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Upholding sustainability in the use of energies for the increasing global industrial activity has been one of the priority agendas of
the global leaders of the West and East. The projection of different GHGs has thus been the important policy agenda of the
economies to justify the positions of their own as well as of others. Methane is one of the important components of GHGs, and its
main sources of generation are the agriculture and livestock activities. Global diplomacy regarding the curtailment of the GHGs
has set the target of reducing the levels of GHGs time to time, but the ground reality regarding the reduction is far away from the
targets. Sometimes, the targets are fixed without the application of scientific methods. The aim of the present study is to examine
sustainability of energy systems through the forecasting of the methane emission and agricultural output of the world’s different
income groups up to 2030 using the data for the period 1981-2012. The work is novel in two senses: the existing studies did not use
both the Box-Jenkins and artificial neural network methods, and the present study covers all the major economic groups in the
world which is unlike to any existing studies. Two methods are used for forecasting of the two. One is the Box-Jenkins method,
where linear nature of the two variables is considered and the other is artificial neural network methods where nonlinear nature of
the variables is also considered. The results show that, except the OECD group, all the remaining groups display increasing trends
of methane emission, but unquestionably, all the groups display increasing trends of agricultural output, where middle- and upper
middle-income groups hold the upper berths. The forecasted emission is justified to be sustainable in major groups under both
methods of estimations since overall growth of agricultural output is greater than that of methane emission.

1. Introduction

From the last half of 19 century to till date, economic
growth turns into the most important particle of almost all
socioeconomic systems in our mother earth. To achieve the
higher growth trajectory, each and every economy put all of
their resources on the board without giving any potentiality
to future generations. It is only in late 90s, when scarcity of
resources and a relatively new term “global warming”
knocking the door of the policy and law makers around the
world, human beings push forward the agenda of sustain-
ability. In the wake of the issues related to sustainability,

researchers are often engaged themselves in a debate over the
existence of whether substitutability or complementarity are
working between the association of growth and environment
1, 2].

It has been historically evidenced that growth can rev-
olutionize the structural changes in both production and
consumption. Such changes may occur from either direc-
tions or both, that is, either from level or composition or
from both of them [3]. Interestingly, both the level and the
composition of production and consumption activities affect
environmental degradation and raise the scope of green-
house gas (GHG) emissions, owing to which the prospects
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of sustainable economic development may hamper in future
[4, 5]. Tt is evidenced that GHG contributes global warming
and, consequently, generates severe environmental matters.
It is to be noted that, to control the global emissions of GHG,
the Kyoto Protocol was proposed and signed by almost all
the countries in the world. The Kyoto Protocol specified six
GHGs, including methane (CH,), carbon dioxide (CO,),
nitrous oxide (N,O), perfluorocarbons (PFCS), hydro-
fluorocarbons (HFCS), and sulphur hexafluoride (SF¢) [6].
In 2014, the concentration of carbon dioxide (CO,),
methane (CH,), and nitrous oxide (N,0O) in the atmosphere
was 397.7ppm, 1833 ppb, and 325.9ppb, respectively
(World Meteorological Organization, 2015). On the average,
the anthropogenic emissions grew 1.3% annually from 1970
to 2000 and 2.2% annually from 2000 to 2010 [7]. Moreover,
after carbon dioxide, methane is the second most emitted
GHG; its potential to catch heat in the atmosphere is 23
times higher than carbon dioxide [8] and so a clinical ex-
amination on increase in methane gas emission needs more
attention.

Under 1996 IPCC revised guidelines, national GHG
inventories includes energy, industrial process, solvent and
other products, agriculture, land-use change and forestry,
and waste, while the above-stated list is modified under 2006
IPCC guidelines [6, 9, 10]. Following the just-stated seg-
regation of GHG, methane emissions are also generated
from several production sectors. For instance, anthropo-
genic methane is emitted from sectors like cattle breeding,
rice cultivation, extraction and transport of fossil fuels, and
waste management [11]. These emissions result from very
heterogeneous processes with several scopes for abatement.
Accordingly, existing heterogeneity of production structures
across countries introduces cross-country asymmetries
broadly based on agriculture-based methane or industry-
based methane emissions. Interestingly, methane emission
and sectoral composition are rarely analyzed in the litera-
ture. However, such gap is widened enough in case of ag-
ricultural methane emissions. Methane is produced and
emitted from the decomposition of livestock manure and the
organic components in agro-industrial wastewater. These
wastes are typically stored or treated in waste management
systems that promote anaerobic conditions and produce
biogas, a mixture of about 70 percent methane, 30 percent
carbon dioxide, and less than 1 percent hydrogen sulfide.
Globally, manure management added an approximated 237
million metric tons of carbon dioxide equivalent of methane
emissions in 2010, roughly 4 percent of total anthropogenic
methane emissions. Out of total emitted agro-based
methane, almost 85 percent is accompanied by USA, China,
and India together, followed by Brazil, Pakistan, and Viet-
nam [12]. It is to be noted that the agriculture methane may
emit also from nations which use more capital-intensive
production technique, and hence, a critical analysis between
agriculture and methane emissions is needed abruptly.

Amalgamation of methane emission with agriculture
production creates doubt over the efficacy of sustainability
issue. Massive agriculture production can emit more vul-
nerable methane along with other GHGs. Again, such
methane emissions may affect weather variability and
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multiply climate change risks and the magnitude of global
warming. This can affect dairy cattle feeding sector along
with other agriculture-based activities more severely. As a
consequence, the vulnerability of agriculture-based liveli-
hoods may increase with induced disaster risks. However,
there is no definite and robust model which can estimate
social costs from such emissions [13]. Hence, by minimizing
environmental degradation and pollution risks along with
adaptation to climate and weather, variability risks should
not only increase resilience of farmers’ production systems
but also stabilize their output and income [14]. Identification
and reduction of above-stated uncertainties and risk factors
in terms of anticipatory adaptation may raise the potentiality
of sustainability paradigm [15]. Therefore, climate change
adaptation policies in the agricultural sector along with
adaptation to control methane emission are to be imple-
mented for getting sustainable development. Therefore, the
question still remains in mind: “does complementarity be-
tween methane emission and agriculture production gen-
erate sustainability?” This paper also tries to locate, screen,
and evaluate this issue for major income groups of the world.

This paper contributes original findings concerning
methane emission and agriculture production with special
emphasis on sustainability. First, it goes for forecasting of
methane emission and agricultural output using the
Box-Jenkins (B]J) and artificial neural network (ANN)
methods. Second, it goes for testing the sustainability of
methane emission vis-a-vis agricultural output.

The paper is organized as follows: literature review is
presented first, followed by data, methodology, analysis of
results, and conclusion.

2. Literature Review

Table 1 exhibits the brief information on the highly relevant
works reviewed so far for the present study.

Analysis related to GHG emission and economic ac-
tivities are not new in the literature. Study related to GHG
emission and economic growth has been discussed in the
literature quite rigorously [16-19]. All these studies used the
similar kinds of methodology to relate GHG emission with
growth. In fact, these studies have used CO, as a measure of
GHG and per capita income for panel data to show the
presence of EKC. Again, there are a few studies that have
used several GHGs, and they have confirmed the existence of
EKC for methane emissions [20-22]. In this context, using a
dataset for 22 OECD countries, it has shown a quadratic
relationship between methane emission and GDP in the long
run [20]. Such quadratic relationship between methane
emission and GDP has also been established in the literature
for different datasets [22]. Again, industrial methane
emission of 39 countries explicitly claims N-shaped rela-
tionship between the methane emission and economic
growth [21].

In a notable working series titled “OECD Environmental
Outlook to 2030,” it studies the prediction of GHG emis-
sions in 2030 if the present inaction on environment remains
unchanged [24]. The report reveals that, by 2030, the world
economy is expected to nearly double and world population
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TABLE 1: List of relevant studies reviewed.

Article Year Link with present study Methodology Outcomes
. . Uses autoregressive distributed lag  Shows long-run relationship between
Acaravci and This study examines the causal (ARDL) bounds testing approach of ~ GHGs, energy consumption per
2010 relationship between GHGs, energy & app ’ 8y P P

Ozturk [16]

consumption, and economic growth

cointegration for nineteen European
countries

capita, real GDP per capita, and the
square of per capita real GDP

Apergis and

This study focuses on both GDP and
policies in fourteen Asian countries

Uses GMM method to a multivariate

Ilustrates inverted U-shaped
association between emissions and

2015 . o er capita GDP for selected Asian
Ozturk [17] to capture income-emission panel data framework P prta & st
relationshi economies over the period
P 1990-2011
This study presents the results of a Granger causality test is used to For.the group of fieV.(eloped
Coondoo and . . cross-country panel data on per  economies, the causality is found to
. 2002  study of income and major GHG o . Lo
Dinda [18] emission capita income and the corresponding run from GHG emission in terms of
per capita CO, emission CO, emission to income
This article examines the causal oy
. - Short-run unidirectional panel
relationship among energy . .
. .2 . . causality running from energy
consumption, carbon dioxide Panel cointegration methods and .
Kasman and . . > consumption, trade openness, and
2015 emissions, economic growth, trade  panel causality tests are used to L L
Duman [19] P . . . urbanization to carbon emissions
openness, and urbanization for a investigate such associations L
and long-run associations are
panel of new EU member and .
. . claimed
candidate countries
This study investigates the EKC ~ Uses panel cointegration tests as well Shows that a quadratic relationship
Cho et al. [20] 2014 hypothesis by using the total GHG as the fully modified ordinary least may exist in the long run for twenty-

and methane emission

squares (FMOLS) approach

two OECD countries

Fujii and
Managi [21]

2016

This study analyzes the relationship
between economic growth and
emissions of major GHGs including
methane

Uses of both time series and panel
data analysis

Shows doubt over presence of EKC
for several individual industries and
illustrates the presence of EKC at the
country and total industrial sector
level data

Kubicova [22]

2014

Examines both EKC and PHH in the
context of GHGs for Slovak Republic

Granger causality test

Concludes that the volume of per
capita per capita greenhouse gas
emissions in the present period and
in any of the previous four periods
has no effect on the amount of net
FDI inflows as a percentage of GDP
in the Slovak Republic

Marchal et al.
[23]

2011

This study searches for the policy
implications of the climate change
challenge in the context of methane
emission and growth

Cross-sectional data and forecasting
method are used

Methane and nitrous oxide emissions
are projected to increase to 2050;
although agricultural land is expected
to expand slowly along with the
escalation of agricultural productions
in developing countries

OECDEO [24]

2008

This study predict the GHGs
emissions in 2030 under unchanged
environmental conditions

Employs simulations exercise in
order to find policy actions to address
the key challenges, including their
potential environmental, economic
and social impacts

Claims a rise in income and
aspirations for better living standards
will increase the pressure on the
planet’s natural resources

Ali and
Abdullah [25]

2015

This study examines the association

between the major GHG emission

and its determinants like economic

growth, financial development, and

trade openness for the time period
1970-2012

Uses vector error correction model
(VECM) approach to investigate the
relationship between the variables

Claims economic growth, financial

development, and trade openness are

still very important in determining
the CO, emissions

Benavides
et al. [26]

2017

This study investigates the
relationship between methane
emissions, GDP, electricity
production from renewable energy
sources, and trade openness

Uses ARDL and Granger causality
test

Shows unidirectional causality
between CH, and the variables
involved




wastewater from different provinces
in China
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TasLE 1: Continued.
Article Year Link with present study Methodology Outcomes
Ilustrates methane emissions from Shows an increasing trend in
Du et al. [27] 2018 2000 to 2014 that originated from Adopts artificial neural network ~ methane emissions in China and a

spatial transition of industrial
wastewater emissions

Fernandez-
Amador et al.
(28]

2018

Estimates the income elasticity of per
capita methane emissions

Uses threshold models with
piecewise-linear income elasticity

Income elasticity decreases at high
income levels but the rate is
diminishing

Shahbaz et al.
[29]

2015

Examines the EKC hypothesis in
Portugal in the context of major
GHG emission

Adopts ARDL bounds testing

Shows existence of EKC hypothesis
in both the short run and long run

Shahbaz et al.
(30]

2014

Investigates the existence of EKC
hypotheses in case of Tunisia using

of 1971-2010

ARDL bounds testing approach,
vector error correction model, and
annual time series data for the period innovative accounting approach are

Claims long run association among
economic growth, energy
consumption, trade openness, and
CO, emissions

Considers agriculture GHG emission

Predicts that the baseline emissions

Time series and panel data analysis of methane and nitrous oxide in the

Bates [31] 2001 with reference to methane and . .
. . o . agricultural sector are likely to
nitrous oxide emissions in EU X
decline by 7%
Considers global dataset on methane .
. . . . Shows the presence of relative
Fernandez- inventories derived from

decoupling between methane and

Amador et al. 2018 productior}, final prodgction, e}nd Uses panel data regression growth, and the relationship is
[11] consumption for the time period nonlinear in nature
1997-2011
Introdu.ces an integrated model to . Claims that the livestock manure
predict global CH4 and N,O Agricultural model and .
Hasegawa and S X . . management and rice paddy are
2010 emissions and reduction potentials countermeasure selection model are .
Matsuoka [32] . . expected to be emission sources that
related to agricultural production have hich reduction potentials
over the period 2000 to 2030 & b
This study reviews the nature of Shows that elements of effectiveness,
Adger et al. 2005 afiaptz.itlop and als.o examines .the Uses normative evaluative criteria eﬂi.aency, equity, a.nd. authentlaty
[33] implications of different spatial are important in claiming success in
scales for these processes terms of the sustainability
Findings have claimed that proper
policy investigations, plans,
Asghar et al. 2006 Introduces the ideas of disasters Model of integrated disaster programmes and adaptation in terms

(34]

management with GHG emission

management is used

of risks, and opportunities can make
GHG emissions as sustainability
indicators

Barnett and

Relates adaptation and GHGs in the

Claims in favour of introduction a
line of investigation that the policy-

O’Neill [35] 2010 context of Melbourne Considers comparative analysis ~ makers should e?sk_ and seek answers
before committing resources to
adaptation decisions
Advocates that adaptive capacity
Haddad [14] 2005 Relates HDI with GHGs Introduces sociopolitical model based on national sociopolitical
aspirations is needed
Maredia and Examlnes association among Uses Africa-based analysis with Finds l.ack of adap‘{atlon may ('iegrade
. 2002 agriculture, technology, and L L environment with more higher
Minde [36] . . descriptive statistics . L ;
environmental degradation agricultural productivity in Africa
Recognizing the importance of
Mimura et al. Relates adaptation with climate . . rpamstre.ammg adaptatllon anq t he
2014 Adaptation strategy is employed integration of adaptation policies
[37] change ° .
within those of development
increases
Claims failure to adopt proper
adaptation may aggravate small-scale
Volenzo [38] 2015 Relates methane emission, Simulation exercises has been farmers’ vulnerability to climate

agriculture, and adaptation

change and weather variability and in
return economy will produce
suboptimal outcomes
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TaBLE 1: Continued.

Article Year Link with present study

Methodology Outcomes

Volenzo et al. Related to methane emission,
2019 . .
[39] agriculture, and adaptation

Uses simulation exercises

Encouraged to design and implement
policies and strategies that take
cognizance of poverty-
maladaptation-environmental
degradation nexus

to grow from 6.5 billion today to over 8.2 billion. Most of the
growths in income and population will be in the emerging
economies of Brazil, Russia, India, Indonesia, China, and
South Africa (the BRIICS) and in other developing coun-
tries. Rising income and aspirations for better living stan-
dards will increase the pressure on the planet’s natural
resources. In another series titled “OECD Environmental
Outlook to 2050,” it envisages that, without more ambitious
policies than those in force today, GHG emissions will in-
crease by another 50% by 2050, primarily driven by a
projected 70% growth in CO, emissions from energy use
[23]. This is primarily due to a projected 80% increase in
global energy demand. Furthermore, it claims that, histor-
ically, although OECD economies have been responsible for
most of the emissions, in the coming decades, increasing
emissions will also be caused by high economic growth in
some of the major emerging economies. Again, global en-
ergy-related carbon dioxide (CO,) emissions are projected
to increase by one-third between 2012 and 2040. The con-
tinuing increase in total emissions occurs despite a moderate
decrease in the carbon intensity (CO, per unit of energy) of
the global energy supply [40].

From the international trade angle, a few studies have
found positive relationship between trade openness and CO,
emissions [25, 29, 30]. Positive association between methane
emission and trade openness is also acknowledged in the
literature [26]. Moreover, economic growth and several
socioeconomic activities are claimed responsible for
methane emission [25]. In fact, rapid growth, population
size, and foreign direct investment are made as the re-
sponsible factors behind methane emission for different
cross-sections [30]. Again, through an interesting study, it is
reported that the elasticity of methane emissions with re-
spect to income per capita income is low and it may decrease
over time [28]. In a recent study based on country specific
efforts, it has been calculated by neural network method that
the predicted methane emission from wastewater in China
will be an increasing trend and a spatial transition of in-
dustrial wastewater emissions from eastern and southern
regions to central and southwestern regions and from coastal
regions to inland regions will occur [27].

Again, some studies are focused on the reduction po-
tentiality of methane emission from agriculture [31, 41].
Usually, such studies have used static methodology and
derived short-run estimates to locate the reduction possi-
bility of methane emission from agricultural sector [31, 41].
However, long-run analysis has also been established, in
which methane emissions from agriculture and reduction
prospective under several marginal abatement costs, huge
drop likely regions, and emission sources are claimed for

long-run [32]. Again, establishing the significance of agri-
cultural sector in the context of GHGs emission, it has been
claimed that the anthropogenic methane emissions are
mostly produced by a few economic sectors such as cattle
breeding and rice cultivation [11].

Issues related to sustainable development in the context
of agriculture production and methane gas emission have
been discussed critically in the literature. Furthermore, it is
argued that proper policy investigations, plans, programmes,
and adaptation in terms of risks and opportunities can make
GHG emissions as sustainability indicators to uphold sus-
tainable development [34, 42]. To get sustainability, inves-
tigators are usually advocated for the attractive adaptation
measures to pursue efficiently in long run [37]. Investigation
in this aspect has revealed that, by controlling environmental
degradation and pollution risks along with adaptation to
climate and weather, variability risks may increase resilience
of farmers’ production systems and also side by side stabilize
their output and income [14]. In another series titled “Sendai
framework for disaster risk reduction 2015-2030,” it has
been argued that minimization of uncertainties and risk
factors owing to climate change attached to agriculture can
be optimized through anticipatory adaptation [15]. Sus-
tainable development in terms of improvement of farmer’s
livelihood is claimed and argued in favour of proper ad-
aptation of changing policy regimes in the context of en-
vironmental degradation to opt sustainability [36]. Again,
with inability to screen, evaluate, and treat risks augmented
in dairy feeding, adaptation initiatives are declared as re-
sponsible factors to enhance risks embedded in climate
change. Furthermore, studies claim that just-stated failure to
adopt proper adaptation may aggravate small-scale farmers’
vulnerability to climate change and weather variability, and
in return, economy will produce suboptimal outcomes
[33, 35, 38]. In a more recent study, it has been claimed that
methane gas emission along with other GHGs emissions
from agriculture production and in dairy feeding strategies
can be used as a measure and indicator of sustainability. It
has been further argued that policy implementation to curb
risks associated with agriculture production owing to
methane emission must be embedded with the cognizance of
poverty, maladaptation, and environmental degradation
nexus [39].

3. Rationale of the Present Study

The review of literature highlights different aspects of GHG
emission in general and methane emission in particular and
their impacts in different sectors of different economies but
does not cover studies related to forecasting of methane



emission in world’s leading methane emitting countries. The
present study has tried to fill the gap in the literature by
means of forecasting methane emission for world’s leading
economic groups up to the year 2030. Furthermore, the
sustainability of the forecast values of methane emission has
been analyzed by means of forecast values of agricultural
output of the same economic groups. It is thus a novel work
in our view.

3.1. Data. The study uses the time series data on methane
emission (in kt CO, equivalent) for the five groups of
economies (high income, upper middle income, middle
income, lower middle income, and low income) for the
period 1981-2012. It also uses the time series data for the
same period and same groups of economies on the total
agricultural value added measured in current USD. Both the
data series are borrowed from the World Bank (http://www.
wordbank.org).

3.2. Methodology. Twin methods, not actually hybrid in
usual sense, are used for forecasting of methane emission
and agricultural value added. One is the Box-Jenkins
method, where linear nature of the two variables is con-
sidered, and the other is artificial neural network methods,
where nonlinear nature of the variables is also considered.

3.3. Box-Jenkins Method of Forecasting. Before going into
the details of Box and Jenkins method of forecasting, we
need to see how a time series data of a particular variable is
generated.

There are three processes behind generation of a time
series data:

(1) AR process: past values of the variable and error term
generate the data

(2) MA process: only the errors or the disturbance term
generate the data

(3) ARMA process: data are generated by the combi-
nation of AR and MA processes

Sometimes, it is taken as ARIMA model, where “I”
stands for integration of the series or how many differencing

(1-¢L—, L —@sL’ =@, L' =+ = @, L)y, = p+(1+ 0, L+ 0,17 + 0,1 + 6,L" +--- + 6,17 )uy, Or,
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is done for making the time series of the variable to
stationary.

In the AR (p) process, the current value of a variable “y”
depends on only the past values plus an error term. If there
are “p order in the process, i.e., the current value of y de-
pends on the p order of past values and an error term of the
current period,” then the AR(p) can be written as

MW=t Viat @Yot @3V 3t Pa)ia

te kYt U = U I Yt Uy

(1)

where 1, is the white noise (WN) error term with zero mean,
constant variance, and zero auto-covariance.

On the contrary, an MA(q) process is the linear com-
bination of all the “q” terms of white noise terms depending
on time. It is a white noise process in which the current value
of y, depends on the current value of the WN error term and
all past values of the error terms. Because all the errors are
WN, an MA process is necessarily a stationary process
further because it is the linear combination of all plus and
minus values of the errors which hover around zero.

So, an MA (q) process can be written as

ye=u + 60 +0u, ,+0u, 5+ 00 -+ Qqut,q

=u + Z O.u,_;.
(2)

An AR process is stationary if the characteristic root lies
outside the unit circle or having values >1, then ¢ becomes
less than 1. This means the condition ¢ < 1 leads to the values
lying inside the unit circle representing stationarity of the
AR process, and the model will thus have stability property.

An ARIMA (p, q) process is the combination of AR and
MA processes, “I” being the order of integration, which can
be represented by “d,” number of differencing to convert the
series from nonstationary to stationary. The model for
ARMA (p, d, q) can then be written as

=0T 01Vt Ve 2 T @3V 3t QaVeat T QY
+u, + 0+ Ou, , +0u, 5+ O+ + unt_q.
(3)

Using Lag operator, we have

(4)

o(L)y, =pu+0(L)u,.

This relation stands for invertibility between the AR and
the MA process.

3.4. Forecasting in ARIMA Model: Box-Jenkins Method.
The BJ methodology to determine which model is appro-
priate follows a four-step procedure:

Step 1: identification: to determine the appropriate
values of p, d, and q.

(i) The main tools in this search are the correlogram
and partial correlogram.

Step 2: estimation: to estimate the parameters of the
chosen model.
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Step 3: diagnostic checking: to check if the residuals
from the fitted model are white noise.

(i) If they are, accept the chosen model; if not, start
afresh.

(ii) That is why the BJ methodology is an iterative
process.

Step 4: forecasting. The ultimate test of a successful
ARIMA model lies in its forecasting performance,
within the sample period as well as outside the sample
period. On the basis of the acceptable results obtained
from steps 1 to 3, forecasting is made on the appro-
priate model of ARIMA. The forecasting results are
accepted on the basis of the acceptable values of root
mean square error (RMSE), bias proportion, variance
proportions, and covariance proportions. The accept-
able forecasted values will be those whose RMSE will be
minimum possible, and covariance proportions will be
greater than bias proportions and variance proportions.

4. Methodology of ANN-Based NAR

Real-world data always contains nonlinearity, and specifi-
cally, its behaviour is dynamic and depends on their current
period. Under such circumstances, the nonlinear autore-
gressive (NAR) neural network structure is effective to make
efficient prediction about future [43]. The first advantage of
NAR networks is that they can accept dynamic inputs
represented by time series sets. Time series forecasting using
a neural network is a nonparametric method, which implies
that knowledge of the process that causes the time series is
not necessary. Moreover, the NAR model utilizes the past
values of the time series to predict future values. This fact
makes it hard to model time series using a linear model;
therefore, a nonlinear approach should be preferred, and the
present study has also attempted the method. A nonlinear
autoregressive neural network, applied to time series fore-
casting, describes a discrete, nonlinear, autoregressive model
that can be expressed in the following manner [44, 45]:

x()=flx(-1),x(t-2),x(t-3),...... ,x(t—q) +v(t),
(5)

where x(t) is data series of x variable at time ; f(.) is
unknown in advance, and the training of the neural network
aims to approximate the function by means of the opti-
mization of the network weights and neuron bias; and v (t) is
the error of the approximation of x at time ¢.

This training function is often operated efficiently with
backpropagation-type algorithm, and to perform this with
our statedf(.), we wuse Levenberg-Marquardt back-
propagation procedure (LMBP) [46, 47] to solve any
specified NAR neural network. In Figure 1, we present the
topology of a standard NAR network.

After getting the forecasted values of both the series for
methane emission and agricultural value added up to the
year 2030, we try to test whether the forecasted methane
emission is sustainable by means of looking at the forecasted
values in agricultural outputs for the selected five groups of

economies. For this purpose, we have first calculated the
growth of these two indicators over the forecast period and
average values of these two growth rates for all the groups.
After that, we have tested the mean difference of these two
indicators, methane emission and agricultural value added,
and tested their significance statistically. If the average
growth of agricultural output is tested to be greater than
that of methane emission, then it may be said that the
emission is sustainable as it contributes positively and
largely to agricultural output. The reverse results may say
the unsustainable methane emission in the forecasted
period.

4.1. Analysis of Results. As mentioned earlier, the study
applies Box-Jenkins (BJ) and artificial neural network
(ANN) for forecasting methane emission and agriculture
output for the period 2013-2030 on the basis of data for the
period 1981-2012. The results of both the methods are given
one by one.

4.1.1. Forecasting by Box-Jenkins Method. For the BJ
method, the following four steps are followed which are
mentioned in Methodology:

Step 1: identification: to determine the appropriate
values of p, d, and g, we have done unit root test
through ADF test and correlogram methods. The re-
sults for both the series are presented in Tables 2 and 3.
Looking at the autocorrelation functions (ACFs) and
partial autocorrelation functions (PACFs), we have
identified the orders of AR and MA processes. There
may be more than one alternative of the shapes of ACF
and PACF, and we will have to determine the optimum
structure of ARIMA. For this purpose, steps 2 and 3 are
followed.

Step 2: estimation: to estimate the parameters of the
chosen model, we run equation (4).

Step 3: diagnostic checking: to check if the residuals
from the fitted model are white noise. The acceptable
regression results are taken on the basis of where both
AR and MA coefficients are significant, adjusted R” is
highest, and information criteria (AIC and SIC) are of
lowest values. The results of steps 1 to 3 are given in
Table 2 for methane emission and in Table 2 for ag-
riculture output for all the groups of economies. The
roots of the AR and MA should lie inside the unit circle,
indicating stability of the models.

Let us first discuss the results (for steps 1 to 3) on the
methane emission with the help of Table 2. The results
from the table show that, in all the groups of economies,
the series are integrated of order 1. The optimum orders
of the autoregressive and moving average terms are
marked bold. They are (4, 4) for the OECD and lower
middle group, (11, 11) for the upper middle group, (6,
6) for the middle group, and (1, 1) for the low group.
And all of these terms are less than unity in values,
indicating the stability of the models.
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FIGURE 1: Nonlinear autoregressive neural network.

Now come to the discussion on the results (for steps 1
to 3) of agriculture output with the help of Table 3. The
results from the table show that, in all the groups of
economies, the series are integrated of order 1. The
optimum orders of the AR and MA terms are marked
bold. They are (2, 12) for the OECD group, (4, 1) for the
upper middle group, (3, 1) for the middle group, (3, 3)
for the lower middle group, and (1, 1) for the low group.
And the models in all the groups are stable.

Step 4: forecasting: on the basis of the acceptable results
obtained from steps 1 to 3, forecasting is made on the
appropriate model of ARIMA. The forecasting results
are accepted on the basis of the acceptable values of root
mean square error (RMSE), bias proportion, variance
proportions, and covariance proportions. Figures 2 and
3 present the graphical plots of forecasted values of
methane emission and agricultural output, respectively.
The numerical values of the two forecasted series are
given in the Appendix (Tables 4 and 5).

It is observed from Figure 2 that, except the OECD group,
all the remaining four groups of economies demonstrate rising
trends of forecasted values of methane emission. Middle-in-
come group leads the club followed by the upper middle-in-
come group and low-income group. The lower middle-income
group maintains a constant forecasted path for the entire
period of prediction. The positive improvements are observed
only for the countries in the OECD group. The results thus
show that the agriculture activity in particular and all the
economic activity in general is not going to put pressure on the
pollution level measured by methane emission for the devel-
oped countries, whereas the countries in the remaining world
are going to pollute the environment. The derived forecasted
values of methane emission have maintained the desirable
properties of forecasting as their RMSE is low and the co-
variance proportions are greater than the bias and variance
proportions (the results are not shown to avoid crowding of
figures and tables in the text).

On the contrary, the forecasted values of agricultural value
added for all the groups under the B] method, as depicted in
Figure 3 and Table 5, show rising trends for all up to 2030. But
the difference is observed in their relative positions. The
middle-income group is at the top, followed by the upper
middle-, lower middle-, OECD, and low-income group. The
rate of growth is steeper for the middle-income group as well.

4.1.2. Forecasting by ANN-Based NAR. In the ANN method,
only one hidden layer has been used while number of
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neurons in hidden layer has been varied at four levels (5, 10,
15, and 20 number of neurons). Our experiments suggest
employing 2 feedback delays of the variables for model
building. Here, we have used backpropagation algorithm
proposed by Levenberg-Marquardt for training. Figures 4
and 5, respectively, present the predicted values of methane
emission and agriculture output. The quantitative figures for
both are presented in the Appendix (Tables 6 and 7).

It is observed from Figure 4 that the OECD group
demonstrates falling trend of the predicted methane
emission, while the other four groups from low- to upper
middle-income countries produce rising trends of the
said emission. Furthermore, it is to note that the results
under the ANN method are similar to that under the BJ
method.

Figure 5 depicts that all the groups’ predicted trends of
agriculture output are upward rising over time which are
alike to that under B] method. But a little difference under
ANN is observed for the OECD group as it turned down-
ward trend after 2015.

Hence, the two methods of forecasting by and large
produce the same results for both methane emission and
agricultural output for all the groups of economies.
Whatever differences observed are due to the differences in
methodological structures. As mentioned in related litera-
ture [48-50] that the ANN is applied for linear and non-
linear data and BJ only for linear data, the former one can be
used as better predictor for a dynamic variable like methane
emission. As having association between methane emission
and agricultural output, it is now required to examine
whether the predicted methane emission is sustainable for all
the groups for the period 2013-2030. This is the second
objective of the study.

One way of examining such sustainability is to see
whether growth of the predicted agricultural output is
greater than that of methane emission. In other words,
whether good economic effect is greater than bad pollution
effect. For the said purpose, we have calculated the average
growth rates of predicted methane emission and agricultural
output and took their difference and test statistically (by t-
test) whether such mean difference is positive statistically.
We have done these tests for all the groups of economies
separately for B] and ANN results. The test results are given
in Table 8.

It is observed from both the two methods of fore-
casting that the average growth for predicted methane
emission is negative for the OECD group and positive for
all the remaining four groups. Furthermore, the average
growth of agricultural output is greater than that of the
methane emission for all the groups of economies. The
correlation between the growth of methane emission and
that of agriculture output is positive and significant for
all in case of the B] method, but the correlation result is
not significant for all the groups in case of the ANN
method.

The results for mean difference test are positive and
significant under the BJ method for all the groups which
mean that the forecasted values of agriculture output are
significantly greater than that of methane emission. This
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TABLE 2: Unit root test and ARIMA results for methane emission.

Groups ADF Possible forms of ARIMA Regression coefficients (prob) R? AIC  SIC
2 1,2) AR(2) =-0.67 (0.00) MA(2) =0.71(0.05)  0.14 21.79 21.83

26 OECD ~5.83 (0.00) (4,1, 4) AR(4) = 0.50 (0.00) MA(4) = —0.91(0.02) 027 215 21.65
a1, 11) AR(11) =-0.17(0.23) MA(11)=0.87 (0.05)  0.62 20.6 20.75

o - (3,1, 4) AR(3)=0.39 (0.02) MA(4) =—-0.24 (0.22)  0.07 25.05 2519

Upper middle income  —4.11(0.00) ai, 1, 11) AR(11) =-0.8(0.01) MA(11) =—-0.94 (0.00) 091 22.84 22.99
a, 1, 6) AR(1) =—0.18 (0.35) MA(6) =—0.16 (0.42)  0.001 27.33 27.47

Middle income ~8.15(0.00) 6,1, 6) AR(6) = —0.57 (0.00) MA(6) =0.96(0.00) 038 2696 27.11
as, 1, 15) AR(15)=0.01 (0.48) MA(15)=—-0.99 (0.02) 099 7.64 7.78

a1, 4) AR(1) =—0.38 (0.00) MA(4)=—0.08 (0.24) 012 27.31 27.45

Lower middle income  —8.5(0.00) (4,1, 4) AR(4) =0.6 (0.02) MA(4) =-0.94(0.01)  0.15 27.30 27.42
as, 1, 4) AR(15)=0.15 (0.16) MA(4) = —0.94 (0.01)  0.77 26.48 26.49

. ~ a,1,1) AR(1) =0.45 (0.00) MA(1)=—-0.99 (0.01) 024 24.68 24.82

Low income 7:37 (0.00) a, 1, 4) AR(1)=-0.31 (0.28) MA(4)=—-017 (0.21)  0.05 24.89 25.03

Note. Bold marks indicate significant results and the accepted ARIMA structures for which forecasting is made. Source: computed by the authors.

TaBLE 3: Unit root test and ARIMA results for agricultural value addition.

Groups ADF Possible forms of ARIMA Regression coeflicients (prob) R* AIC SIC
21,2 AR(2)=0.18 (0.36) MA(2) =—0.99 (0.04)  0.33 51.48 51.62

26 OECD ~5.81 (0.00) @2 1, 12) AR(2) =-0.47 (0.00) MA(12) =—0.89(0.02) 0.65 50.81 50.95
13, 1, 12) AR(13) = -0.62(0.00) MA(12) =—0.88 (0.05) 0.70 50.85 51.01

a,1,1) AR(1)=0.95 (0.02) MA(1) =—0.66 (0.00) 033 5226 52.4

a1, 3) AR(1) =0.47 (0.03) MA(3)=0.39 (0.01) 034 5225 52.39

o (3,1, 1) AR(3)=0.71 (0.00) MA(1)=0.31 (0.22)  0.38 5224 52.38

Upper middle income  —-4.11(0.00) G, 1,3) AR(3)=0.78 (0.32) MA(3)=—0.06 (0.22) 034 524 5254
4,1, 1) AR(4) =0.67 (0.01) MA(1)=0.57 (0.00) 036 5224 5238

4,1, 3) AR(4)=0.52 (0.01) MA(3)=0.33 (0.20) 029 5241 5256

11,1 AR(1) =0.98 (0.02) MA(1)=—0.68 (0.00) 040 52.96 53.1

Middle income ~8.15(0.00) (3,1, 1) AR(3) =0.80 (0.00) MA(1)=0.37 (0.00)  0.48 52.87 53.01
(3,1, 3) AR(3)=0.93 (0.04) MA(3)=—0.08 (0.22)  0.45 52.93 53.00

11,1 AR(1)=0.91 (0.02) MA(1)=-0.58 (0.24)  0.35 51.09 51.23

Lower middle income  —8.5(0.00) G,1,1) AR(3) =0.82 (0.00) MA(1)=0.29 (0.38) 045 50.96 51.10
(3,1, 3) AR(3)=0.61 (0.04) MA(3)=0.46 (0.02) 046 5094 51.08

a1,1) AR(1) =0.95 (0.00) MA(1)=-0.67 (0.01) 030 47.3 47.44

. ~ 21,1) AR(2)=0.36 (0.28) MA(1)=0.4 (0.01)  0.16 475 47.64

Low income 7:37 (0.00) (3,1,1) AR(3)=0.9 (0.38) MA(1)=0.18 (0.31) 016 47.5 47.64
4 1,1) AR(4)=0.35 (0.28) MA(1)=0.19 (0.21) 014 47.57 47.61

Note. Bold marks indicate significant results and the accepted ARIMA structures for which forecasting is made. Source: computed by the authors.
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TaBLE 4: Forecasted values of methane emission (in kt CO, equivalent) under the B] method.

OECD Upper middle Middle Lower middle Low

1981
1982
1983 319376.7
1984 310579.6
1985 310981.8
1986 1473936 1441004.78 315518.4
1987 1465419 1417409.14 321913
1988 1463133 4266117 1382263.046 329142.6
1989 1463101 4550070 1680835.125 336747.6
1990 1465166 4698743 1687975.219 344521.2
1991 1455061 4460547 1673579.499 352370.6
1992 1448460 4829691 1652224.65 360254.1
1993 1443127 2830813.3 4863760 1831934.421 368152.9
1994 1438973 2787721.237 5018868 1836056.927 376058.5
1995 1427974 2797124.06 4949627 1827204.142 383967.3
1996 1418946 2850067.461 4958414 1814158.494 391877.4
1997 1410631 2799034.691 5190341 1922253.931 399788.2
1998 1402980 2896911.307 5071963 1924558.345 407699.3
1999 1391478 2774651.862 5146852 1919045.169 415610.4
2000 1381085 2794509.994 5151927 1911005.8 423521.7
2001 1371093 2846196.11 5286403 1975953.725 431432.9
2002 1361474 2937763.268 5375874 1977162.742 439344.2
2003 1349690 3074577.474 5336641 1973661.674 447255.5
2004 1338529 3156682.078 5499459 1968638.58 455166.7
2005 1327594 3287526.848 5550803 2007590.204 463078
2006 1316868 3376330.859 5642415 2008139.246 470989.3
2007 1304925 3430265.209 5659390 2005850.47 478900.6
2008 1293332 3567469.328 5702324 2002644.676 486811.8
2009 1281866 3585418.719 5819492 2025933.573 494723.1
2010 1270519 3779665.03 5820120 2026084.981 502634.4
2011 1258486 3860095.861 5885045 2024526.609 510545.7
2012 1246650 3915037.114 5926743 2022415.735 518457
2013 1234886 3938039.461 6011491 2036267.867 526368.2
2014 1223188 3924805.514 6081267 2036179.702 534279.5
2015 1211105 3955385.988 6108225 2035061.397 542190.8
2016 1199133 3946932.689 6202402 2033610.21 550102.1
2017 1187201 3972147.914 6259494 2041776.707 558013.4
2018 1175306 4025288.658 6329982 2041544.199 565924.6
2019 1163195 4011742.447 6375639 2040691.033 573835.9
2020 1151146 4093701.903 6429933 2039637.307 581747.2
2021 1139119 4034473.204 6508923 2044378.219 589658.5
2022 1127114 4066394.126 6549142 2044058.745 597569.7
2023 1114986 4118728.489 6610752 2043365.326 605481
2024 1102894 4196641.262 6664634 2042551.069 613392.3
2025 1090815 4303574.03 6732839 2045228.071 621303.6
2026 1078747 4375417.828 6796062 2044856.2 629214.9
2027 1066611 4478521.992 6845041 2044259.028 637126.1
2028 1054494 4554662.573 6916382 2043589.051 645037.4
2029 1042385 4608438.88 6975386 2045022.552 652948.7
2030 1030282 4715621.726 7038846 2044619.112 660860
% change from 2012 to 2030 -17.35 20.44 18.76 1.09 27.12

turther indicates that the methane emission is sustainable as
it does not outweigh the agricultural output. But for the
ANN-based results, the significant mean differences are
observed for the OECD, upper middle-, and lower middle-
income groups which further justify the sustainability of
methane emission. The insignificant mean difference results
for the middle-income and low-income groups may reveal
unsustainable methane emission.

5. Discussion

As mentioned, we have attempted to make forecasting of
methane emissions and agricultural value added by BJ and
ANN methods and tested sustainability of such emissions
vis-a-vis agricultural output for the major economic groups
of the world for the time up to 2030. The results for methane
emissions are seen to be declining for the OECD group but
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TaBLE 5: Forecasted values of agriculture output in current USD under the BJ method.

OECD Upper middle Middle Lower middle Low

1981
1982
1983 28655746373
1984 77710044855.35 29759868468
1985 103315311309.63 474777328761 182501651690 31221206784
1986 124158617455.24 316887909136 492678373529 193724524521 33023207815
1987 131795851566.40 334580909413 517772413129 203354127983 35150085147
1988 97528609223.83 361108747377 538001902142 217447785160 37586783918
1989 68023008719.08 382302596062 564857171441 234100060898 40318946909
1990 139766033659.17 407106383042 597538283103 249778723353 43332882220
1991 182368403567.55 432417981365 626279435743 268185274811 46615532438
1992 217062773208.99 463657882375 660387025088 288155344067 50154445234
1993 172272259627.83 491318600145 699213155183 307530458795 53937745323
1994 235427769172.55 521401638240 734848183280 328572528916 57954107726
1995 334466976074.37 551825425022 774829664423 350570031761 62192732266
1996 334106517412.40 586227187857 818632846435 372203970453 66643319249
1997 316890720440.52 618227267450 859851450306 394856550400 71296046272
1998 346365067304.62 651852758691 904590389013 418092975119 76141546106
1999 383756726220.32 685706897185 952424648563 441107233457 81170885600
2000 399217028334.57 722230314612 998165573532 464743961966 86375545571
2001 410958400044.11 757142168169 1046757733111 488737465692 91747401615
2002 433001397999.27 793144696233 1097856894532 512595208232 97278705817
2003 456791256917.46 829300649879 1147260595639 536833329154 102962069301
2004 475742222179.18 867247727939 1198973605145 561289467882 108790445594
2005 493872649573.26 904113423550 1252717117643 585662645814 114757114761
2006 514276008566.72 941710977384 1305087421241 610268264947 120855668267
2007 535064791704.67 979411481982 1359328109431 635007110158 127079994554
2008 554785930372.17 1018313856727 1415213368572 659695259779 133424265273
2009 574326027095.09 1056490608353 1469986420799 684525449312 139882922163
2010 594367619206.43 1095158447334 1526274358835 709437050489 146450664536
2011 614494250582.09 1133895367753 1583894288807 734317672661 153122437337
2012 634385318873.25 1173438760262 1640613405931 759285092425 159893419766
2013 654236442407.45 1212495249261 1698559478743 784302261127 166759014418
2014 674198214948.72 1251881264912 1757584375498 809300499212 173714836936
2015 694178750394.64 1291313635198 1815879674392 834351777473 180756706132
2016 714107311641.00 1331287159814 1875168724927 859433456261 187880634578
2017 734027059550.69 1370933965196 1935331550347 884503566948 195082819625
2018 753971220850.90 1410801887684 1994903450537 909606089367 202359634838
2019 773919521963.40 1450700914796 2055280222764 934727188907 209707621832
2020 793856355585.46 1490963064218 2116364693922 959841219424 217123482486
2021 813791244649.35 1531005980352 2176970555359 984975056067 224604071515
2022 833731520238.19 1571197269233 2238228309050 1010120244795 232146389386
2023 853672709227.49 1611409429763 2300059251309 1035261113794 239747575567
2024 873611368051.09 1651865250565 2361502551863 1060414085898 247404902082
2025 893549597831.00 1692173962690 2423473841329 1085573995021 255115767372
2026 913489016083.73 1732582235055 2485909375009 1110731264449 262877690434
2027 933428635867.43 1773004512594 2548030944962 1135895929829 270688305235
2028 953367697400.09 1813590289668 2610580150446 1161064834276 278545355386
2029 973306664269.36 1854077354712 2673505362542 1186232125660 286446689058
2030 993245893361.05 1894631226103 2736176285121 1211403936555 294390254141
% change from 2012 to 2030 56.56 61.45 66.77 56.24 79.14

increasing for the remaining four groups. Referring to last
row of Table 4 of the Appendix, the OECD group is expected

to reduce the emission by 17.35 percent in 2030 in com-

parison to its value in 2012. The low-income group is ex-
pected to increase their emission levels by 27.12 percent,
upper middle-income group by 20.44 percent, and middle
income by 18.76 percent, and the lower middle-income
group will face lowest emission of mere one percent. The

predictions of OECDEO (2011) and USEIA (2016) are a little
bit higher (30 percent) than that of the present study [24, 40].

Coming to the prediction of agricultural output, it is
observed that all the groups have been showing increasing
trends with the middle-income group at top of the list and
the low-income group at the bottom with respect to the level
values. Referring to Table 5 of the Appendix (last row), it is
observed that the low-income group is expected to grow at
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FIGURE 4: Forecasted methane emission by the ANN method.
Source: sketched by the authors.
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FIGURE 5: Forecasted agriculture output by the ANN method.
Source: sketched by the authors.

the rate of 79 percent, middle group by 66.77 percent, upper
middle by 61.45 percent, and OECD and lower middle group
by 56.56 in 2030 with respect to 2012. All the results of
forecasting are derived under the condition that all the
associated indicators to methane emission will behave in the
same manner in all the future period of prediction.

The sustainability of the methane emissions has been
checked by the mean difference tests between the growth
rates of the forecasted values of agricultural output and
methane emissions. The results are positive and significant
under the B] method for all the groups which mean that the
forecasted values of agriculture output are significantly
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TaBLE 6: Forecasted values of methane emission (in kt CO,
equivalent) under the ANN method.

Upper . Lower
OECD e Middle W Low

1981

1982

1983 1446416.968 2545150 4026870 1329748 412875
1984 1430021.447 2571500 4014406 1821735 372838
1985 1441795.832 2589046 4007588 1422605 335843
1986 1461538.199 2614282 4287438 1402827 369830
1987 1446995.651 2667094 4355718 1588817 373211
1988 1440210.728 2747220 4306775 1548814 352533
1989  1456140.5 2792646 4336595 1720628 331009
1990 1491361.472 2834851 4486574 1731676 389103
1991 1476079.287 2909815 4764961 1680329 325820
1992 1459493.477 2807767 4749263 1589611 384693
1993 1445983.108 2824382 4665474 1817914 307768
1994 1439778.73 2813669 4462412 1842438 339423
1995 1465050.103 2786787 4854905 1657465 415235
1996 1438339.671 2836269 4677620 1853525 420416
1997 1439059.021 2848776 4829725 1845757 375307
1998 1432454.551 2794881 4647779 2209993 384231
1999 1424597.677 2891541 4514477 1737921 400593
2000 1388451.979 2785951 4454832 1811381 371647
2001 1367643.85 2818457 4747838 1840412 410118
2002 1366140.269 2847352 4811888 1746807 418403
2003 1351195.076 2944943 4818147 1791565 411186
2004 1343380.827 3189900 5088023 1778178 399193
2005 1330945.301 3232285 5329671 1839492 422481
2006 1297305.527 3329724 5531115 1988915 454203
2007 1302505.141 3435593 5536095 1893808 529197
2008 1337349.195 3516933 5376779 1928591 501270
2009 1311392359 3659730 5628762 1994891 598092
2010 1289029.284 3668891 5740748 2136971 549025
2011 1293807.527 3770809 5805986 2035394 551446
2012 1289158.193 3873620 5915579 2116978 554155
2013 1285810.736 3960180 5966076 2145107 542748
2014 1278758.189 3969299 5986994 2070499 545494
2015 1274290.358 4051914 6056242 2055028 530991
2016 1310605.759 4171557 5941071 2090889 541934
2017 1298863.228 4205484 6024229 2065535 518451
2018 1333476.5 4249025 6071401 1950702 516794
2019 1280933.927 4263922 5974434 2081918 517932
2020 1284397.121 4260086 6001380 2088591 515968
2021 1281190.139 4204223 6007384 2114227 515246
2022 1274927.663 4249874 6010389 2089217 511396
2023 1303026.248 4263496 6015199 2056467 514268
2024 1293290.107 4273741 5976227 2038449 519385
2025 1319416.3 4375672 6033272 2117189 526181
2026 1296397.731 4329229 6028447 2064709 522406
2027 1311785.835 4324037 6024229 2013127 540581
2028 1310999 4304192 6035686 2045801 519592
2029 1324572.071 4294304 6024831 2074644 481711
2030 1335745.338 4265628 6029050 2084001 514628

greater than that of methane emission. This further indicates
that the methane emission is sustainable as it does not
outweigh the agricultural output. But for the ANN-based
results, the significant mean differences are observed for the
OECD, upper middle-, and lower middle-income groups
which further justify the sustainability of methane emission.
Hence, it is recommended that, considering all the other
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TaBLE 7: Forecasted values of agriculture output in current USD under the ANN method.
OECD Upper middle Middle Lower middle Low

1981

1982

1983 60149562148 275816000000 501816000000 208478000000 27914162124
1984 58623413411 273072000000 505240000000 208728000000 26378101124
1985 58512134674 289552000000 511902000000 205128000000 23808297707
1986 58687934646 305404000000 519899000000 211354000000 28931592469
1987 64737081234 317137000000 530667000000 220927000000 31653039004
1988 75454827282 317232000000 381891000000 245092000000 32486810073
1989 78636358047 325654000000 563200000000 264922000000 34863281281
1990 97586011959 345238000000 560167000000 255171000000 33617076366
1991 148770000000 374179000000 608340000000 274660000000 35340660729
1992 195534000000 345860000000 564271000000 258976000000 39010629608
1993 180284000000 360263000000 522557000000 259832000000 35238321276
1994 245800000000 309740000000 526438000000 253594000000 35270050041
1995 340404000000 356072000000 587710000000 272472000000 29869388592
1996 348603000000 408722000000 650495000000 296111000000 33179564625
1997 411922000000 446542000000 722873000000 329157000000 35083613270
1998 428733000000 405384000000 687618000000 318122000000 36849209370
1999 432306000000 398112000000 647510000000 292989000000 35432666001
2000 427107000000 357321000000 625239000000 317995000000 33687746404
2001 423704000000 363411000000 627118000000 304337000000 37074676523
2002 415854000000 368313000000 636532000000 307672000000 33399273994
2003 414608000000 398710000000 688031000000 327384000000 34299616147
2004 443383000000 496823000000 809029000000 384573000000 37145185371
2005 508433000000 677856000000 915925000000 409008000000 40513455887
2006 478442000000 612859000000 1014990000000 490946000000 54159541508
2007 468780000000 588534000000 1265260000000 569372000000 60077425963
2008 548197000000 501164000000 1534920000000 605306000000 70586165066
2009 586888000000 739111000000 1587530000000 625364000000 85904323805
2010 513235000000 1078720000000 1745390000000 687756000000 90543840883
2011 591661000000 1329470000000 2174670000000 947791000000 98291166756
2012 636341000000 1410410000000 2285030000000 1119160000000 113311000000
2013 623553000000 1316770000000 1689750000000 1125900000000 113776000000
2014 661119000000 1037670000000 1862420000000 1011140000000 100679000000
2015 655130000000 1266020000000 2170550000000 1416910000000 100257000000
2016 605669000000 1733390000000 2271590000000 1073130000000 100800000000
2017 600843000000 2007280000000 1667260000000 1238350000000 100759000000
2018 592490000000 1728370000000 1779174000000 1440630000000 100237000000
2019 303534000000 2006880000000 1550970000000 1921060000000 102262000000
2020 337184000000 1896250000000 1923180000000 2335620000000 93900354646
2021 472782000000 1897960000000 1868950000000 2128200000000 86932691913
2022 490161000000 1896060000000 2212620000000 2850170000000 92594909122
2023 599283000000 1974230000000 2208870000000 3696460000000 87350971903
2024 374703000000 1770710000000 1788500000000 3307450000000 80836950006
2025 290853369722 2030700000000 1883096000000 4048230000000 85262451407
2026 217660000000 1983130000000 2314470000000 5614650000000 78306777946
2027 367982000000 1941340000000 1789040000000 4069740000000 94908000000
2028 145581000000 1984130000000 1849430000000 5847880000000 96808438305
2029 147648000000 1948150000000 1833780000000 2539530000000 72947073894
2030 235620957663 1962620000000 2053360000000 2888470000000 88625925490
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TABLE 8: Mean difference test results.
Mean difference under B] method Mean difference under ANN method
Groups Mean Mean Corr. t Mean Mean Corr. t
(agri) (methane) coefficient  (agri-methane) (agri) (methane) coefficient  (agri—-methane)
OECD 0.05539 —0.00813 -0.98 2.70 5.945 -0.1584 0.29 1.74
Upper 0.04064 0.01379 0.97 7.40 5.264 1.125 0.38 1.85
middle
Middle 0.03892 0.0119 0.99 17.06 4.085 0.904 0.175 1.46
Lower 0.0420 0.0079 0.78 24.12 7.578 1.345 ~0.003 2.06
middle
Low 0.0495 0.0154 0.99 28.94 3.075 0.838 0.28 1.08

Note. Bold marks indicate significant results at 5% level. Source: authors’ calculations.

factors of forecasting to be unchanged for the forecasting
period, sustained agricultural activities may be a better
solution which will be viable in economic as well as envi-
ronmental fronts.

6. Conclusion

In our journey to forecast methane emission and agri-
cultural output of world’s leading groups by two methods,
BJ and ANN, it is now to conclude the entire study. Both
the methods of forecasting show that, except the OECD
group, all the four remaining groups display increasing
methane emission, but agricultural output is of increasing
trends for all. Middle-income countries possess the top
slot in both the methods. So, increase in methane emission
is an alarming issue to the global leaders for the sake of
environmental sustainability. Furthermore, testing for
sustainability of such increasing emission vis-a-vis agri-
cultural output, it is observed that the said emission is
sustainable since the average growth rate of the latter is
greater than that of the former. Hence, the environmental
damage in true sense through methane emission may not
be alarming as it boosts up the agricultural growth rate for
all the groups. But the effect of methane emission upon
other sectors of the economies for examining sustain-
ability in a broader sense remains unverified. It may be
kept as the agenda for future research.
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