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Both compliance and discontinuity are the common characteristics of the real ground surface. -is paper proposes a stabilization
method for the underactuated bipedal locomotion on the discontinuous compliant ground. Unlike a totally new control method,
the method is actually a high-level control strategy developed based on an existing low-level controller meant for the continuous
compliant ground. As a result, although the ground environment is more complex, the calculation cost for the robot walking
control system is not increased. With the high-level control strategy, the robot is able to adjust its step-length and velocity
simultaneously to stride over the discontinuous areas on the compliant ground surface.-e effectiveness of the developed method
is validated with a numerical simulation and a physical experiment.

1. Introduction

Underactuated bipedal walking has attracted increasing
attention due to the low energy-consumption characteristic
[1–4]. In recent years, the research points mainly centralize
on mechanism design [5], gait planning [6], motion control
[7, 8], and human-machine interaction [9]. However, a real
ground surface is of compliance and discontinuity all the
time. Because of the difficulty in stabilization control of a
periodic system with multisource disturbance, the under-
actuated bipedal locomotion is still hard to act in real world.

In the early research studies, the ground is assumed to be
rigid, and the robot-ground impact is modelled as the rigid
body collisions of kinematic chains with an external surface
[10, 11]. With this assumption, a nominal gait should be
preplanned by considering the actual unevenness of the
terrain around the robot, and the bipedal locomotion can be
stabilized by finding a control strategy to force each joint
position always converging the gait. -is method has been
used prevalently to realize a stable bipedal locomotion on the
rigid uneven ground [12, 13]. However, with the heating up

of studying bipedal locomotion on a real pavement, the rigid
impact model was no longer capable to be used directly. For
example, in a man-made city, to improve the walking
comfort and safety, the roads are always paved with large
quantities of compliant materials, such as the wood boards
and semirigid polyvinyl chloride (PVC) mats which are used
commonly in the hospitals, parks, and private houses. As a
result, the rigid ground assumption is no longer valid, and
the robot-ground impact model is no longer independent of
the ground compliance as well [14–18]. In documents, the
effect of ground compliance on the bipedal locomotion and
the control strategies to cope with it have been studied
[19–26].

-e ground discontinuity is another obstruction to
deploy the underactuated bipedal locomotion in practice.
-e compliant pavement being crushed and developing into
potholes is common due to the inevitable fatigue and cor-
rosion. Because of the difficulty in figuring out the exact
conditions in the potholes standing in the way immediately,
it is reasonable for the robot to stride over them with ad-
justed step length. However, the dramatic change of step

Hindawi
Complexity
Volume 2020, Article ID 4764879, 16 pages
https://doi.org/10.1155/2020/4764879

mailto:xhxiao@whu.edu.cn
https://orcid.org/0000-0003-2596-4933
https://orcid.org/0000-0002-8212-2452
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4764879


length is bound to break the existing periodic stability of the
bipedal locomotion system. And the stabilization of an
underactuated bipedal locomotion with variable step length
is a big challenge. In the literature, Nguyen utilizes a two-
step periodic gait optimization technique to build a library of
gaits for realizing a variable step-length bipedal walking [27].
Hu et al. used a feedback control method to adjust the
robot’s step length and walking speed to realize a planar
bipedal walking on the uneven ground [28]. Yang et al.
applied a reinforcement learning method to supervise the
stride-frequency and find out the reasonable step-length
online for bipedal walking [29]. However, since these
methods are not designed for walking on the compliant
ground, they are also incapable of coping with the effects of
ground compliance and discontinuity simultaneously.

In this paper, a high-level control strategy is proposed to
stabilize an underactuated bipedal walking on the discon-
tinuous compliant ground. -e main contribution of this
work is the strategy being developed from the features of an
adaptive feedforward controller (AFC) which was designed
for the locomotion on a continuous compliant ground
mentioned in [23] but not from a fresh start. As a result,
although the ground environment is much more complex,
the calculation cost for the walking system is not increased.
-e high-level control strategy is composed of a step-length
control substrategy and a velocity control substrategy, both
of which are developed based on the hysteresis and three
monotonicities of the walking system controlled with AFC.

-is paper is organized as follows: Section 2 summarizes
some conclusions of the AFCmethod. Section 3 presents the
control strategy to stabilize underactuated walking on the
discontinuous compliant ground. Section 4 presents the
validation of the proposed control strategy, and the con-
clusions are provided in Section 5.

2. Background

2.1. Adaptive Feedforward Controller. -e AFC strategy,
inspired by the man’s gait characteristic that the walking
speed increases when the man’s body leans forward and
decreases when the body leans back, was proposed to sta-
bilize the underactuated bipedal walking on the compliant
ground in our preview work [23]. For brevity, only the
principle of AFC is described in this paper.

Firstly, the bipedal locomotion under the effect of ground
compliance is modelled as a parameterized single-input-
single-output (SISO) system, where the output uf and the
input xf describe the horizontal velocity and the relative
horizontal position of the robot’s CoM at the end of each
cycle, respectively. And then, a parameter, named as the
dissipation ratio and denoted with λ, is used to describe the
combined effect of ground compliance and robot’s gait on the
variation of uf. When the AFC is working, supposing ufd is the
desired value of uf, λ should be identified online based on the
variations of uf and xf during the last two walking cycles. And
a desired xfc for the current cycle is calculated to control uf
always converging to ufd and thereby keep the robot walking
continuous. -e schematic of AFC is shown in Figure 1, and
only the key equations of [23] are introduced as follows.

Based on the SISOmodel and identified λ, the theoretical
value of uf can be calculated and expressed as

ufcal � Urod λ, vi, ui, xi, xf, yi􏼐 􏼑, (1)

where u and v denote the horizontal and vertical velocities of
rod CoM, respectively; x and y are the horizontal and vertical
displacements of CoM toward the contact point at the initial
time of impact, respectively; and subscripts “i” and “f ”
denote the initial and final value, respectively.

-e calculation of λ is transformed to solving a tran-
scendental equation. -en, by applying the method of 1st-
order linearization, λ should be formulated as

λ � λ vi, ui, xi, xf, yi, uf􏼐 􏼑

�
uf − Urod 0, vi, ui, xi, xf, yi􏼐 􏼑

(z/zλ)Urod λ, vi, ui, xi, xf, yi􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌λ�0

.

(2)

-e controlled input xfc can be obtained as

xfc � χ λ, vf, uf, xi, yf, LS, ufd􏼐 􏼑

� xf +
ufd − Urod λ, vf, uf, xi, LS − xi, yf􏼐 􏼑

(z/zx)Urod λ, vf, uf, x, LS − xi, yf􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌x�xi

,
(3)

where LS denotes the step length and subscripts “c” and “d”
denote the controlled and desired value, respectively.

2.2. Model of the Ground Discontinuity. Based on the model
of the compliant ground established in [23], a discontinuous
compliant ground is constructed, as shown in Figure 2.
Although the pothole positioning the step-length planning
online is already available for a real humanoid robot [30], for
simplicity, the position of each pothole is described with the
number of steps relative to the origin in this paper. And the
width of the largest pothole is not up to 1.5 times longer than
the step length of nominal gait.

3. Stabilization Control for Walking on the
Discontinuous Compliant Ground

In this section, two features of AFC are studied, and the
high-level strategy for stabilizing the walking with variable
step length is developed.

yi vi

ui

xi xf
uf

xfc

ufc
ufd

LS

Robot
CoM

Control cycle

Step: (n – 1)-th n-th (n + 1)-th (n + 2)-th

Figure 1: Schematic of AFC.
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3.1. Essentials of the StabilizationMethod Development Based
on AFC

3.1.1. Hysteresis. Hysteresis is an inherent characteristic for
an underactuated bipedal locomotion system controlled
with the AFC. According to Section 2.1, the output of AFC is
a periodically stable gait meant for a ground with certain
compliance. -eoretically, with the gait, periodically stable
walking should be realized immediately. However, in
practice, the initial state of the robot of each cycle is de-
termined only by the end state of the last cycle. In other
words, before a periodically stable state being arrived, the
walking system is aperiodic. For example, during this stage,
xfc n always equals to xf n but defers from xf n−1. As a result,
the ideal effect of AFC is weakened, and the variation of uf n

lags behind the variation of ufd in a few cycles. Since the
underactuated bipedal locomotion system is an inherent
unstable system, this hysteresis would lead to system in-
stability if without any measure.

Fortunately, with the using of λ, the effect of hysteresis is
suppressed. And the walking system can be stabilized with
AFC even on a ground with variable compliance, as shown
in [22]. -us, to study the hysteresis effect suppression, the
relationship between the aperiodicity and the value of λ is
studied at first. For brevity, the derivation is detailed in
Appendix A, and only conclusions are given as follows.

If ufn ≡ ufd would be realized on a ground with in-
variant compliance, the following conditions must be
satisfied:

λn > λn−1, Δx> 0,

λn ≤ λn−1, Δx≤ 0,
􏼨 (4)

where Δx � xi n − xid n is the difference between the actual
and theoretical initial configurations of the robot of the n-th
cycle. According to the inequalities, if the robot’s CoM at the
initial state is leaning back compared with the previous cycle,
the total dissipated kinetic energy of the walking system
through this cycle is high than the previous cycle and the
walking speed tends to decline and vice versa.

With this conclusion, λ not only quantifies the influence
from ground compliance but also reflects the effect of the
difference between the actual and theoretical initial con-
figurations of the robot at each cycle. It suppresses the effect
of hysteresis of a controlled underactuated bipedal loco-
motion. -is feature is useful to stabilize the walking with
variable step length.

3.1.2. Monotonicity. According to the relationship between
the three equations introduced in Section 2.1, three
monotonicities of AFC are studied and obtained: (1) xi is
inversely proportional to uf cal; (2) when xi is constant, the
change of LS is directly proportional to uf cal; and (3) to meet
uf cal � ufd, the change of xi is directly proportional to the
change of LS. -e derivations of the three monotonicities are
detailed in Appendix B.

3.1.3. Deductions for Walking on the Compliance Ground
with AFC. When a biped robot, controlled with AFC, walks
on a ground with an identical compliance:

(1) λ is reciprocally correlated with Ls. For example, if
Ls n <Ls n−1, λn> λn−1 must be satisfied.

(2) xi is positively correlated with Ls. For example, if
Ls n <Ls n−1, xid n > xi n must be satisfied.

(3) uf is positively correlated with Ls. For example, if
Ls n <Ls n−1, ufc n < ufd must be satisfied.

In summary, the relationship between robot gait and
walking speed is shown in Table 1, where “↑” means up, and
“↓” means down.

3.2. Strategy for Walking with Variant Step Length. -e bi-
pedal locomotion falling when striding over the pothole shall
be attributed to the lack of stall control when only one leg of
the biped robot has stepped over the pothole and the other is
trying to be recovered, as shown in Table 1. -us, there are
two subobjectives of the control strategy for striding over the
potholes and walking stably on the compliant ground:

(1) In the cycle of only one leg stepping over the pothole,
ufc should keep the law, the higher the better.

(2) In the cycle after both the legs stepping over the
pothole, the decline of ufc must be suppressed.

To meet these objectives, by observing the man’s
movement when striding over the pothole, a regulatory step
with a step length smaller than the nominal should be ex-
ecuted before the robot striding over the pothole to increase
ufc sharply, and the desired velocity of the robot’s CoM after
the both legs have been step over the pothole will change
adaptively to suppress the dramatic decreasing of ufc. -e
control strategy is formulated with two substrategies: step-
length control strategy and desired velocity control strategy,
as shown in Figure 3.

Step: 1 2 Pi PjPi + 1 Pj + 1

(0, 0) Wg1 Wgi Wg j

Figure 2: Models of the rigid robot and the compliant ground structure.
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In the step-length control strategy, the designed step
length is LSd, ground discontinuity span is Wg, and the
whole walking process includes N cycles. -e robot crosses
the ground discontinuous area at step i, step i is the span
cycle, step i− 1 is the adjustment cycle, and step i+ 1 is the
recovery cycle. Here, the step length of (i− 1)-th cycle is the
difference between two times of the designed step length and
the span of ground discontinuity. -erefore, the step-length
control strategy is given as follows:

LSi � Wg,

LS1 � · · · � LSi−2 � LSi+1 � · · · � LSN � LSd,

LSi−1 � 2LSd − LSi.

⎧⎪⎪⎨

⎪⎪⎩
(5)

In the desired velocity control strategy, the designed
velocity of robot’s CoM is ufd, and the change of CoM
velocity before and after the adjustment cycle is given as
follows:

uf1 � · · · � ufd2 � · · · � ufdi � ufdi+3 · · · � ufdn,

ufdi+2 � ufdi+1 � ufi,

ufdi+3 �
ufi+2 + uf1􏼐 􏼑

2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

In order to prove the effectiveness of the control strategy,
theoretical evaluation is given in the Appendix.

4. Experiment and Discussion

4.1. Experimental Setup. A planar point-feet biped robot
prototype, UABOT, is shown in Figure 4. UABOT’s lateral
stabilization is ensured by a directional wheeled cage, and
thus, only 2D motion in the sagittal plane is considered. To
perform anthropomorphic gaits, UABOT had to have at
least a hip and two knees, giving a minimum of four links,
where the three joints are actuated. For this external sta-
bilization device not to limit the motion of the robot, in-
cluding falling down, the cage is only attached to UABOTvia
a slide-revolute joint system, where the revolute joint is
aligned with the axes of the hip, and the sliding joint is along
with the normal direction of the ground. In the upright
position, with both legs together and straight, the hip is 0.6m
above the ground. UABOT’s total mass is 6.5 kg and the
cage’s 5.8 kg.

To prevent the numerical experiment being diverse from
reality, the coefficient of stiffness and damping of real
compliant materials to be used in the physical experiment is
calculated at first, and the coefficients applied in the nu-
merical experiment should be obtained accordingly.

In the physical experiment, the compliant ground on
which UABOT walks is concrete covered with 4mm poplar
particle boards and semirigid PVC mats. According to the
elastic modular of the two materials, their equivalent co-
efficients of stiffness and damping are obtained experi-
mentally, as shown in Table 2.-en, the sets of coefficients of
stiffness and damping of the compliant ground to be used in
the numerical experiment are determined and shown in
Table 3 and Table 4, respectively.

4.2. Numerical Experiment

4.2.1. Effectiveness Evaluation of the Control Strategy for
Walking with Variable Step-Length. To evaluate the ef-
fectiveness of the control strategy developed for walking
with variable step-length, the variations of controlled and
uncontrolled uf when the robot is striding over a pothole
are collected. Subject to the geometric constraint of the
principle of inverse-kinematics proposed for the gait
generation online, the width of the pothole is not larger
than 1.5 times the step-length of nominal gait and thus
ranges from 0.19m to 0.27m. Meanwhile, to suppressing
of the effect of ground compliance on the experiment
results, a compliant ground with high stiffness and low
damping is set, where the coefficients of stiffness and
damping are 48 × 104 N/m and 0.01 × 104 N · s/m, re-
spectively. Furthermore, to examine the effectiveness of
the whole strategy and the two substrategies, the results
with both substrategies simultaneously, only with the
step-length control substrategy and velocity control
substrategy independently, are shown in Figure 5.

With the step-length control substrategy merely, when
Wg > 0.22m, after one leg steps over the pothole, uf de-
creases significantly which causes the falling of the walking
process. With the velocity control substrategy merely, only
when Wg < 0.27m, after one leg steps over the pothole, the
other leg is recovered easily and the walking can continue.
With the whole strategy, stable walking is realized all the
time.

From the above, the necessity of the control strategy is
proved which is also in accordance with the result derived
in the second half of 2 in Appendix. On the contrary, with
the control strategy, uf is boosted after one leg steps over
the pothole which is also in accordance with the proof
result of sufficiency discussed in the first half of 2 in
Appendix.

4.2.2. Adaptability Evaluation of the Control Strategy for
Walking with Variable Step-Length. To evaluate the
adaptability of the control strategy, the variation of uf when

Table 1: -e relationship among xi, xfc, LS, uf, and xic.

xi xfc LS uf xic
Gait 1 — ↑ — ↑ ↓
Gait 2 ↓ ↑ — ↑ ↓
Gait 3 — — ↑ — ↑
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the robot walks on the ground with nonidentical compliance
and strides over a series of potholes with different widths is
collected. -e model of discontinuous compliant ground is
built, where the coefficients of stiffness and damping of each
compliant unit are selected randomly from Tables 5 and 6,
respectively, and the width of each pothole, ranging from

0.19m to 0.25m, is also generated randomly, as shown in
Tables 5–9.

In Figure 6, the results are shown without and with the
controller.With the controller, uf is always higher than zero,
and then, a long-lived bipedal walking is realized even when
the ground compliance and the potholes width varying

Table 2: Parameters of 4mm poplar particle board and semirigid PVC mat.

Semi-PV Poplar particle board
Elastic modular 0.39GPa 2.75GPa
Equivalent coefficient of stiffness 9.7×104N/m 69×104N/m
Equivalent coefficient of damping 0.0115×104N·s/m 0.0035×104N·s/m

Table 3: Set of coefficients of stiffness of the compliant ground (×104N/m).

k1 k2 k3 k4 k5
3 6 12 24 48

Table 4: Set of coefficients of damping of the compliant ground (×104N·s/m).

c1 c2 c3 c4 c5
0.02 0.08 0.32 1.28 5.12

LSi–2 LSi–1 LSi LSi+1 LSi+2 LSi+3

ufdi–2
ufi–2

ufdi–1
ufi–1

ufdi+1
ufi+1

ufdi+2
ufi+2

ufdi+3
ufi+3

ufdi
ufi

Figure 3: -e variable step-length control strategy.

Rubber
ground

Particle
board

Concrete
ground

Figure 4: -e prototype UABOT.
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simultaneously. From the above, the adaptability of the
control strategy in copy with a composite disturbance of the
ground environment is demonstrated.

4.3. Physical Experiment. In Figure 7, UABOT is walking on
a compliant pavement which is constructed with particle
board and semi-PVC mats and striding over a virtual

pothole, where κ � 0.32. Among them, (a)∼(c) are the ro-
bot’s normal gait, (d)∼(f ) are the adjustment period, (g)∼(i)
are the span period, (j)∼(k) are the recovery period, and (l) is
the follow normal gait.

-e variations of ufc, vsc, and the configuration of the
robot’s CoM and step length in the three-time experiments
are depicted in Figures 8∼10, respectively. GC is representing

Table 5: Distribution of the coefficients of stiffness of the compliant
ground.

i ki (×105N/m) ji
1 0.7000 1
2 4.7000 2
3 0.3000 8
4 3.8000 11
5 4.0000 14
6 2.2870 19
7 6.0580 33
8 6.0300 41
9 3.0440 45
10 4.5430 51

Stop 37

Table 6: Distribution of the coefficients of damping of the com-
pliant ground.

i ci (×105N·s/m) ji
1 2.8140 1
2 6.6470 2
3 4.6830 5
4 4.3980 8
5 7.3380 9
6 0.9570 24
7 6.0580 11
8 6.0300 14
9 3.0440 17
10 4.5430 20

Stop 21

0.7
0.6
0.5
0.4
0.3

0

0.2
0.1

u f
c (

m
/s

)

1 2 3 4 5 6 7 8 9
Cycle

10

Wg2 = 0.20m Wg3 = 0.21m
Wg6 = 0.24m

Wg9 = 0.27m

Wg5 = 0.23m
Wg8 = 0.26m

Wg1 = 0.19m
Wg4 = 0.22m
Wg7 = 0.25m

(a)

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

u f
c (

m
/s

)

1 2 3 4 5 6 7 8 9
Cycle

10

Wg2 = 0.20m Wg3 = 0.21m
Wg6 = 0.24m

Wg9 = 0.27m

Wg5 = 0.23m
Wg8 = 0.26m

Wg1 = 0.19m
Wg4 = 0.22m
Wg7 = 0.25m

(b)

1 2 3 4 5 6 7 8 9

u f
c (

m
/s

)

0.7
0.65

0.6
0.55

0.5
0.45

0.4
0.35

Cycle
10

Wg2 = 0.20m Wg3 = 0.21m
Wg6 = 0.24m

Wg9 = 0.27m

Wg5 = 0.23m
Wg8 = 0.26m

Wg1 = 0.19m
Wg4 = 0.22m
Wg7 = 0.25m

(c)

Figure 5: Walking results with different controllers. (a) Step-length control substrategy. (b) Velocity control substrategy. (c) -e whole
strategy.
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for the type of ground material, GC is 1 or 2 representing
poplar particle board and semirigid, respectively. vsci and
ufci represent the corresponding value in the i-th
experiment.

With the controller, vsc is always higher than zero, and a
long-lived bipedal locomotion is realized. -e relationship
between the three variables, ufc, xfc, and LS, is in accordance
with the principle of stabilization control strategy developed

Table 7: Series of widths and locations of potholes I.

i Wgi (m) Pi i Wgi (m) Pi
1 0.21 5 5 0.21 24
2 0.20 9 6 0.20 28
3 0.26 14 7 0.26 33
4 0.24 19 8 0.24 37

Table 8: Distribution of the coefficients of damping of the compliant ground.

i ci (×105N·s/m) ji
1 5.0870 1
2 7.5620 7
3 1.6730 9
4 5.6750 11
5 1.8910 16
6 0.9570 24
7 4.8590 33
8 3.6020 41
9 3.6710 45
10 5.2960 51

Stop 37

Table 9: Series of widths and locations of potholes II.

i Wgi (m) Pi
1 0.21 5
2 0.21 10
3 0.25 14
4 0.23 18
5 0.25 22
6 0.22 27
7 0.21 31
8 0.20 35

5 10 15 20 25 30 35
Walking cycle

1.0

0.9

0.8

0.7

0.6

0.5

P c
r

Pcr1
PcrC

Pcr1
PcrC

(a)

5 10 15 20 25 30 35
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

Walking cycle

ufd
ufc

ufd
ufc

u f
 (m

/s
)

(b)

Figure 6: Walking on the discontinuous compliant ground. (a) -e relative position changes of the robot CoM. (b) -e horizontal velocity
changes of the robot CoM.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 7: Proceeding of UABOT striding over a pothole where κ � 0.32 and the compliance of ground is nonidentical (“↓↑”: direction of
foot movement, “−”: sole being in contact with the ground surface, “⟶⟵”: direction of hip movement, “NG”: nominal gait, SG: gait with
short step-length, LG: gait with long step-length, and RG: gait for back leg recovery). (a) Initial stage of NG. (b) SSP of NG. (c) Final state of
NG. (d) Initial state of SG. (e) SSP of SG. (f ) Final state of SG. (g) Initial state of LG. (h) SSP of LG. (i) Final state of LG. (j) SSP of RG.
(k) Final state of RG. (l) SSP of NG.
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Figure 8: Average speed of each cycle.
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Figure 9: Horizontal velocity of robot’s CoM at the end of each DSP.
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Figure 10: Continued.
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above. -e physical experiment results demonstrate the
availability and effectiveness of the control strategy for re-
alizing a bipedal locomotion with variable step length.

5. Conclusions

In this study, a variable step-length control strategy based on
an AFC is proposed to stabilize underactuated bipedal
walking on the discontinuous compliant ground.

(1) -e control strategy achieves a good adaptability to
the underactuated bipedal walking system diversity.
Since only the robot’s CoM state under the ground
effect is considered in the controlled input calcula-
tion, regardless of the specific ground compliance,
robot’s structure, and initial gait, the walking process

can be stabilized; meanwhile, a desired walking speed
can be obtained as well.

(2) -e control strategy is low cost and high error
tolerance. Since the controlled input is deduced
with a polynomial with definite number of degrees,
the algorithm is fast and stable, which is beneficial
to real-time control. Furthermore, since the joint
trajectories’ tracking error will be counted in the
total effect on the robot’s CM motion in the real
walking system, the control system has good error
tolerance.

(3) -e control strategy has broad application prospects.
Since the control strategy is essentially originated
from the human’s gait, it can be integrated into a
more advanced bionic control system for bipedal
robots to realize a human-like walking in more
complicated road environment.

Future work should primarily focus on two issues: (1)
how to achieve underactuated bipedal walking on uneven
terrains and (2) how to realize 3D bipedal walking.

Appendix

A. Relationship between the Aperiodicity and
the Value of λ

Set xi n and xid n which are the actual and ideal initial
configurations of the robot at the very beginning of the n-th
equivalent cycle, respectively. xi n and xid n must meet the
following conditions:

xin � Ls − xfn−1,

xidn � Ls − xfcn,
(A.1)

then,

xin � Δx + xidn. (A.2)

According to (2), by replacing xi n with Δx + xid n, λn is
formulated as

0 1 2 3 4 5 6 7 8 9
Walking cycle

0.3
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0.1
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0

0.3

0.25

0.2

0.15

0.1
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L S
 (m
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(m
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LSc
LSd
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(c)

Figure 10: UABOT’s configuration of each cycle in the physical experiment. (a) Variations of xf and Ls in the 1st experiment. (b) Variations
of xf and Ls in the 2nd experiment. (c) Variations of xf and Ls in the 3rd experiment.
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(0,(2Rfufd)/√(3yi))

Figure 11: Changes of Num and Den with β.
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λn �
ufd − ufcal λ λ0( 􏼁

zufcal/zλ
􏼌􏼌􏼌􏼌􏼌λ�λ0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌λ0�0

�
2β2(Δx) − 4Rfufd/

���
3yi

􏽰
β(Δx)

β2(Δx) − σ(Δx)

(A.3)

where

β(Δx) �
��
g

√
�����������������������������

− xidn + Δx( 􏼁
2

+ LS − xidn( 􏼁
2

+
Keiyi

g

􏽳

,

σ(Δx) � Keiyi 1 −
2y2

i + 2 xidn + Δx( 􏼁
2

4y2
i + xidn + Δx( 􏼁

2
⎛⎝ ⎞⎠,

Kei � u
2
in + v

2
in Rf �

��������
x2

fdn + y2
i

􏽱
.

(A.4)

For β(Δx) in (A.4), if β(Δx) ∈ R, the following
inequation will be satisfied:

zβ(Δx)

zΔx
≤ 0. (A.5)

-en, with the consideration that the robot’s CoM is
behind the swing foot at the horizontal direction at the very
beginning of a DSP, the following inequation will be
satisfied:

Δx + xidn > 0, (A.6)

and then, by differentiating σ with respect to Δx,
zσ(Δx)

zΔx
�

12Keiy
3
i xidn + Δx( 􏼁

x2
idn + 4y2

i + 2xΔx + Δx2􏼐 􏼑
2, (A.7)

the effective domain of σ and the trend of it over Δx can be
obtained:

σ(Δx)> 0,

zσ(Δx)

zΔx
> 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(A.8)

Set

Num(β) �
2β2(Δx) − 4Rfufd

���
3yi

􏽰
β(Δx)

,

Den(β) � β2(Δx) − σ(Δx).

(A.9)

If β< β0, where

β0 �
Rfufd

���
3yi

􏽰
1 + 4

�
3

√
Keiy

(5/2)/g x2
idn

+ 4y2
i + 2xΔx + Δx2􏼐 􏼑

2
􏼒 􏼓􏼒 􏼓

<
2Rfufd

���
3yi

􏽰 ,

(A.10)

the following inequation is satisfied:

zNum(β)

zβ
<

zDen(β)

zβ
. (A.11)

-e trending of λ(β(Δx)) over Δx can be described
qualitatively by using a diagram, where only the relative
magnitudes of Num(β) and Den(β) are considered, as
shown in Figure 11. With the consideration of the sign of
λn−1, the effective domain of β(Δx) consists of two parts.
When λn−1 > 0, the effective domain of β(Δx) is described
as

β ∈ A,
��
σ

√
>
2Rfufd

���
3yi

􏽰 ,

β ∈ B,
��
σ

√
<
2Rfufd

���
3yi

􏽰 .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(A.12)

When λn−1 ≤ 0, the effective domain of β(Δx) is de-
scribed as

β ∈ A∩B, (A.13)

where

A � β
2Rfufd

���
3yi

􏽰 < β< +∞
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼠 􏼡,

B � (β |
��
σ

√
< β< +∞).

(A.14)

According to the above, with the increase of Δx, β(Δx) is
decreased and λn−1 is increased. In other words, if uf n ≡ ufd

is to be realized on a certain compliant ground with in-
variant compliance, the following conditions must be
satisfied:

λn > λn−1, Δx> 0,

λn ≤ λn−1, Δx≤ 0.
􏼨 (A.15)

In summary, the AFC can effectively suppress the effect
of hysteresis of online identification and the influence of
high frequency variation of ground compliance.

B. Monotonicity of AFC

Let xi, yi, and LS satisfy the following relationship:

xi � εyi, ε≥ 0, (B.1)

LS � ηxi � ηεyi, η≥ 1, (B.2)

where ε and η are two variables.-en, the calculated walking
speed ufcal can be rewritten as

ufcal �
Vτyi���������������

y2
i + ηεyi − εyi( 􏼁

2
􏽱 , (B.3)

where
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V
τ

�

������������������

3
2

·
Kef(ε) + Wc(ε, η)

m

􏽳

,

Kef �
1
2

m u(ε)2 + v(ε)2 + ρ(ε)2w(ε)2􏼐 􏼑,

Wc �
mgηεyi(1 − λ) ηεyi − εyi( 􏼁

2yi

.

(B.4)

-en,
zufcal

zη
� −ζε2(−1 + η) mgyi 1 + ε2􏼐 􏼑(−1 + λ) + 2Kef􏽨 􏽩,

(B.5)

zufcal

zε
� ζ −2ε(−1 + η)

2
Kef + yi −εmgη(−2 + η)(−1 + λ)(􏼢

+ 1 + ε2(1 + η)
2

􏼐 􏼑
zKef

zε
􏼡􏼣,

(B.6)

where

ζ �
1

2 1 + ε2(1 − η)2􏽨 􏽩

·

�������������������������������������������
3

m 1 + ε2(1 − η)2􏽨 􏽩 −ε2mgη(−2 + η)(−1 + λ) + 2Kef􏽨 􏽩

􏽳

.

(B.7)

By expending Kef and further differentiating it with
respect to ε, Kef and (zKef/zε) are obtained:

Kef �
m

8 4 + ε2( )
4 ϕ1(λ)ε8 + · · · + ϕ8(λ)ε + ϕ9(λ)􏽨 􏽩,

zKef

zε
� −

m

4 4 + ε2( )
5 φ1(λ)ε8 + · · · + φ8(λ)ε + φ9(λ)􏽨 􏽩.

(B.8)

-en,

Kef ≈

m 4u2
0(2 − λ)2 + v20(−4 + λ)2􏽨 􏽩

32
, ε≤ 1,

m u2
0(−1 + λ)2 + v20(1 − 2λ)2􏽨 􏽩

2
, ε> 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(B.9)

zKef

zε
≈

3mu0v0(−12 + λ)λ2

128
, ε≤ 1,

0, ε> 1.

⎧⎪⎪⎨

⎪⎪⎩
(B.10)

By taking (B.15) and (B.16) into (B.7) and (B.8), the
following results are obtained:

zufcal

zη
�

−ζε2(−1 + η) mgy(−1 + λ) + 2Kef􏽨 􏽩, ε≤ 1,

−ζmgy(−1 + λ)(−1 + η), ε> 1,

⎧⎪⎨

⎪⎩
(B.11)

zufcal

zε
�

3
128

ζmu0v0yi(−12 + λ)λ2, ε≤ 1,

ζε −2(−1 + η)2Kef − gyim(−2 + η)η(−1 + λ)􏽨 􏽩, ε> 1.

⎧⎪⎪⎨

⎪⎪⎩
(B.12)

With the consideration of the definition of λ, the domain
of it is

|λ|≤ 1. (B.13)

-us, if ε> 1, the following inequality must be satisfied:

zufcal

zη
> 0. (B.14)

While if ε≤ 1, the following inequality must be satisfied:
zufcal

zε
≤ 0. (B.15)

On the contrary, if η< 2, the following inequality must be
satisfied:

ζε −2(−1 + η)
2
Kef − gyim(−2 + η)η(−1 + λ)􏽨 􏽩< 0.

(B.16)

Furthermore, if (B.1) is solvable in real number field, the
following inequality must be satisfied:

Kef ≥ −Wc. (B.17)

-us, if η> 1,

2Kef ≥mgε2ηyi(η − 1)(−1 + λ)>mgηyi(−2 + η)(−1 + λ)

>mgηyi(−1 + λ),

(B.18)

is satisfied. -en, if ε≤ 1, the following inequality must be
satisfied:

12 Complexity



zufcal

zη
> 0. (B.19)

While, if ε> 1, the following inequality must be satisfied:
zufcal

zε
≤ 0. (B.20)

From the above discussion, two conclusions are obtained
at first: (1) xfc is positively correlated with uf cal but xic

reciprocally correlated with uf cal; (2) Ls is positively cor-
related with uf cal.

Furthermore, with the AFC, the relationship between the
three variables, LSd, xic, and xic, can be described as

Δufcal �
zufcal

zLSd

ΔLSd +
zufcal

zxic

Δxic

�
zufcal

zLSd

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ΔLSd −

zufcal

zxic

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Δxic.

(B.21)

-erefore, when uf cal ≡ ufd, the following equations

zufcal

zLSd

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ΔLSd −

zufcal

zxic

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Δxic ≡ 0,

ΔLSd �
zufcal/zxic

zufcal/zLSd

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Δxic,

(B.22)

should be satisfied. In other words, to meet uf cal ≡ ufd, Δxic

must be always positively correlated with ΔLSd.

C. Theoretical Evaluation of theControl Strategy

1. Effectiveness Evaluation of Step-Length Control Strategy.
Suppose the robot will meet a pothole in the n-th step.
According to step-length control strategy and the model of
ground discontinuity, the sequence of robot’s step length
around the pothole can be given as

LSn � (1 + κ)LSd � (1 + κ)η0xin−2,

LSn−1 � (1 − κ)LSd � (1 − κ)η0xin−2 � ηn−1xin−2,
(C.1)

where κ ∈ (0, 1).
According to subobjective I, uf n should be increased

sharply compared with the nominal value of preplanned gait,
uf1. -us, to evaluate the effectiveness of the step-length
control strategy on the increasing of uf, the walking system
is assumed to have been arrived a periodically stable state
before the (n− 2)-th cycle. Some parameters of this stable
state can be defined as

ufn−2 � uf1 � ufd,

LSd � LSn−2 � η0xin−2,

xin−2 � ε0yi.

(C.2)

It must be mentioned that if the bipedal locomotion with
invariant step length is periodically stable, the following
equation must be satisfied: ui n−2 � uf n−2 � ufd. For sim-
plicity, (B.10)–(B.12) are expressed as

f
ufcal
η �

zufcal

zη
,

f
ufcal
ε �

zufcal

zε
,

f
Kef

ε �
zKef

zε
.

(C.3)

In the (n− 1)-th walking cycle, if only the step length
varying is considered, the theoretical value of uf n−1 should
be calculated:

ufcal n−1 � ufd + f
ufcal
η η0( 􏼁(1 − κ − 1), η0 < ufd. (C.4)

-en, to realize uf cal n−1 � ufd, the ideal gait for the
(n− 1)-th cycle will be obtained:

εn−1 � ε0 + f
ufcal
ε ε0( 􏼁 ufd − ufcal n−1􏼐 􏼑

� ε0 − f
ufcal
ε ε0( 􏼁f

ufcal
η η0( 􏼁κη0 < ε0.

(C.5)

-erefore, the total increment of the robot’s CoM ki-
nematic energy through the SSP of the (n− 1)-th can be
expressed as

Wcn−1 �
1
2

mgyi 1 − λn−1( 􏼁 (1 − κ)η0ε0 − εn−1( 􏼁
2

− ε20􏽨 􏽩.

(C.6)

-e actual value of uf n−1 should be calculated theo-
retically as

ufn−1 �

������������������������

3
2m

Kefn−2 + Wcn−1􏼐 􏼑

1 + (1 − κ)η0ε0 − ε0( 􏼁
2

􏽨 􏽩

􏽶
􏽴

�

�������������

u2
fd − Δ u2

fn−1􏼒 􏼓

􏽲

,

(C.7)

where

Δ u
2
fn−1􏼐 􏼑 �

3ΔWc n−1/2m􏼐 􏼑

1 + (1 − κ)η0ε0 − ε0( 􏼁
2

􏽨 􏽩
, (C.8)

ΔWc n−1 �
1
2

mgyi 1 − λn−2( 􏼁 ε2n−1 − ε20􏼐 􏼑, (C.9)

and the kinematic energy of the robot’s CoM at the end the
DSP of the (n− 1)-th walking cycle is calculated as

Kefn−1 � Kefn−2 + f
Kef

ε ε0( 􏼁 εn−1 − ε0( 􏼁

� Kefn−2 − f
Kef

ε ε0( 􏼁f
ufcal
ε ε0( 􏼁f

ufcal
η η0( 􏼁κη0 >Kefn−2.

(C.10)

In the walking n-th cycle, if only the step length varying
is considered, the theoretical value of ufn should be
calculated:

ufcal n � ufd + f
ufcal
η η0( 􏼁(1 + κ − 1)η0 > ufd. (C.11)

-en, to realize ufcal n � ufd, the ideal gait for the nth
cycle will be obtained:
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εn � ε0 + f
ufcal
ε ε0( 􏼁 ufd − ufcal n􏼐 􏼑

� ε0 + f
ufcal
ε ε0( 􏼁f

ufcal
η η0( 􏼁κη0 > ε0.

(C.12)

-erefore, the total increment of the robot’s CoM ki-
nematic energy through the SSP of the n-th can be expressed
as

Wcn �
1
2

mgyi 1 − λn( 􏼁 (1 + κ)η0ε0 − εn( 􏼁
2

− ε2n−1􏽨 􏽩.

(C.13)

-e actual value of ufn should be calculated theoretically
as

ufn �

�����������������������

3
2m

Kef n−1 + Wc n􏼐 􏼑

1 + (1 + κ)η0ε0 − εn( 􏼁
2

􏽨 􏽩

􏽶
􏽴

�

������������

u2
fd + Δ u2

fn􏼒 􏼓

􏽲

,

(C.14)

where

Δ u
2
fn􏼐 􏼑 �

3
2m

ΔKefn−1 + ΔWcn􏼐 􏼑

1 + (1 + κ)η0ε0 − εn( 􏼁
2

􏽨 􏽩
, (C.15)

ΔKefn−1 � f
Kef

ε ε0( 􏼁f
ufcal
ε ε0( 􏼁f

ufcal
η η0( 􏼁κη0, (C.16)

ΔWcn �
1
2

mgyi 1 − λn( 􏼁 (1 + κ)η0ε0 − εc n( 􏼁
2

− ε2n−1􏼐

− η0ε0 − ε0( 􏼁
2

+ ε20􏼑.

(C.17)

On the contrary, if the robot is striding over the pothole
without the step-length control strategy, the gait of the
(N− 1)-th cycle must be identical to the (n− 2)-th cycle.
-us, as same as (C.4)∼(C.14), in the n-th cycle, the actual
value of uf n should be calculated theoretically:

Wcn
′ �

1
2

mgyi 1 − λn
′( 􏼁 (1 + κ)η0ε0 − εn

′( 􏼁
2

− ε20􏽨 􏽩, (C.18)

ufn
′ �

�����������������������

3
2m

Kefn−2 + Wcn
′􏼐 􏼑

1 + (1 + κ)η0ε0 − εn
′( 􏼁

2
􏽨 􏽩

􏽶
􏽴

�

������������

u2
fd + Δ u′2fn􏼒 􏼓

􏽲

,

(C.19)

where

Δ u′2fn􏼐 􏼑 �
3
2m

ΔKefn + ΔWcn
′􏼐 􏼑

1 + (1 + κ)η0ε0 − εn
′( 􏼁

2
􏽨 􏽩

,

ΔWcn
′ �

1
2

mgyi 1 − λn
′( 􏼁 (1 + κ)η0ε0 − εn

′( 􏼁
2

− ε20􏼐

− η0ε0 − ε0( 􏼁
2

+ ε20􏼑.

(C.20)

According to (C.10) and (C.18), if λn � λn
′ ,

εn−1 < ε0 (C.21)

must be satisfied. -us,

ufn > ufn
′ (C.22)

is satisfied. Furthermore, according to the conclusion of
3.1.1, in the (n− 1)-th cycle, εn−1 < ε0; thus,

λn < λn
′ (C.23)

must be satisfied. -us,

ufn λn( 􏼁> ufn
′ λn
′( 􏼁 (C.24)

is satisfied. Since ufn−1 < ufd must be satisfied, to realize
ufcal � ufd,

εn < εn
′ (C.25)

must be satisfied. -us,

ufn λn, εn( 􏼁> ufn λn
′ , εn
′( 􏼁 (C.26)

must be satisfied. According to the aforementioned, with the
step-length control strategy, uf n is increased sharply, and
subobjective I is fulfilled.

2. Effectiveness Evaluation of Desired Velocity Control
Strategy. -e sufficiency of the desired velocity control
strategy should be evaluated at first. In the (n+ 1)-th cycle,
LS n+1 � LS. Set uf n(λn, εn) to be the initial velocity of the
robot’s CoM at the beginning of the (n + 1)th equivalent
cycle. In consideration of the algorithm of AFC, if
xic n+1 � ε0yi, ufcal � uf n(λn, εn) must be satisfied. Since
without the desired velocity control strategy, the control
objective should be ufd n+1 � uf1, and the ideal gait of the
(n+ 1)-th cycle should be calculated as

εn+1′ � ε0 + f
ufcal
ε ε0( 􏼁 ufd − ufn λn, εn( 􏼁􏽨 􏽩> ε0. (C.27)

-e increment of the kinematic energy through the SSP
of the (n+ 1)-th cycle should be calculated as

Wcn+1′ �
1
2

mgyi 1 − λn+1( 􏼁 η0ε0 − εn+1( 􏼁
2

− ε2n􏽨 􏽩. (C.28)

-en, the actual value of uf in the (n+ 1)-th cycle should
be calculated as

ufn+1′ �

�������������������

3
2m

Kef n + Wcn+1′􏼐 􏼑

1 + η0ε0 − εn+1( 􏼁
2

􏽨 􏽩

􏽶
􏽴

�

��������������

u2
fd − Δ u2

f n+2􏼒 􏼓
′

􏽲

,

(C.29)

where Kef n is the actual kinematic energy of the robot’s
CoM at the end of the DSP of the (n+ 1)-th walking cycle
and can be expressed as
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Kefn � Kefn−2 + f
Kef

ε ε0( 􏼁 εn − ε0( 􏼁

� Kefn−2 + f
Kef

ε ε0( 􏼁f
ufcal
ε ε0( 􏼁f

ufcal
η η0( 􏼁κη0 <Kef n−2,

(C.30)

Δ u
2
f n+1􏼐 􏼑′ �

3
2m

ΔKef n + Δ′Wcn+1􏼐 􏼑

1 + η0ε0 − ε0 n+1( 􏼁
2

􏽨 􏽩
, (C.31)

ΔWcn+1′ �
1
2

mgyi 1 − λn+1( 􏼁 η0ε0 − ε0( 􏼁
2

− ε20􏼐

− η0ε0 − εn+1′( 􏼁
2

+ ε2n􏼑. (C.32)

On the contrary, with the desired velocity control
strategy, the actual initial velocity is identical to the desired
final state, subject to λ � λn, and the ideal gait of the (n+ 1)-
th cycle must be obtained as

εn+1 � ε0. (C.33)

-e increment of the kinematic energy through the SSP
of the (n+ 1)-th cycle should be calculated as

Wc n+1 �
1
2

mgyi 1 − λn+1( 􏼁 η0ε0 − ε0( 􏼁
2

− ε2n􏽨 􏽩. (C.34)

-en, the actual value of uf in the (n+ 1)-th cycle should
be calculated as

ufn+1 �

������������������

3
2m

Kefn + Wc n+1􏼐 􏼑

1 + η0ε0 − ε0( 􏼁
2

􏽨 􏽩

􏽶
􏽴

,

�

�������������

u2
fn − Δ u2

f n+1􏼒 􏼓

􏽲

,

(C.35)

where

Δ u
2
f n+1􏼐 􏼑 �

3
2m

ΔKefn + ΔWc n+1􏼐 􏼑

1 + η0ε0 − ε0( 􏼁
2

􏽨 􏽩
, (C.36)

ΔKefn � f
Kef

ε ε0( 􏼁f
ufcal
ε ε0( 􏼁f

ufcal
η η0( 􏼁κη0, (C.37)

ΔWc n+1 �
1
2

mgyi 1 − λn+1( 􏼁 ε2n − ε20􏼐 􏼑. (C.38)

With the comparison between (C.27) and (C.32), the
following inequation should be obtained:

ufn+1 > ufn+1′ . (C.39)

-e sufficiency of the desired velocity control strategy
should be evaluated secondly. According to (C.12) and
(C.33),

ufn+1 ≈
�������������������
u2

fd + ΔWc n − ΔWc n+1

􏽱
, (C.40)

should be obtained. Suppose the ground compliance is in-
variant. When κ⟶ 0,

lim
κ⟶0+

ufn+1 � ufd, (C.41)

should be obtained. While κ⟶ 1 (suppose the size of the
pothole is not larger than twice of the nominal step length), it
should be obtained as

lim
κ⟶1−

ufn+1 �
�������
u2

fd + Δ
􏽱

, (C.42)

where without considering the varying of λ, Δ should be
described as

Δ ≈
1
2

mgyi 1 − λn+2( 􏼁 (1 + κ)η0ε0 − εn􏼂 􏼃
2

− ε2n−1􏽨

− η0ε0 − ε0( 􏼁
2

+ ε20􏽩.

(C.43)

-e derivative of Δ with respect to κ should be obtained
as

zΔ
zκ

� mgyi 1 − λn+2( 􏼁 (1 + κ)η0ε0 − εn􏼂 􏼃η0ε0. (C.44)

If and only if η0 ≤ (εn/(1 + κ)ε0), (zΔ/zκ)≤ 0 will be
satisfied. -us, when κ⟶ 1− ,

lim
κ⟶1−
Δ ≈

1
2

mgyi 1 − λn+2( 􏼁
5
4
ε2n + ε0εn − ε2n−1􏼒 􏼓, (C.45)

will be satisfied. -en, since

εn > ε0 > εn−1 and Δ> 0, (C.46)

must be satisfied. In consideration of (C.36),

ufn+1 ≥ ufd � uf1, (C.47)

must be satisfied.
From the above, although the proof is not strict, it still

can be concluded that, with the desired velocity control
strategy, the robot’s CoM horizontal velocity will be not
lower than the norminal value significantly.
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