.89	25.03

TABLE 2: Unit root test and ARIMA results for methane emission.

Note. Bold marks indicate significant results and the accepted ARIMA structures for which forecasting is made. Source: computed by the authors.

TABLE 3: Unit root test and ARIMA results for agricultural value addition.

Groups	ADF	Possible forms of ARIMA	Regression coefficients (prob)	R^2	AIC	SIC
		(2, 1, 2)	AR(2) = 0.18 (0.36) MA(2) = -0.99 (0.04)	0.33	51.48	51.62
26 OECD	-5.81 (0.00)	(2, 1, 12)	AR(2) = -0.47 (0.00) MA(12) = -0.89(0.02)	0.65	50.81	50.95
		(13, 1, 12)	AR(13) = -0.62(0.00) MA(12) = -0.88 (0.05)	0.70	50.85	51.01
		(1, 1, 1)	AR(1) = 0.95 (0.02) MA(1) = -0.66 (0.00)	0.33	52.26	52.4
		(1, 1, 3)	AR(1) = 0.47 (0.03) MA(3) = 0.39 (0.01)	0.34	52.25	52.39
Timmon middle in come	4 1 1 (0 00)	(3, 1, 1)	AR(3) = 0.71 (0.00) MA(1) = 0.31 (0.22)	0.38	52.24	52.38
Opper middle income	-4.11(0.00)	(3, 1, 3)	AR(3) = 0.78 (0.32) MA(3) = -0.06 (0.22)	0.34	52.4	52.54
		(4, 1, 1)	AR(4) = 0.67 (0.01) MA(1) = 0.57 (0.00)	0.36	52.24	52.38
		(4, 1, 3)	AR(4) = 0.52 (0.01) MA(3) = 0.33 (0.20)	0.29	52.41	52.56
	-8.15(0.00)	(1, 1, 1)	AR(1) = 0.98 (0.02) MA(1) = -0.68 (0.00)	0.40	52.96	53.1
Middle income		(3, 1, 1)	AR(3) = 0.80 (0.00) MA(1) = 0.37 (0.00)	0.48	52.87	53.01
		(3, 1, 3)	AR(3) = 0.93 (0.04) MA(3) = -0.08 (0.22)	0.45	52.93	53.00
		(1, 1, 1)	AR(1) = 0.91 (0.02) MA(1) = -0.58 (0.24)	0.35	51.09	51.23
Lower middle income	-8.5(0.00)	(3, 1, 1)	AR(3) = 0.82 (0.00) MA(1) = 0.29 (0.38)	0.45	50.96	51.10
		(3, 1, 3)	AR(3) = 0.61 (0.04) MA(3) = 0.46 (0.02)	0.46	50.94	51.08
		(1, 1, 1)	AR(1) = 0.95 (0.00) MA(1) = -0.67 (0.01)	0.30	47.3	47.44
T our in some	7.27(0.00)	(2, 1, 1)	AR(2) = 0.36 (0.28) MA(1) = 0.4 (0.01)	0.16	47.5	47.64
Low income	-7.37 (0.00)	(3, 1, 1)	AR(3) = 0.9 (0.38) MA(1) = 0.18 (0.31)	0.16	47.5	47.64
		(4, 1, 1)	AR(4) = 0.35 (0.28) MA(1) = 0.19 (0.21)	0.14	47.57	47.61

Note. Bold marks indicate significant results and the accepted ARIMA structures for which forecasting is made. Source: computed by the authors.

FIGURE 2: Forecasted values of methane emission (in kt of equivalent CO_2) under the BJ method. Source: drawn by the authors.

FIGURE 3: Forecasted values of agriculture output (in current USD) by the BJ method. Source: drawn by the authors.

	OECD	Upper middle	Middle	Lower middle	Low
1981					
1982					
1983					319376.7
1984					310579.6
1985					310981.8
1986	1473936			1441004.78	315518.4
1987	1465419			1417409.14	321913
1988	1463133		4266117	1382263.046	329142.6
1989	1463101		4550070	1680835.125	336747.6
1990	1465166		4698743	1687975.219	344521.2
1991	1455061		4460547	1673579.499	352370.6
1992	1448460		4829691	1652224.65	360254.1
1993	1443127	2830813.3	4863760	1831934.421	368152.9
1994	1438973	2787721.237	5018868	1836056.927	376058.5
1995	1427974	2797124.06	4949627	1827204.142	383967.3
1996	1418946	2850067.461	4958414	1814158.494	391877.4
1997	1410631	2799034.691	5190341	1922253.931	399788.2
1998	1402980	2896911.307	5071963	1924558.345	407699.3
1999	1391478	2774651.862	5146852	1919045.169	415610.4
2000	1381085	2794509 994	5151927	1911005.8	423521.7
2001	1371093	284619611	5286403	1975953 725	431432.9
2002	1361474	2937763 268	5375874	1977162 742	439344.2
2002	1349690	3074577 474	5336641	1973661 674	447255 5
2003	1338529	3156682.078	5499459	1968638 58	455166 7
2004	1327594	3287526.848	5550803	2007590 204	463078
2005	1316868	3376330 859	5642415	2007390.204	470989 3
2000	130/025	3/30265 209	5659390	2000137.240	478900.6
2007	1203332	3567469 328	5702324	2003030.47	486811.8
2008	1293352	3585418 710	5810402	2002044.070	400011.0
2009	1201000	2770665.02	5920120	2023933.373	494723.1 502634.4
2010	1270319	3779003.03 2960005.961	5020120	2020004.901	502054.4
2011	1258480	2015027.114	500045	2024526.009	510545.7
2012	1240030	2020020 461	6011401	2022415.755	516457
2013	1234886	3938039.461	6011491	2036267.867	526368.2
2014	1223188	3924805.514	6081267	20361/9./02	5342/9.5
2015	1211105	3955385.988	6108225	2035061.397	542190.8
2016	1199133	3946932.689	6202402	2033610.21	550102.1
2017	118/201	39/214/.914	6259494	2041//6./0/	558015.4
2018	11/5306	4025288.658	6329982	2041544.199	565924.6
2019	1163195	4011/42.44/	63/5639	2040691.033	5/3835.9
2020	1151146	4093701.903	6429933	2039637.307	581747.2
2021	1139119	4034473.204	6508923	2044378.219	589658.5
2022	1127114	4066394.126	6549142	2044058.745	597569.7
2023	1114986	4118728.489	6610752	2043365.326	605481
2024	1102894	4196641.262	6664634	2042551.069	613392.3
2025	1090815	4303574.03	6732839	2045228.071	621303.6
2026	1078747	4375417.828	6796062	2044856.2	629214.9
2027	1066611	4478521.992	6845041	2044259.028	637126.1
2028	1054494	4554662.573	6916382	2043589.051	645037.4
2029	1042385	4608438.88	6975386	2045022.552	652948.7
2030	1030282	4715621.726	7038846	2044619.112	660860
% change from 2012 to 2030	-17.35	20.44	18.76	1.09	27.12

further indicates that the methane emission is sustainable as it does not outweigh the agricultural output. But for the ANN-based results, the significant mean differences are observed for the OECD, upper middle-, and lower middleincome groups which further justify the sustainability of methane emission. The insignificant mean difference results for the middle-income and low-income groups may reveal unsustainable methane emission.

5. Discussion

As mentioned, we have attempted to make forecasting of methane emissions and agricultural value added by BJ and ANN methods and tested sustainability of such emissions vis-à-vis agricultural output for the major economic groups of the world for the time up to 2030. The results for methane emissions are seen to be declining for the OECD group but

TABLE 5: Forecasted values of agriculture output in current USD under the BJ method.

1981 2000 1982 2000 1983 2000 1984 77710044855.35 2000 1986 124158617455.24 316887901136 4202678373529 193224524521 3302307815 1987 1317988156-64 334580909413 51777241312 20335412788 35150085147 1988 97528609223.83 361108747377 538001902142 21747785160 37586783918 1989 6602300877190.8 382302596662 56485771441 234100060894 40313846099 1990 139766033659.17 407106383042 597583283103 24977733353 433288220 1992 21762773208.99 463657882375 660387025088 28815344067 5015445234 1993 172272239677.83 49118660145 6921155188 32208970453 6663319249 1994 23542750217 5518425022 77482866423 3020793756 6663319249 1997 316690704.42 5182725022 77482864433 3222097015 6643319249 1997 31646990674.37 <th></th> <th>OECD</th> <th>Upper middle</th> <th>Middle</th> <th>Lower middle</th> <th>Low</th>		OECD	Upper middle	Middle	Lower middle	Low
1982 28655754373 1984 77710044855.35 28655754373 1985 103315311309.63 4747773287.61 182501651609 31221206784 1986 124158617455.24 31688790913.6 492678373529 193724524521 3302307815 1987 13179881366.40 33488090413 517772413129 2033427983 3151008517 1988 97526069223.83 361108747377 5350019012 217447785160 3758878318 1990 1397660356517 40710833042 2575382310 24977872355 433388220 1991 18236403567.55 412417981365 626279435743 268153344007 50154445234 1992 21270627732089 46367882375 606397025080 3285725819 5935410726 1994 235427670725 52140638240 7484481820 3285725819 59374530 6643319249 1997 3466907074.37 55182425022 7484964463 39704533 6643319249 1997 34669070744.52 618227267180 893851450306 39485554007 71250646227	1981					
1983 2865746373 2875986468 1985 103315311309.63 474777328761 182201651690 31221206741 1986 12415861745.24 316887909136 49267837529 19274524521 3302307815 1987 13179581566.40 334580909413 517772413129 203354127843 3510088147 1988 97528609223.83 301108747377 538001902142 217447785160 3756678918 1990 139766033659.17 40710633042 597358283103 24977872333 433288220 1991 182368403567.55 43214798136 60237025088 288155344067 50154445234 1993 1722722697.738 49131860145 69921135183 30573013761 6219273226 1995 334406570074.37 551825425022 774829664423 30570031761 6219273226 1997 318690720440.52 61827267450 89881450306 39877528917 611454216 1997 31680730426 65182758679 944503589131 41092263219735 2847753197 1141546106 1998 344650	1982					
1984 77710044853.35 29759868468 2912106784 1985 10315311309.63 474777328761 18250165103 3122206784 1986 124158617455.24 31688709136 492678373529 193724524521 33023207815 1987 131795851566.40 334580090413 517772413129 2035412783 33150085147 1988 66023008719.08 382302596062 564857171441 234100060898 40318946909 1990 13366803569.17 407106333042 597538233013 24977827333 433282220 1991 18268403567.55 433417981365 6603870288 28815534407 514445234 1993 172272259627.83 491318600145 699213155183 307530458795 53937745323 1994 235427764707.437 5152445202 77482964423 35057004716 6129732266 1995 334406570744.52 615827258691 904590389013 41807233476 817089708 1997 3168070744452 651852758691 904590389013 4180723457 81708600 2000 39	1983					28655746373
1985 1033 1531 1309.63 474777328761 182201651.090 31221206784 1986 124158617455.24 316887909136 492678373529 193724525213 332122106784 1987 13795851566.40 33458090413 517772413129 203354127843 35150085147 1988 97528609223.83 361108747377 538001902142 214747785160 3758678318 1990 139766033659.17 407106383042 59738283103 24977872333 4333288220 1991 18236403557.55 432417891356 662379457343 26815537481 4661532348 1992 12702275267.73 9413186014 69923135183 30753045875 5937745323 1994 23542776972.55 521401638240 73484183280 325872528916 57954107726 1995 334065070474.37 55182545502 774829864423 350570031761 6219732266 1995 344665070414.20 586227187857 81863846435 37220397453 6643319249 1997 316809720440.52 61827267450 8988146303 7220397453 66	1984	77710044855.35				29759868468
1986 124158617455.24 316887090136 492678373529 193724524521 3302307815 1987 131795851566.40 33480909413 51777241132 20354127983 3510085147 1988 68023008719.08 382302356062 564857171441 23410060898 40318946909 1990 1337660336591.7 407106333045 59753828103 2497782353 4332282220 1991 18236403367.55 432417981365 662379452088 28815524811 46615532438 1993 172272259627.83 491318600145 699213155183 30753045875 53937473323 1994 235427769172.55 521401638240 73484818230 328572528916 67954107726 1996 334106517412.40 586227187857 81863244435 350570031761 6219273226 1997 31680970440.52 618227267869 90450389013 418092975119 741454616 1999 34365067304.62 651825728691 90450389013 418092975119 741454616 1999 34365067204.62 6518257278691 90450338013 4180	1985	103315311309.63		474777328761	182501651690	31221206784
1987 131795851566.40 334580909413 517772413129 203354127983 35150085147 1988 97528609223.83 361108747377 538001902142 217447785160 37586783918 1989 68023008719.08 38230256062 564857171441 24100066898 40318804099 1990 139766033656.57 43241798136 626279435733 268185274811 4661552348 1992 217062773208.99 45357882375 660387025088 288155344067 50154445234 1993 112722256627.83 49131860146 69921151818 30750468795 5393745333 1994 235427769172.55 521401638240 734848183280 328572528916 57954107726 1995 334166571412.40 58622718787 81652844435 37220370453 6643319249 1997 316890720440.52 618227580718 95454246435 34220975119 714154106 1999 38756726220.22 625707573311 487754522 772870817 2001 493075992.7 793144696233 199785684535 51259520823 92778708	1986	124158617455.24	316887909136	492678373529	193724524521	33023207815
1988 97528609223.83 36110874737 538001902142 217447785160 37586789118 1989 68023008719.08 382302596062 564857171441 23410060898 40318946909 1990 139766033659.17 407106383042 59758283103 249778723353 4332285220 1991 182368403567.55 432417981365 662379025088 28815524811 46615532348 1993 127272259627.83 491318600145 699213155183 30730448795 539374734323 1994 235427769172.55 52140163240 774848183280 328572528916 57954107726 1995 33416657047.37 55182542502 774829664423 3505070037616 62129273264 1996 343106517412.40 586221787857 818632846353 342857258119 76141541616 1999 3636506730.46.2 6182276778691 9941590389013 4180237541571 7126046272 2000 39921702833.4.57 72230314412 9981655733311 488737465692 9747870155 2010 41095840004111 757142168169 104675733111 <td>1987</td> <td>131795851566.40</td> <td>334580909413</td> <td>517772413129</td> <td>203354127983</td> <td>35150085147</td>	1987	131795851566.40	334580909413	517772413129	203354127983	35150085147
1989 68023008719.08 382302596062 564857171441 234100060988 40318946909 1990 139766033659.17 407106383042 59753828103 24977872353 43332882220 1991 182368403567.55 432417981365 626279435743 26815524811 46615532432 1992 217062773208.99 463657882375 660387025088 288155344067 5015444534 1994 235427769172.55 521401638240 73484813280 32857228816 57954107726 1995 33446657040.42 51825745807 81863246435 372203970453 66643319249 1997 31689072040.52 61822728675 95898140306 39486550400 71296046272 1998 343576726220.32 687506897185 95242464853 372203970153 66643319249 1999 383756726220.32 68750489718 901575332 461743961966 8637545571 2001 410958400044.11 75714168169 1046757733111 48873465692 91747401615 2012 43300139799.27 793144696233 1097856894532 <td< td=""><td>1988</td><td>97528609223.83</td><td>361108747377</td><td>538001902142</td><td>217447785160</td><td>37586783918</td></td<>	1988	97528609223.83	361108747377	538001902142	217447785160	37586783918
1990 139766033659.17 407106383042 597538283103 249778723353 433288220 1991 182368403567.55 432417981365 626279435743 26815524406 46615532438 1992 217062773208.99 40315860145 699213155183 307530458795 5539474532 1994 235427769172.55 521401638240 7348448183280 32857528916 57954107726 1995 334466976074.37 551825425022 774829664423 3057001761 62192732266 1996 334106517412.40 586227187857 818632846435 372203970453 66643319249 1997 316890702440.52 618227267450 859851450306 394856550400 71286046272 1998 346365067304.62 618227267450 859851450306 344802975119 714154016 2000 399217028334.57 722230314612 998165573532 464743961966 86375545571 2001 410958400044.11 757142168169 104675773311 488737465692 9727805817 2002 43301397999.27 793144696233 1075783411	1989	68023008719.08	382302596062	564857171441	234100060898	40318946909
1991 182368403567.55 43247981365 62627943743 268185274811 46615532438 1992 217062773208.99 463657882375 6603870248 28815534407 5015444523 1994 235427769172.55 521401638240 7348448183208 328575258916 579340774532 1995 334406517412.40 586227187857 818632846435 37203970453 6664319249 1997 316890720440.52 6182278691 90590389013 4180297511 7201454460 1999 38375672620.32 685706897185 952424648563 44110723457 81708657557 2001 41058400044.11 75714216816 1046757733111 488737465692 91747401615 2002 4330139799.27 79314466233 1097856894532 51259520823 97278705817 2003 46791256017.46 893906499479 147260595639 56433329154 10296206930 2004 47574222179.18 867247727939 1198973605145 56128946782 10879044554 2005 493872649573.26 904113423550 1252717117643 <t< td=""><td>1990</td><td>139766033659.17</td><td>407106383042</td><td>597538283103</td><td>249778723353</td><td>43332882220</td></t<>	1990	139766033659.17	407106383042	597538283103	249778723353	43332882220
1992 217062773208.99 463657882375 660387025088 28815344067 5015444523 1993 172272259627.83 491318600145 699213155183 307530458795 539377745323 1994 235427769172.55 521401638240 734848183280 307530458795 65674510726 1995 334466976074.37 551825425022 774829664435 372203970435 6664319249 1997 316890720440.52 618227267450 859851450306 394856550400 71296046272 1998 346365067304.62 61852758691 904590389013 418092975119 76141546106 2000 399217028334.57 722230314612 998165573332 464743961966 86375545571 2011 410958400044.11 757142168169 1046757733111 48873765682 9174701615 20204 47574222179.14 8672472739 1189873605145 56128946784 10296206930 2030 456791256917.46 829300649879 1147260595639 53683329154 10296206930 2004 47574221791 118313856727 1418726386	1991	182368403567.55	432417981365	626279435743	268185274811	46615532438
1993 17227259627.83 491318600145 699213155183 307530458795 53937745323 1994 235427769172.55 521401638240 7344818320 328572528916 57954107726 1996 334106517412.40 586227187857 818632846435 372203970453 66643319249 1997 316800720440.52 618227267450 859851450306 394856550400 71296046272 1998 34635067304.62 65185275891 904590389013 418092975119 76141546106 1999 383756726220.32 685706897185 95242648553 41107233457 81170885600 2000 399217028334.57 72230314612 998165573312 464739301966 68375545571 2001 410958400044.11 757142168169 1046757733111 488737465692 91747401615 2002 433001397999.27 793144696233 1097856914532 512855208232 9727805817 2004 4757422217918 867247727939 118987360145 561289467882 108790445594 2005 51475500372.17 10183138577 115213368572	1992	217062773208.99	463657882375	660387025088	288155344067	50154445234
1994 235427769172.55 521401638240 734848183280 328572528916 57954107726 1995 33446697607437 551825425022 774829664435 350570031761 62192732266 1996 33410650720440.52 618227267450 859851450306 394855554000 71296046272 1998 3663067304.62 651852758691 904590389013 418092975119 76141546106 1999 383756726220.32 685706897185 952424648563 441107233457 8117088560 2000 399217028334,57 72230314612 998165573532 464743961966 86375545571 2011 410958400044.11 775142168169 1046757733111 488737465692 9174701615 2002 433001397999.27 793144696233 1097856894532 51289520823 92728705817 2003 456791256917.46 829300649879 1147260595639 53683329154 102962069301 2004 47574222179.18 86724772799 119873605145 56128946782 108790445594 2005 493872649573.26 9141142450554273 15839532	1993	172272259627.83	491318600145	699213155183	307530458795	53937745323
1995 334466976074.37 551825425022 774829664423 350570031761 62192732266 1996 334106517412.40 586227187857 818632846435 372203970453 66643319249 1997 316890720440.52 61822727450 859851450306 394856550400 71296046272 1998 346365067304.62 651852758691 904590389013 418092975119 76141546106 1999 38375672620.32 685706897185 952424648563 441107233457 81170885600 2000 399217028334.57 72233014612 998165573532 46473901966 86375545571 2001 410958400044.11 757142168169 1046757733111 488737465692 91747401615 2002 43300139799.27 793144669233 10978668494323 53683329154 102962069301 2004 47574222179.18 867247727939 1198973605145 561289467882 108790445594 2005 493872649573.26 904113423550 125271171643 85662645814 11475711476 2006 51427600856.67 979411481982 13593281094	1994	235427769172.55	521401638240	734848183280	328572528916	57954107726
1996 334106517412.40 586227187857 818632846435 372203970453 66643319249 1997 316890720440.52 618227267450 8598150306 34850550400 71296046272 1998 36365067304.62 651852758691 904590389013 41809275119 7.6141546106 1999 383756726220.32 685706897185 952424648563 441107233457 81170885600 2000 399217028334.57 722230314612 998165735322 464743961966 68375545571 2001 410958400441.1 757142161869 1046757733111 488737456592 97278705817 2003 456791256917.46 829300649879 114720595639 536833329154 102962069301 2004 4757422217918 86724772739 1198973605145 561289467882 10879445544 2005 493872649573.26 904113423550 1252717117643 85662645814 114757114761 2006 514276008566.72 914110973341 3050871201105 8127079994554 2007 535064791704.67 979411481982 13559328109431 6350051	1995	334466976074.37	551825425022	774829664423	350570031761	62192732266
1997 316890720440.52 618227267450 859851450306 394856550400 71296046272 1998 346365067304.62 65185275891 904590389013 418092975119 76141546106 1999 38756726220.32 685706897185 952424648563 441107233457 81170885600 2000 399217028334.57 722230314612 998165573532 464743961966 86375545571 2001 410958400044.11 757142168169 104675733111 488737465692 91747401615 2002 433001397999.27 793144696233 109785694532 51259208232 97278705817 2003 456791256917.46 829300649879 1147260595639 53683329154 102962069301 2004 47574222179.18 867247727939 11987306145 561289467882 10879044554 2005 493872649573.26 90411423550 1252717117643 58562645814 114757114761 2006 514276008566.72 91710977384 130508742124 6102682645814 11475714761 2007 535064791704.67 979411481982 153528104214	1996	334106517412.40	586227187857	818632846435	372203970453	66643319249
1998 346365067304.62 651852758691 904590389013 418092975119 76141546106 1999 383756726220.32 685706897185 95242448563 441107233457 81170885600 2000 399217028334.57 722230314612 998165573532 464743961966 86375545571 2001 410958400044.11 757142168169 1046757733111 488737465692 91747401615 2002 43300139799.27 793144696233 1097856894532 512595208232 97278705817 2003 456791256917.46 829300649879 1147260595639 536833329154 1002962069301 2004 47574222179.18 867247727939 1198973605145 561289467882 108790445594 2005 493872649573.26 904113423550 1252717117643 58562645814 114757114761 2006 514276008566.72 941710977384 1359328109431 633507110158 127079994554 2010 594367619206.43 1095158447334 1526274358835 709437050489 146450664536 2011 614494250582.09 1133895367753 <	1997	316890720440.52	618227267450	859851450306	394856550400	71296046272
1999 383756726220.32 685706897185 952424648563 441107233457 81170885600 2000 399217028334.57 722230314612 998165573532 464743961966 86375545571 2001 410958400044.11 757142168169 1046757733111 488737465692 91747401615 2002 433001397999.27 793144696233 1097856894532 512595208232 97278705817 2003 456791256917.46 829300649879 1147260595639 536833329154 102962069301 2004 475742222179.18 867247727939 1198973605145 561289467882 108790445594 2005 493872649573.26 941710977384 1305087421241 610268264947 12085568267 2007 535064791704.67 97411481982 1359328109431 635007110158 12707994554 2008 54785930372.17 101831385677 145213368572 65965259777 13424265273 2010 594367619206.43 1095158447334 1526274358835 709437050489 14645064536 2011 644345318873.25 117343876022 1	1998	346365067304.62	651852758691	904590389013	418092975119	76141546106
2000 399217028334.57 722230314612 998165573532 464743961966 86375545571 2001 410958400044.11 757142168169 1046757733111 488737465692 91747401615 2002 433001397999.27 793144696233 1097856894532 512595208232 97278705817 2003 456791256917.46 829300649879 114726055693 536833329154 102962069301 2004 475742222179.18 867247727939 1198973605145 561289467882 108790445594 2005 493872649573.26 904113423550 1252717117643 58566264741 2085668267 2007 535064791704.67 979411481982 1359328109431 635007110158 127079994554 2008 554785930372.17 1018313856727 1415213368572 659695259779 133424265273 2010 594367619206.43 109515844734 1526274358835 709437050489 14664064536 2011 614494250582.09 1133895367753 158389428807 734317672661 153122437337 2012 634385318873.25 1173438760262	1999	383756726220.32	685706897185	952424648563	441107233457	81170885600
2001410958400044.117571421681691046757733111488737465692917474016152002433001397999.277931446962331097856894532512595208232972787058172003456791256917.4682930064987911747260595639536833329154102962069301200447574222179.18867247727391198973605145561289467821087904455942005493872649573.2690411342355012527171176435856626458141147571147612006514276008566.7294171097738413050874212416102682649471208556682672007535064791704.679794118819821359328109431635007110158127079994554200854785930372.1710183138567271415213368572659695259779133424252732009574326027095.0910564906083531469986420799684525449312139829221632010594356719206.43109515844733415262743588357094370504891464506645362011614494250582.0911338953677531583894288077343176726611531224373372012634385318873.25117343876026216406134059317592850924251598934197662013654236442407.4512124952492611698559478743784302611271667590144182014674198214948.72125188126491217575843754988093004992121737148369362015694178750394.6412913363519619353315503478443035669481950828196252018734027059550.69137093396519619353315	2000	399217028334.57	722230314612	998165573532	464743961966	86375545571
200243300139799.277931446962331097856894532512595208232972787058172003456791256917.46829300649879114726059563953683329154102962069301200447574222179.1886724772793911497360551455612894678821087904455942005493872649573.2690411342355012527171176435586626458141147571147612006514276008566.729417109773841305087421241610268264947120855668267200753504791704.6797941148198213593281094316350071101581270799945542008554785930372.17101831385672714152133685726596952597791334242652732009574326027095.0910564906083531469986420799684525449312139882921632010594367619206.4310951584473341526274358357094370504891464506645362011614494250582.0911338956775315889428867734317672661153122437337201263438531887.325117434387026216440543145931759285092451589834197662013654236442407.45121249524926116985594787437843022611271667590144182014674198214948.7212518812649121757584375498809300499212173714369362015694178750394.641291313635196193533155034784503566948195082819625201873919521963.401450700914796205280222764934727188072097076218322019773919521963.401450709147672328283809050	2001	410958400044.11	757142168169	1046757733111	488737465692	91747401615
2003 456791256917.46 829300649879 1147260595639 53683329154 102962069301 2004 47574222179.18 867247727939 1198973605145 561289467882 108790445594 2005 493872649573.26 904113423550 1252717117643 585662645814 114757114761 2006 514276008566.72 941710977384 1305087421241 610268264947 120855668267 2007 535064791704.67 979411481982 1359328109431 635007110158 127079994554 2008 554785930372.17 1018313856727 1415213368572 659695259779 133424265273 2010 594367619206.43 1095158447334 1526274358857 709437050489 146450664536 2011 614494250582.09 1133895367753 1583894288807 734317672661 153122437337 2012 634385318873.25 1173438760262 1640613405931 759285092425 159893419766 2013 654236442407.45 1212495249261 1658559478743 784302261127 166759014418 2014 674198214948.72 1251881264912 </td <td>2002</td> <td>433001397999 27</td> <td>793144696233</td> <td>1097856894532</td> <td>512595208232</td> <td>97278705817</td>	2002	433001397999 27	793144696233	1097856894532	512595208232	97278705817
200447574222179.188672477279391118973605145612894678821087904455942005493872649573.2690411342355012527171176435856626458141147571147612006514276008566.7294171097738413050874212416102682649471208556682672007535064791704.6797941148198213593281094316350071101581270799945542008554785930372.1710183138567271415213368572659652597791334242652732009574326027095.09105649060835314699864207996845254493121398829221632010594367619206.4310951584473341526274358835709437050489146450664536201161449425082.091133895367753158389428807734317672661151224373372012634385318873.25117343876026216406134059317592850924251598934197662013654236442407.4512124952492611698559478743784302261127166759014182014674198214948.7212518812649121757584375498809300499212173714869362015694178750394.6412913136519818158796743928343517774731807567061322016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.69137093396519619353315503478445035669481950828196252018753971220850.9014108018876841994903450537909606089367202359634838202079385635585.46149096306421821163	2003	456791256917 46	829300649879	1147260595639	536833329154	102962069301
2005 493872649573.26 904113423550 1252717117643 585662645814 114757114761 2006 514276008566.72 941710977384 1305087421241 610268264947 120855668267 2007 535064791704.67 979411481982 1359328109431 635007110158 127079994554 2008 554785930372.17 1018313856727 1415213368572 659695259779 133424265273 2009 574326027095.09 1056490608353 146998642079 684525449312 139882922163 2010 594367619206.43 1095158447334 1526274358835 709437050489 146450664536 2011 614494250582.09 1133895367753 158389428807 734317672661 153122437337 2012 634385318873.25 1173438760264 1698559478743 784302261127 166750014418 2014 674198214948.72 1221895249261 1698559478743 784302261127 16675001418 2015 694178750394.64 1291313655188 1815879674392 834351777473 180756706132 2016 714107311641.00 131287159814 </td <td>2004</td> <td>47574222217918</td> <td>867247727939</td> <td>1198973605145</td> <td>561289467882</td> <td>108790445594</td>	2004	47574222217918	867247727939	1198973605145	561289467882	108790445594
2006514276008566.729417109773841305087421241610268264947120855682672007535064791704.6797941148198213593281094316350071101581270799945542008554785930372.17101831385672714152133685726596952597791334242652732009574326027095.09105649060835314699864207996845254493121398829221632010594367619206.43109515844733415262743588357094370504891464506645362011614494250582.09113389536775315838942888077343176726611531224373372012634385318873.25117343876026216406134059317592850924251598934197662013654236442407.45121249524926116985594787437843022611271667590144182014674198214948.72125188126491217575843754988093004992121737148369362015694178750394.641291313635198185796743928343517774731807567061322016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.6913709339651961935331550347884503566948195082819625201875397122085.0914108018876841994034505379096060893672023596348382020793856355585.46149096306421821163646939295981219424217123482462021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.1915711972692332	2005	493872649573 26	904113423550	1252717117643	585662645814	114757114761
2007535064791704.6797941148198213593281094316350071101581270799945542008554785930372.17101831385672714152133685726596952597791334242652732009574326027095.09105649060835314699864207996845254493121398829221632010594367619206.43109515844733415262743588357094370504891464506645362011614494250582.0911338953677531583894288077343176726611531224373372012634385318873.25117343876026216406134059317592850924251598931197662013654236442407.45121249524926116985594787437843022611271667590144182014674198214948.7212518812649121757843754988093004992121737148369362015694178750934.6412913136351981815879674392834351777473180767061322016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.69137093396519619353315503478845035669481950828196252018753971220850.90141080188768419949034505379096060893672023596348382019773919521963.401450700914796205580222764934727188907209707621832202079385635585.4514909630625221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893662023853672709227.491611409429763<	2006	514276008566.72	941710977384	1305087421241	610268264947	120855668267
2008554785930372.17101831385672714152133685726596952597791334242652732009574326027095.09105649060835314699864207996845254493121398829221632010594367619206.43109515844733415262743588357094370504891464506645362011614494250582.0911338953677531583894288077343176726611531224373372012634385318873.25117343876026216406134059317592850924251598934197662013654236442407.45121249524926116985594787437843022611271667590144182014674198214948.72125188126491217575843754988093004992121737148369362015694178750394.64129131363519818158796743928343517774731807567061322016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.69137093396519619353315503478845035669481950828196252018753971220850.90141080188768419949034505379096060893672023596348382020793856355585.4614909630642182116364693922598412194242171234824862021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.1915711972692332238228090501010120244795232146389386202383567270927.491611409429763230055518631060414085982474049020822024873611368051.091651865250565	2007	535064791704.67	979411481982	1359328109431	635007110158	127079994554
2009574326027095.0910564906083531469986420799684525449312139822921632010594367619206.43109515844733415262743588357094370504891464506645362011614494250582.09113389536775315838942888077343176726611531224373372012634385318873.25117343876026216406134059317592850924251598934197662013654236442407.45121249524926116985594787437843022611271667590144182014674198214948.72125188126491217575843754988093004992121737148369362015694178750394.64129131363519818158796743928343517774731807567061322016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.69137093396519619353315503478845035669481950828196252018753971220850.90141080188768419949034505379096060893672023596348382019773919521963.40145070091479620552802227649347271889072097076218322020793856355854.66149096306421821163646939229598412194242171234824862021813791244649.3515310059803522176970553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565	2008	554785930372.17	1018313856727	1415213368572	659695259779	133424265273
2010594367619206.43109515844733415262743588357094370504891464506645362011614494250582.09113389536775315838942888077343176726611531224373372012634385318873.25117343876026216406134059317592850924251598934197662013654236442407.45121249524926116985594787437843022611271667590144182014674198214948.72125188126491217575843754988093004992121737148369362015694178750394.64129131363519818158796743928343517774731807567061322016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.69137093396519619353315503478845035669481950828196252018753971220850.90141080188768419949034505379096060893672023596348382019773919521963.40145070091479620552802227649347271889072097076218322020793856355585.46149096306421821163646939229598412194242171234824862021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.49161140942976323000592513091035261113794239747575672024873611368051.0916518652505523615025518631060414085882474049020822025893549597831.001692173962690	2009	574326027095.09	1056490608353	1469986420799	684525449312	139882922163
2010614494250582.09113389536775315838942888077343176726611531224373372012634385318873.25117343876026216406134059317592850924251598934197662013654236442407.45121249524926116985594787437843022611271667590144182014674198214948.72125188126491217575843754988093004992121737148369362015694178750394.64129131363519818158796743928343517774731807567061322016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.69137093396519619353315503478845035669481950828196252018753971220850.9014108018876841994903505379096060893672023596348382019773919521963.40145070901479620552802227649347271889072097076218322020793856355585.4614909630642182116364693922959841219424217123482486202181379124649.3515310059803522176970553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.73173258223505	2010	594367619206 43	1095158447334	1526274358835	709437050489	146450664536
2012634385318273.25117343876026216406134059317592850924251598934197662013654236442407.45121249524926116985594787437843022611271667590144182014674198214948.72125188126491217575843754988093004992121737148369362015694178750394.64129131363519818158796743928343517774731807567061322016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.69137093396519619353315503478845035669481950828196252018753971220850.90141080188768419949034505379096060893672023596348382019773919521963.401450709147962055280222764934727188907209707621832202079385635585.46149096306421821163646939229598412194242171234824682021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.7317325822350552485903750911107312644492628776904342027933428635867.43177300451259	2011	614494250582.09	1133895367753	1583894288807	734317672661	153122437337
2013654236442407.45121249524926116985594787437843022611271667590144182014674198214948.72125188126491217575843754988093004992121737148369362015694178750394.64129131363519818158796743928343517774731807567061322016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.69137093396519619353315503478845035669481950828196252018753971220850.90141080188768419949034505379096060893672023596348382019773919521963.40145070091479620552802227649347271889072097076218322020793856355585.46149096306421821163646939229598412194242171234824862021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.731732582235055248590937500911107312644492628776904342027933428635867.431773004512594254803094496211358959298292706883052352028953367697400.091815902	2012	634385318873.25	1173438760262	1640613405931	759285092425	159893419766
2014674198214948.721251801201105050110101210505011102014674198214948.72125188126491217575843754988093004992121737148369362015694178750394.64129131363519818158796743928343517774731807567061322016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.69137093396519619353315503478845035669481950828196252018753971220850.90141080188768419949034505379096060893672023596348382019773919521963.40145070091479620552802227649347271889072097076218322020793856355585.46149096306421821163646939229598412194242171234824862021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.73173258223505524859037500911107312644492628776904342027933428635867.431773004512594254803094496211358959298292706883052352028953367697400.091813590289668261058015044	2012	654236442407.45	1212495249261	1698559478743	784302261127	166759014418
20111010211710112101021071010102107107107102015694178750394.64129131363519818158796743928343517774731807767061322016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.69137093396519619353315503478845035669481950828196252018753971220850.90141080188768419949034505379096060893672023596348382019773919521963.40145070091479620552802227649347271889072097076218322020793856355585.46149096306421821163646939229598412194242171234824862021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.731732582235055248590937500911107312644492628776904342027933428635867.431773004512594254803094496211358959298292706883052352028953367697400.09181359022866826105801504461161064834276278545355386	2014	674198214948 72	1251881264912	1757584375498	809300499212	173714836936
2016714107311641.00133128715981418751687249278594334562611878806345782017734027059550.69137093396519619353315503478845035669481950828196252018753971220850.90141080188768419949034505379096060893672023596348382019773919521963.40145070091479620552802227649347271889072097076218322020793856355585.46149096306421821163646939229598412194242171234824862021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.49161140942976323000592513091035261113794239747575672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.731732582235055248590937500911107312644492628776904342027933428635867.431773004512594254803094496211358959298292706883052352028953367697400.0918135902966826105801504461161064834276278545355366	2015	694178750394 64	1291313635198	1815879674392	834351777473	180756706132
2010734027059550.6913709339651961935331503478845035669481950828196252018753971220850.90141080188768419949034505379096060893672023596348382019773919521963.40145070091479620552802227649347271889072097076218322020793856355585.46149096306421821163646939229598412194242171234824862021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.731732582235055248590937500911107312644492628776904342027933428635867.431773004512594254803094496211358959298292706883052352028953367697400.09181359028966826105801504461161064834276278545355386	2016	714107311641.00	1331287159814	1875168724927	859433456261	187880634578
201715102705010516105051050111500505011016005005110160050051102018753971220850.90141080188768419949034505379096060893672023596348382019773919521963.40145070091479620552802227649347271889072097076218322020793856355585.46149096306421821163646939229598412194242171234824862021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.49161140942976323000592513091035261113794239747575672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.731732582235055248590937500911107312644492628776904342027933428635867.431773004512594254803094496211358959298292706883052352028953367697400.09181359028966826105801504461161064834276278545355386	2017	734027059550.69	1370933965196	1935331550347	884503566948	195082819625
2019773919521963.40145070091479620552802227649347271889072097076218322020793856355585.46149096306421821163646939229598412194242171234824862021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.731732582235055248590937500911107312644492628776904342027933428635867.431773004512594254803094496211358959298292706883052352028953367697400.09181359028966826105801504461161064834276278545355386	2018	753971220850.90	1410801887684	1994903450537	909606089367	202359634838
202079385635585.46149096306421821163646939229598412194242171234824862021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.731732582235055248590937500911107312644492628776904342027933428635867.431773004512594254803094496211358959298292706883052352028953367697400.09181359028966826105801504461161064834276278545355386	2019	773919521963 40	1450700914796	2055280222764	934727188907	209707621832
20201350505350.101350505210211505012102117111121171211112021813791244649.35153100598035221769705553599849750560672246040715152022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.731732582235055248590937500911107312644492628776904342027933428635867.431773004512594254803094496211358959298292706883052352028953367697400.09181359028966826105801504461161064834276278545355386	2020	793856355585.46	1490963064218	2116364693922	959841219424	217123482486
202101373121101.031531003003221301030303322180103030312110110103000312022833731520238.191571197269233223822830905010101202447952321463893862023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.731732582235055248590937500911107312644492628776904342027933428635867.431773004512594254803094496211358959298292706883052352028953367697400.0918135902896682610580150446116106483427627854535386	2020	813791244649 35	1531005980352	2176970555359	984975056067	224604071515
202205351512622017161110912021532222030059011011202111755222110305002023853672709227.491611409429763230005925130910352611137942397475755672024873611368051.091651865250565236150255186310604140858982474049020822025893549597831.001692173962690242347384132910855739950212551157673722026913489016083.731732582235055248590937500911107312644492628776904342027933428635867.431773004512594254803094496211358959298292706883052352028953367697400.0918135902896682610580150446116106483427627854535386	2022	83373152023819	1571197269233	2238228309050	1010120244795	232146389386
2025 873611368051.09 16114054257055 236050251863 1063261115774 25741575367 2024 873611368051.09 1651865250565 2361502551863 1060414085898 247404902082 2025 893549597831.00 1692173962690 2423473841329 1085573995021 255115767372 2026 913489016083.73 1732582235055 2485909375009 1110731264449 262877690434 2027 933428635867.43 1773004512594 2548030944962 1135895929829 270688305235 2028 953367697400.09 1813590289668 2610580150446 1161064834276 27854535386	2022	853672709227.49	1611409429763	220022000000	1035261113794	232140305500
2021 03311000000000000000000000000000000000	2023	873611368051.09	1651865250565	2361502551863	1060414085898	247404902082
2026 913489016083.73 1732582235055 2485909375009 1110731264449 262877690434 2027 933428635867.43 1773004512594 2548030944962 1135895929829 270688305235 2028 953367697400.09 1813590289668 2610580150446 1161064834276 27854535386	2025	893549597831.00	1692173962690	2423473841329	1085573995021	255115767372
2020 71340500000,75 713250225005 240500770007 7110751204447 20207 2027 933428635867.43 1773004512594 2548030944962 1135895929829 270688305235 2028 953367697400.09 1813590289668 2610580150446 1161064834276 27854535386	2026	913489016083 73	1732582235055	2485909375009	1110731264449	262877690434
2027 20342603500743 1773604312394 203603074402 113369322029 27086303233 2028 953367697400.09 181359228968 2610580150446 1161064834276 27854355386 2028 953367697400.09 18135972924 2000000000000000000000000000000000000	2027	933428635867 43	1773004512594	2548030944962	1135895979879	270688305235
	2028	953367697400 00	1813590789668	2610580150446	1161064834276	278545355386
9(7330666476936 + 1854077354717 + 7673505367547 + 186737175660 + 786776689058	2020	973306664269 36	1854077354712	2610500150440	1186232125660	2765455555560
2027 77550000000000000000000000000000000	2030	993245893361.05	1894631226103	20736176285121	1211403936555	200440009030
% change from 2012 to 2030 56.56 61.45 66.77 56.24 79.14	% change from 2012 to 2030	56.56	61.45	66.77	56.24	79.14

increasing for the remaining four groups. Referring to last row of Table 4 of the Appendix, the OECD group is expected to reduce the emission by 17.35 percent in 2030 in comparison to its value in 2012. The low-income group is expected to increase their emission levels by 27.12 percent, upper middle-income group by 20.44 percent, and middle income by 18.76 percent, and the lower middle-income group will face lowest emission of mere one percent. The predictions of OECDEO (2011) and USEIA (2016) are a little bit higher (30 percent) than that of the present study [24, 40].

Coming to the prediction of agricultural output, it is observed that all the groups have been showing increasing trends with the middle-income group at top of the list and the low-income group at the bottom with respect to the level values. Referring to Table 5 of the Appendix (last row), it is observed that the low-income group is expected to grow at

FIGURE 4: Forecasted methane emission by the ANN method. Source: sketched by the authors.

FIGURE 5: Forecasted agriculture output by the ANN method. Source: sketched by the authors.

the rate of 79 percent, middle group by 66.77 percent, upper middle by 61.45 percent, and OECD and lower middle group by 56.56 in 2030 with respect to 2012. All the results of forecasting are derived under the condition that all the associated indicators to methane emission will behave in the same manner in all the future period of prediction.

The sustainability of the methane emissions has been checked by the mean difference tests between the growth rates of the forecasted values of agricultural output and methane emissions. The results are positive and significant under the BJ method for all the groups which mean that the forecasted values of agriculture output are significantly

TABLE 6: Forecasted values of methane emission (in kt CO_2 equivalent) under the ANN method.

	OECD	Upper middle	Middle	Lower middle	Low
1981					
1982					
1983	1446416.968	2545150	4026870	1329748	412875
1984	1430021.447	2571500	4014406	1821735	372838
1985	1441795.832	2589046	4007588	1422605	335843
1986	1461538.199	2614282	4287438	1402827	369830
1987	1446995.651	2667094	4355718	1588817	373211
1988	1440210.728	2747220	4306775	1548814	352533
1989	1456140.5	2792646	4336595	1720628	331009
1990	1491361.472	2834851	4486574	1731676	389103
1991	1476079.287	2909815	4764961	1680329	325820
1992	1459493.477	2807767	4749263	1589611	384693
1993	1445983.108	2824382	4665474	1817914	307768
1994	1439778.73	2813669	4462412	1842438	339423
1995	1465050.103	2786787	4854905	1657465	415235
1996	1438339.671	2836269	4677620	1853525	420416
1997	1439059.021	2848776	4829725	1845757	375307
1998	1432454.551	2794881	4647779	2209993	384231
1999	1424597.677	2891541	4514477	1737921	400593
2000	1388451.979	2785951	4454832	1811381	371647
2001	1367643.85	2818457	4747838	1840412	410118
2002	1366140.269	2847352	4811888	1746807	418403
2003	1351195.076	2944943	4818147	1791565	411186
2004	1343380.827	3189900	5088023	1778178	399193
2005	1330945.301	3232285	5329671 1839492		422481
2006	1297305.527	3329724	5531115	1988915	454203
2007	1302505.141	3435593	5536095	1893808	529197
2008	1337349.195	3516933	5376779	1928591	501270
2009	1311392.359	3659730	5628762	1994891	598092
2010	1289029.284	3668891	5740748	2136971	549025
2011	1293807.527	3770809	5805986	2035394	551446
2012	1289158.193	3873620	5915579	2116978	554155
2013	1285810.736	3960180	5966076	2145107	542748
2014	1278758.189	3969299	5986994	2070499	545494
2015	1274290.358	4051914	6056242	2055028	530991
2016	1310605.759	4171557	5941071	2090889	541934
2017	1298863.228	4205484	6024229	2065535	518451
2018	1333476.5	4249025	6071401	1950702	516794
2019	1280933.927	4263922	5974434	2081918	517932
2020	1284397.121	4260086	6001380	2088591	515968
2021	1281190.139	4204223	6007384	2114227	515246
2022	1274927.663	4249874	6010389	2089217	511396
2023	1303026.248	4263496	6015199	2056467	514268
2024	1293290.107	4273741	5976227	2038449	519385
2025	1319416.3	4375672	6033272	2117189	526181
2026	1296397.731	4329229	6028447	2064709	522406
2027	1311785.835	4324037	6024229	2013127	540581
2028	1310999	4304192	6035686	2045801	519592
2029	1324572.071	4294304	6024831	2074644	481711
2030	1335745.338	4265628	6029050	2084001	514628

greater than that of methane emission. This further indicates that the methane emission is sustainable as it does not outweigh the agricultural output. But for the ANN-based results, the significant mean differences are observed for the OECD, upper middle-, and lower middle-income groups which further justify the sustainability of methane emission. Hence, it is recommended that, considering all the other

TABLE 7: Forecasted values of agriculture output in current USD under the ANN method.

	OFCD	Upper middle	Middle	Lower middle	Low
1981	0100	opper initiale	11114410	Lower middle	Dom
1982					
1983	60149562148	275816000000	50181600000	208478000000	27914162124
1984	58623413411	273072000000	505240000000	208728000000	26378101124
1985	58512134674	289552000000	511902000000	205128000000	23808297707
1986	58687934646	305404000000	519899000000	211354000000	28931592469
1987	64737081234	317137000000	530667000000	220927000000	31653039004
1088	75454827282	317232000000	381891000000	245092000000	32486810073
1000	79636359047	325654000000	56320000000	264922000000	34963291291
1909	07586011050	345238000000	560167000000	25517100000	33617076366
1990	148770000000	374179000000	60834000000	27466000000	35340660720
1991	148770000000	3/41/9000000	564271000000	27400000000	30010620609
1992	195534000000	343860000000	5042/1000000	250822000000	39010029008
1995	180284000000	300203000000	522557000000	259832000000	35238321270
1994	245800000000	309740000000	526438000000	253594000000	352/0050041
1995	24860200000	408722000000	587710000000	2/24/2000000	29809388392
1996	348603000000	408722000000	650495000000	296111000000	331/9564625
1997	411922000000	446542000000	/228/3000000	329157000000	35083613270
1998	428/33000000	405384000000	68/618000000	318122000000	36849209370
1999	432306000000	398112000000	64/510000000	292989000000	35432666001
2000	42/10/000000	35/321000000	625239000000	317995000000	33687746404
2001	423704000000	363411000000	62/118000000	304337000000	3/0/46/6523
2002	415854000000	368313000000	636532000000	307672000000	33399273994
2003	414608000000	398710000000	688031000000	327384000000	34299616147
2004	443383000000	496823000000	809029000000	384573000000	37145185371
2005	508433000000	677856000000	915925000000	409008000000	40513455887
2006	478442000000	612859000000	1014990000000	490946000000	54159541508
2007	46878000000	588534000000	1265260000000	569372000000	60077425963
2008	548197000000	501164000000	1534920000000	605306000000	70586165066
2009	586888000000	739111000000	1587530000000	625364000000	85904323805
2010	513235000000	1078720000000	1745390000000	687756000000	90543840883
2011	591661000000	1329470000000	2174670000000	947791000000	98291166756
2012	636341000000	1410410000000	228503000000	1119160000000	113311000000
2013	623553000000	1316770000000	1689750000000	112590000000	113776000000
2014	661119000000	1037670000000	1862420000000	1011140000000	100679000000
2015	655130000000	1266020000000	2170550000000	1416910000000	100257000000
2016	605669000000	1733390000000	2271590000000	1073130000000	100800000000
2017	600843000000	2007280000000	1667260000000	1238350000000	100759000000
2018	592490000000	1728370000000	1779174000000	1440630000000	100237000000
2019	303534000000	2006880000000	1550970000000	1921060000000	102262000000
2020	337184000000	1896250000000	1923180000000	2335620000000	93900354646
2021	472782000000	1897960000000	1868950000000	2128200000000	86932691913
2022	490161000000	189606000000	2212620000000	2850170000000	92594909122
2023	599283000000	1974230000000	2208870000000	3696460000000	87350971903
2024	374703000000	1770710000000	1788500000000	3307450000000	80836950006
2025	290853369722	2030700000000	1883096000000	4048230000000	85262451407
2026	217660000000	1983130000000	2314470000000	5614650000000	78306777946
2027	367982000000	1941340000000	1789040000000	4069740000000	94908000000
2028	145581000000	1984130000000	1849430000000	5847880000000	96808438305
2029	147648000000	1948150000000	1833780000000	2539530000000	72947073894
2030	235620957663	1962620000000	2053360000000	2888470000000	88625925490

Mean difference under BJ method				Mean difference under ANN method				
Groups	Mean	Mean	Corr.	t	Mean	Mean	Corr.	t
	(agri)	(methane)	coefficient	(agri–methane)	(agri)	(methane)	coefficient	(agri–methane)
OECD	0.05539	-0.00813	-0.98	2.70	5.945	-0.1584	0.29	1.74
Upper middle	0.04064	0.01379	0.97	7.40	5.264	1.125	0.38	1.85
Middle	0.03892	0.0119	0.99	17.06	4.085	0.904	0.175	1.46
Lower middle	0.0420	0.0079	0.78	24.12	7.578	1.345	-0.003	2.06
Low	0.0495	0.0154	0.99	28.94	3.075	0.838	0.28	1.08

TABLE 8: Mean difference test results.

Note. Bold marks indicate significant results at 5% level. Source: authors' calculations.

factors of forecasting to be unchanged for the forecasting period, sustained agricultural activities may be a better solution which will be viable in economic as well as environmental fronts.

6. Conclusion

In our journey to forecast methane emission and agricultural output of world's leading groups by two methods, BJ and ANN, it is now to conclude the entire study. Both the methods of forecasting show that, except the OECD group, all the four remaining groups display increasing methane emission, but agricultural output is of increasing trends for all. Middle-income countries possess the top slot in both the methods. So, increase in methane emission is an alarming issue to the global leaders for the sake of environmental sustainability. Furthermore, testing for sustainability of such increasing emission vis-à-vis agricultural output, it is observed that the said emission is sustainable since the average growth rate of the latter is greater than that of the former. Hence, the environmental damage in true sense through methane emission may not be alarming as it boosts up the agricultural growth rate for all the groups. But the effect of methane emission upon other sectors of the economies for examining sustainability in a broader sense remains unverified. It may be kept as the agenda for future research.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

- B. Herrendorf, R. Rogerson, and A. Valentinyi, Growth and Structural Transformation. NBER Working Paper No. 18996, National Bureau of Economic Research, Cambridge, MA, USA, 2013.
- [2] S. Kuznets, "Modern economic growth: findings and Reflections," *The American Economic Review*, vol. 63, pp. 247– 258, 1973.
- [3] B. R. Copeland and M. S. Taylor, "Trade, growth, and the environment," *Journal of Economic Literature*, vol. 42, no. 1, pp. 7–71, 2004.
- [4] O. Fernández-Amador, J. F. Francois, D. A. Oberdabernig, and P. Tomberger, "Economic growth, sectoral structures, and

environmental methane footprints," Applied Economics, vol. 52, no. 13, p. 1460, 2019.

- [5] O. Fernández-Amador, J. F. Francois, D. A. Oberdabernig, and P. Tomberger, "Carbon dioxide emissions and economic growth: an assessment based on production and consumption emission inventories," *Ecological Economics*, vol. 135, pp. 269–279, 2017.
- [6] FOA, Estimating Greenhouse Gas Emissions in Agriculture: A Manual to Address Data Requirements for Developing Countries, Food and Agriculture Organization of the United Nations Rome, Rome, Italy, 2015, http://www.fao.org/3/ai4260e.pdf.
- [7] IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 2014.
- [8] IPCC, "Good practice guidance and uncertainty management in national greenhouse gas inventories," in *IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit*, J. Penman, Ed., IPCC, Geneva, Switzerland, 2000.
- [9] IPCC, Climate Change 1995—the Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 1996.
- [10] IPCC, IPCC Guidelines for National Greenhouse Gas Inventories: Glossary, Japan, IPCC, Geneva, Switzerland, 2006, http://www.ipccnggip.iges.or.jp/public/gpglulucf/ gpglulucf_files/Glossary_Acronyms_BasicInfo/Glossary. pdf.
- [11] O. Fernández-Amador, J. F. Francois, D. A. Oberdabernig, and P. Tomberger, *The Methane Footprint of Nations: Evidence from Global Panel Data*, World Trade Institute, University of Bern, Bern, Switzerland, 2018.
- [12] Global Methane Initiative, Agricultural Methane: Reducing Emissions, Advancing Recovery and Use Opportunities, Global Methane Initiative, Washington, DC, USA, 2011, http://www. globalmethane.org.
- [13] C. Hope, "Discount rates, equity weights and the social cost of carbon," *Energy Economics*, vol. 30, no. 3, pp. 1011–1019, 2008.
- [14] B. M. Haddad, "Ranking the adaptive capacity of nations to climate change when socio-political goals are explicit," *Global Environmental Change*, vol. 15, no. 2, pp. 165–176, 2005.
- [15] UNISDR, Sendai Framework for Disaster Risk Reduction 2015–2030, UNISDR, Geneva, Switzerland, 2015, http://www. unisdr.org.
- [16] A. Acaravci and I. Ozturk, "On the relationship between energy consumption, CO₂ emissions and economic growth in Europe," *Energy*, vol. 35, no. 12, pp. 5412–5420, 2010.

- [17] N. Apergis and I. Ozturk, "Testing environmental Kuznets curve hypothesis in Asian countries," *Ecological Indicators*, vol. 52, pp. 16–22, 2015.
- [18] D. Coondoo and S. Dinda, "Causality between income and emission: a country group-specific econometric analysis," *Ecological Economics*, vol. 40, no. 3, pp. 351–367, 2002.
- [19] A. Kasman and Y. S. Duman, "CO₂ emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: a panel data analysis," *Economic Modelling*, vol. 44, pp. 97–103, 2015.
- [20] C.-H. Cho, Y.-P. Chu, and H.-Y. Yang, "An environment Kuznets curve for GHG emissions: a panel cointegration analysis," *Energy Sources, Part B: Economics, Planning, and Policy*, vol. 9, no. 2, pp. 120–129, 2014.
- [21] H. Fujii and S. Managi, "Economic development and multiple air pollutant emissions from the industrial sector," *Environmental Science and Pollution Research*, vol. 23, no. 3, pp. 2802–2812, 2016.
- [22] J. Kubicová, "Testing greenhouse gasses in Slovakia for environmental Kuznets curve and pollution haven hypothesis," *Journal of International Studies*, vol. 7, no. 2, pp. 161–177, 2014.
- [23] V. Marchal, R. Dellink, D. van Vuuren et al., OECD Environmental Outlook to 2050, OECD, Paris, France, 2011.
- [24] OECDEO, OECD Environmental Outlook to 2030, OECDEO, Paris, France, 2008, https://www.oecd.org/env/indicatorsmodelling-outlooks/40200582.pdf.
- [25] W. Ali and A. Abdullah, "The long-run relationship between economic growth, financial development, trade openness and CO₂ emissions in Malaysia," in *Proceedings of the 2nd International Symposium on Technology Management and Emerging Technologies, ISTMET 2015*, pp. 309–313, Langkawi, Malaysia, August 2015.
- [26] M. Benavides, K. Ovalle, C. Torres, and T. Vinces, "Economic growth, renewable energy and methane emissions: is there an environmental kuznets curve in Austria?" *International Journal* of Energy Economics and Policy, vol. 7, no. 1, pp. 259–267, 2017.
- [27] M. Du, Q. Zhu, X. Wang et al., "Estimates and predictions of methane emissions from wastewater in China from 2000 to 2020," *Earth's Future*, vol. 6, no. 2, pp. 252–263, 2018.
- [28] O. Fernández-Amador, J. F. Francois, D. A. Oberdabernig, and P. Tomberger, "Empirical estimates of the methane-income elasticity," *Economics Letters*, vol. 171, pp. 137–139, 2018.
- [29] M. Shahbaz, S. Dube, I. Ozturk, and A. Jalil, "Testing the environmental Kuznets curve hypothesis in Portugal," *International Journal of Energy Economics and Policy*, vol. 5, no. 2, pp. 475–481, 2015.
- [30] M. Shahbaz, N. Khraief, G. S. Uddin, and I. Ozturk, "Environmental Kuznets curve in an open economy: a bounds testing and causality analysis for Tunisia," *Renewable and Sustainable Energy Reviews*, vol. 34, pp. 325–336, 2014.
- [31] J. Bates, "Economic evaluation of sectoral emission reduction objectives for climate change: economic evaluation of emission reductions of nitrous oxides and methane in agriculture in the eu bottom-up analysis," ATAT Environment, Final Report (Updated Version), 2001.
- [32] T. Hasegawa and Y. Matsuoka, "Global methane and nitrous oxide emissions and reduction potentials in agriculture," *Journal of Integrative Environmental Sciences*, vol. 7, no. sup1, pp. 245–256, 2010.

- [33] W. N. Adger, N. Arnett, and E. Tompkins, "Successful adaptation to climate change across scales," *Global Environmental Change*, vol. 15, pp. 77–86, 2005.
- [34] S. Asghar, D. Alahakoon, and L. Churilov, A Comprehensive Conceptual Model for Disaster Management, Clayton School of Information Technology, Monash University, Melbourne, Australia, 2006.
- [35] J. Barnett and S. O'Neill, "Maladaptation," *Global Environ*mental Change, vol. 20, no. 2, pp. 211–213, 2010.
- [36] M. K. Maredia and I. J. Minde, "Technology profitability and agricultural transformation: concepts, evidence and policy implications," in *Perspectives on Agricultural Transformation: A View from Africa*, T. S. Jayne, P. Minde, and G. G. Argwings-Kodhek, Eds., pp. 83–116, Nova Science Publishers Inc., New York, NY, USA, 2002.
- [37] N. Mimura, R. S. Palwarty, D. M. Duc et al., "Adaptation planning and implementation," in *Climate Change: Impacts, Adaptation and Vulnerability. Part A. Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of IPCC, 869–898, C. B. Field, Ed., Cambridge* University Press, Cambridge, UK, 2014.
- [38] T. E. Volenzo, Alternative dairy cattle feeding strategies and climate change risk management in the maize-sugarcane Belt, Western Kenya, PhD Thesis, Masinde Muliro University of Science and Technology, Kakamega, Kenya, 2015.
- [39] T. E. Volenzo, J. O. Odiyo, and J. Obiri, "Greenhouse gas emissions as sustainability indicators in agricultural sectors" adaptation to climate change: policy implications," Jàmbá: Journal of Disaster Risk Studies, vol. 11, no. 1, 2019.
- [40] USEIA, United States Energy Information AdministrationUSEIA, 2016, https://www.eia.gov/ todayinenergy/detail.php?id=26252.
- [41] USEPA, Global Mitigation of non-CO2 Greenhouse Gases, U.S. Environmental Protection Agency, Washington, DC, USA, 2006.
- [42] M. Kurian and K. Meyer, "The UNU-FLORES United Nations University Institute for Integrated Management of material fluxes and resources nexus observatory and the post 2015 monitoring agenda," 2015, https://sustainabledevelopment. un.org/content/documents/6614131-Kurian-The%20 UNU-FLORES%20Nexus%20Observatory%20and%20the%20Post-%202015%20 Monitoring%20Agenda.pdf.
- [43] Q. Cao, B. T. Ewing, and M. A. Thompson, "Forecasting wind speed with recurrent neural networks," *European Journal of Operational Research*, vol. 221, no. 1, pp. 148– 154, 2012.
- [44] M. Ibrahim, S. Jemei, G. Wimmer, and D. Hissel, "Nonlinear autoregressive neural network in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles," *Electric Power Systems Research*, vol. 136, pp. 262–269, 2016.
- [45] Y. D. Nyanteh, S. K. Srivastava, C. S. Edrington, and D. A. Cartes, "Application of artificial intelligence to stator winding fault diagnosis in Permanent Magnet Synchronous Machinesficial intelligence to stator winding fault diagnosis in Permanent Magnet Synchronous Machines," *Electric Power Systems Research*, vol. 103, pp. 201–213, 2013.
- [46] M. Alwakeel and Z. Shaaban, "Face Recognition based on haar wavelet transform and principal component analysis via Levenberg-Marquardt backpropagation neural network," *European Journal Science Research*, vol. 42, pp. 25–31, 2010.

- [47] M. T. Hagan and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," *IEEE Transactions* on Neural Networks, vol. 5, no. 6, pp. 989–993, 1994.
- [48] A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo, "Comparison of ARIMA and artificial neural networks models for stock price prediction," *Journal of Applied Mathematics*, vol. 2014, Article ID 614342, 7 pages, 2014.
- [49] Y. Chen, B. Yang, J. Dong, and A. Abraham, "Time-series forecasting using flexible neural tree model," *Information Sciences*, vol. 174, no. 3-4, pp. 219–235, 2005.
- [50] A. Jain and A. M. Kumar, "Hybrid neural network models for hydrologic time series forecasting," *Applied Soft Computing*, vol. 7, no. 2, pp. 585–592, 2007.