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+is paper is concerned with the optimal output feedback control problem for networked control systems (NCSs) withMarkovian
packet losses. In this paper, the packet losses occur both between the sensor and controller and between the controller and
actuator. Moreover, the packet loss channels are described with two-state Markov chains. Since the precise state information
cannot be obtained, thus an optimal recursive estimator is designed. Furthermore, by adopting the dynamic programming
approach, we derive the optimal output feedback control, which is based on the solution to a given modified Riccati equation.+e
obtained results can be seen as an important implementation of the control theory for NCSs with unreliable
communication channels.

1. Introduction

As it is well known, NCSs are spatially distributed systems in
which the communication between sensors, actuators, and
controllers occurs through a shared communication net-
work (see, for e.g., [1, 2] and references therein). NCSs
connect cyberspace to physical space and can perform many
tasks over long distance, which have the practical application
value. And NCSs have the advantages of low cost, light
weight, and simple structure, which can improve the reli-
ability of the system, so they are widely used in various fields,
such as remote surgery [3], unmanned aerial vehicles [4],
and artificial intelligence [5]. It is worth noting that the study
of network control has become an important direction of
control science in the recent years (see, for e.g., [6–9]).

In communication networks, the impact of network
communication bandwidth and limited load capacity, net-
work congestion, and network connection interruption will
result in data losses, retransmission, and communication
links blocked or cut off (see, for e.g., [10,11] and references
therein). Especially, data packet losses may occur in NCSs
from sensors to controllers and from controllers to actua-
tors. In addition, the communication between the sensor

nodes and the remote state estimator is implemented via a
shared network, where only one sensor node is permitted to
transmit data at each time instant for the purpose of pre-
venting data collisions [12]. In order to evaluate the esti-
mation accuracy, various state estimation performance
requirements have been introduced to quantify the engi-
neering specifications such as H∞ constraint, minimum
mean squared error (MMSE) index, ellipsoidal bound
constraint, linear quadratic performance index, and ultimate
boundedness requirement [13]. For example, Zou et al. [14]
designed the moving horizon estimator for linear systems
with unknown inputs and quantization effects.

Although the closed-loop control system is robust to the
change of structure and parameters in the system, the packet
losses will inevitably lead to the performance degradation,
which will seriously lead to the instability of the system.
+us, studying packet losses is a key problem to analyze and
design the NCSs, which is themotivation of this paper. Many
researchers showed their interest in the networked control
for NCSs with unreliable packet loss channels, and great
contributions have been made in this research field (see, for
e.g., [15–18]). In [15], a switched system approach is adopted
to deal with the problem of fault detection (FD) for

Hindawi
Complexity
Volume 2020, Article ID 4804320, 11 pages
https://doi.org/10.1155/2020/4804320

mailto:jizhijian@pku.org.cn
https://orcid.org/0000-0002-9666-2572
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4804320


uncertain delta operator NCSs with packet losses and time
varying delays. And two independent Bernoulli distributed
white sequences are introduced to account for packet losses.
Qi and Zhang [18] concerned the optimal measurement
feedback control and stabilization for NCSs with packet
losses. However, they only considered the problem of packet
losses in one channel, and the packet losses’ process is the
Bernoulli process.

In general, the process of data packet losses in com-
munication networks is usually modeled as an independent
identical distribution (i.i.d) Bernoulli process or a Markov
chain. Obviously, the latter case of Markovian packet loss is
more general and realistic. For example, Wang et al. [19]
considered the case of data packet reception between the
controller and the actuator network transmission at each
time instant, which is described with Markovian packet
losses. Zhou and Zhang [20] investigated the H-infinity fault
detection for time-delay delta operator systems with random
two-channel packet losses and limited communication. +e
random two-channel packet losses are described by the
Markov chain process. Moreover, the stability of NCSs was
studied for the NCSs with the simultaneous input delay and
Markovian packet losses in [21]. However, the problem of
two-channel packet losses is not considered. Overall, the
next time instant of network transmission may depend on
the current time instant, and theMarkov process can be used
to describe the dependency of events. Hence, it is more
suitable to model the NCSs with this kind of packet losses
than the i.i.d stochastic processes. In order to study the NCSs
with packet losses, it is necessary to combine NCSs modeled
by MJSs with optimal control.

Furthermore, due to the existence of unreliable packet
loss channels, the precise state information may not be
available to the controller. +erefore, an observer or esti-
mator is needed to be the feedback of regulating the system
performance, i.e., an output feedback controller should be
designed. It is noted that, in the past several decades, many
literatures have been published on the output feedback
control, especially for NCSs (see, for e.g., [22–29]). For
example, in order to deal with this problem, Wu and Chen
[22] designed the networked control systems with packet
losses. While Tan et al. [25] investigated the stabilization of
networked control systems with network-induced delay and
packet losses. +en, Shah and Mehta [26] proposed a design
method of the discrete-time sliding mode controller based
on +iran’s delay approximation, which considered the real
time situation of networked medium and packet losses
situation. Shah et al. [29] presented a discrete-time higher-
order sliding mode controller for NCSs using event-trig-
gered approach and time delay compensation to overcome
the network abnormalities such as communication delay,
congestion, and network utilization that degrade the per-
formance of the NCSs.

Referring to the previous work [30], we are devoted to
deal with the optimal control of NCSs with two kinds of
Markovian packet loss channels in this paper. +e model of
NCS under consideration is shown in Figure 1. θk depicts
whether the state signal is lost when data is transmitted from
the sensor to the controller. βk indicates the packet loss when

data is transmitted from the controller to actuator. Fur-
thermore, Song et al. [30] addressed the modeling and
guaranteed cost control for a class of NCSs with packet
dropouts. +e packet dropout processes in the forward
channel and feedback channel are modeled as two Markov
chains, and the overall closed-loop NCS is modeled as a
Markovian switched system with twomodes.+e differences
between this paper and [30] are as follows. Firstly, the system
model of this paper is different from the system model
considered by [30]. +ere is additive noise in the system
considered in this paper. However, the system proposed by
[30] has no additive noise. Moreover, Song et al. [30] as-
sumed v(k) � Kw(k) as the optimal controller for the de-
sign. In contrast, we did not assume the form of the
controller when we considered the optimal control problem.
Finally, Song et al. [30] studied the stochastic stability
problem and gave a sufficient condition of stochastic sta-
bility with upper bound of the quadratic cost function. And
in this paper, we investigated the optimal control problem
without considering the stability.

For the considered NCSs model, we will solve a linear
quadratic (LQ) optimal control problem. While previous
works mainly focused on the i.i.d Bernoulli packet loss case
and the single packet loss channel case. In addition, it should
be pointed out that an estimator should be designed in the
existence of θk , which may cause the separation principle
fail. As pointed out in [31], the controller was designed with
linear minimum mean square error (LMMSE), but it was
shown that the LMMSE was not ideal and the popular
separation principle was invalid. Finally, it is noted the
Kalman filter [32–34] cannot be directly adopted in de-
signing the optimal estimator.

In this paper, by adopting the optimality principle of
dynamic programming approach, we solve the basic optimal
LQ control problem for NCSs with Markovian packet losses,
and also the optimal estimator is proposed in this paper. +e
main contributions can be summarized as follows. First of
all, some preliminary results are presented and an optimal
estimator (conditional expectation) is given for the NCSs
with Markovian packet losses. Accordingly, the error co-
variance matrices with the optimal estimator can also be
calculated recursively. Consequently, the value function is
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Figure 1: NCS model with two kinds of Markovian packet losses.
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defined. +en, an induction method is used to derive the
optimal control strategies and the associated value function
by the optimality principle. We show that the optimal
controls are given in terms of a modified Riccati equation,
which is well defined and can be calculated backwardly
under the basic assumptionmade in this paper.+e obtained
results are new to the best of our knowledge, which can be
regarded as important implementation for NCSs with
Markovain packet losses.

+e rest of this paper is as follows. Section 2 introduces
the systemmodel and states the problems. Section 3 gives the
main results. In Section 4, some numerical examples are
given to verify the obtained results. Finally, we conclude this
paper in Section 5.

+roughout this paper, the following notations will be
used. Rn means the n-dimensional Euclidean space, AT

indicates the transpose of matrix A, E[·] is the mathematical
expectation, and E[·|Fk] is the conditional expectation with
respect to Fk. P(X) denotes the probability if the event X
occurs, P(X|Y) is the conditional probability. +e real
symmetric matrix A> 0 or A≥ 0 signifies A is positive
definite or positive semidefinite. Tr(B) implies the trace of
matrix B, and N(μ,Σ) means the normal distribution with
mean μ and covariance Σ.

2. Problem Statement

In this paper, we will consider the following NCS, which is a
linear time-invariant system:

xk+1 � Axk + βkBuk + Mωk, (1)

where xk ∈ Rn is the system state, uk ∈ Rm is the control
input, and ωk ∈ Rp denotes the system noise with zero mean
and covariance Σω. A, B, andM are the given coefficient
matrices with appropriate dimensions. βk ∈ 0, 1{ } is a two-
state Markovian chain, which is used to denote the Mar-
kovian packet losses when data is transmitted from the
controller to actuator.+e transition probability matrix of βk

is given by

P βk+1 � 0|βk � 0(  P βk+1 � 1|βk � 0( 

P βk+1 � 0|βk � 1(  P βk+1 � 1|βk � 1( 
 ,

�
1 − α α

λ 1 − λ
 , α ∈ [0, 1], λ ∈ [0, 1].

(2)

+e initial distribution is P(β0 � 0) � a, P(β0 � 1) �

1 − a, and a ∈ [0, 1]. Moreover, x0 is a random vector with
mean μ and covariance Σ0.

Due to the packet losses from the sensor to controller,
the state information cannot be precisely obtained, the ‘raw’
information available to the controller is given by

hk � θkxk, (3)

where θk is a two-state Markovian chain with θk ∈ 0, 1{ }, and
the transition probability matrix is given by

P θk+1 � 0|θk � 0(  P θk+1 � 1|θk � 0( 

P θk+1 � 0|θk � 1(  P θk+1 � 1|θk � 1( 
 

�
1 − p p

q 1 − q
 , p ∈ [0, 1], q ∈ [0, 1].

(4)

Also, we assume P(θ0 � 0) � 1 − b andP(θ0 � 1) � b.
To facilitate the discussions, we assume βk , θk , ωk ,

and x0 are independent with each other.
Associated with (1)–(4), the quadratic cost function to be

minimized is given as follows:

JN � E 
N

k�0
x

T
k Qxk + u

T
k Ruk  + E x

T
N+1SN+1xN+1 , (5)

where Q ∈ Rn×n, R ∈ Rm×m, and SN+1 ∈ Rn×n are the given
symmetric weighting matrices.

In this paper, it is assumed that uk isFk-measurable, and
the information set Fk is given by

Fk ≜ h0, . . . , hk, β0, . . . , βk− 1, . . . , u0, . . . , uk− 1, θ0, . . . , θk .

(6)

+erefore, the optimal control problem to be solved in
this paper can be described as below.

Problem 1. Find the Fk-adapted controller uk to minimize
cost function (5).

Remark 1. According to previous works [30, 35], the packet
losses occur both from the sensor to controller and from the
controller to actuator. And both the packet loss channels are
described with two-state Markovian chains. In this paper,
the difficulties and challenges can be concluded as follows.
+e precise state information is not available to the con-
troller, and then to derive the optimal control and verify the
‘separation principle’ will remain challenging.

3. Main Results

3.1. Optimal Estimation. In this section, some preliminary
results will be introduced.

Lemma 1. For simplicity, we denote π0
k � P(θk � 0) and

π1
k � P(θk � 1); then, π0k and π

1
k can be calculated as follows:

π0k π1
k

  � 1 − b b 
1 − p p

q 1 − q
 

k

, (7)

with π0(0) � 1 − b and π1(0) � b.
Similarly, τ0k ≜P(βk � 0) and τ1k ≜P(βk � 1) satisfy:

τ0k τ1k  � a 1 − a 
1 − α α

λ 1 − λ
 

k

, (8)

with τ0(0) � a and τ1(0) � 1 − a.
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Proof. +e proof can be found in [36], which can be omitted
here. □

Lemma 2. For NCS (1) and measurement (3), then the
optimal estimator xk � E[xk|Fk] can be recursively calcu-
lated as follows:

xk � 1 − θk(  Axk− 1 + Buk− 1(  + θkhk, (9)

with the initial estimator

x0 � 1 − θ0( Ex0 + θ0h0. (10)

Furthermore, the error covariance matrix Pk � E[(xk −

xk)(xk − xk)T|Fk] satisfies:

Pk � 1 − θk(  APk− 1A
T

+ M
ω

M
T⎛⎝ ⎞⎠, (11)

with P0 � (1 − θ0)Σ0.

Proof. +e results can be deduced from +eorem 2 in [18],
and the detailed proof is omitted here to avoid the
repetition. □

3.2. >e Optimal Control Law. In order to guarantee the
solvability of Problem 1, we make the following standard
assumption on the weighting matrices of (5).

Assumption 1. Q≥ 0, R> 0, SN+1 ≥ 0.
For the sake of discussion, we denote the value function

Vk, k � 0, . . . , N as follows:

Vk � minuk,...,uN
E 

N

j�k

x
T
j Qxj + u

T
j Ruj  + x

T
N+1SN+1xN+1|Fk

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(12)

Consequently, we will introduce the main results on the
optimal control design for Problem 1.

Theorem 1. Under Assumption 1, the output feedback op-
timal controller can be given by

u
∗
k � βk− 1u

1,∗
k + 1 − βk− 1( u

0,∗
k , (13)

where

u
0,∗
k � − R + λB

T
Sk+1B 

− 1
λB

T
Sk+1Axk, (14)

u
1,∗
k � − R +(1 − λ)B

T
Sk+1B 

− 1
(1 − λ)B

T
Sk+1Axk, (15)

in which xk can be calculated from Lemma 2, and Sk satisfies
the modified Riccati equation:

Sk � βk− 1S
1
k + 1 − βk− 1( S

0
k, (16)

with

S
0
k � Q + A

T
Sk+1A − λ2AT

Sk+1B

× R + λB
T

Sk+1B 
− 1

B
T
Sk+1A,

(17)

S
1
k � Q + A

T
Sk+1A − (1 − λ)

2
A

T
Sk+1B

× R +(1 − λ)B
T
Sk+1B 

− 1
B

T
Sk+1A,

(18)

with terminal condition S0N+1 � S1N+1 � SN+1 given in (5).
In this case, the value function Vk is given by

Vk � E x
T
k Skxk|Fk  + 

N

m�k

Tr PmΛm + 
ω

M
T
Sm+1M

⎛⎝ ⎞⎠,

(19)

where Sk can be calculated from (16)–(18), and the error
covariance Pk can be calculated from Lemma 2. Moreover,Λk

is given by

Λk � βk− 1Λ
1
k + 1 − βk− 1( Λ0k, (20)

with

Λ0k � λ2AT
Sk+1B R + λB

T
Sk+1B 

− 1
B

T
Sk+1A, (21)

Λ1k � (1 − λ)
2
A

T
Sk+1B R +(1 − λ)B

T
Sk+1B 

− 1
× B

T
Sk+1A.

(22)

Furthermore, the optimal cost function can be obtained by

J
∗
N � Tr Π0S0(  + 

N

k�0
Tr PkΛk + 

ω
M

T
Sk+1M

⎛⎝ ⎞⎠, (23)

in which Π0 � E(x0x
T
0 ), and Sk,Λk are given by

Sk � τ0k− 1S
0
k + τ1k− 1S

1
k,

Λk � τ0k− 1Λ
0
k + τ1k− 1Λ

1
k,

Pk � π0
kPk,

k � 0, . . . , N,

(24)

with terminal condition SN+1 is given by (5), and
π0

k, π1k, τ0k, and τ1k can be calculated from (7) and (8).

Proof. Firstly, we will show that Sk given by (16) is positive
semidefinite for k � 0, . . . , N. In fact, from Assumption 1,
we know SN+1 ≥ 0, R + λBTSN+1B> 0, and R + (1 − λ)

BTSN+1B> 0. It can be easily verified that both S0N and S1N in
(17) and (18) are positive semidefinite. Hence, SN ≥ 0 can be
derived. By repeating the above procedures, we can conclude
that Sk ≥ 0 for k � 0, . . . , N. Moreover, it can also be ob-
tained that R + λBTSkB> 0 and R + (1 − λ)BTSkB> 0.
+erefore, the Riccati equations (16)–(18) are well defined
under Assumption 1.

By following the well-known Bellman optimality prin-
ciple from dynamic programming approach, it can be de-
rived that the following relationship holds:

Vk � minuk
E x

T
k Qxk + u

T
kRuk + Vk+1|Fk . (25)
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From (1), we know that VN can be calculated as

VN � min
uN

E x
T
NQxN + u

T
NRuN + x

T
N+1SN+1xN+1|FN 

� min
uN

E x
T
NQxN + u

T
NRuN + AxN + βNBuN + MωN( 

T
× SN+1 AxN + βNBuN + MωN( |FN 

� min
uN

E x
T
NQxN + u

T
NRuN + x

T
NA

T
SN+1AxN + 2x

T
NA

T
SN+1βNBuN + u

T
NB

TβNSN+1βNBuN + ωT
NM

T
SN+1MωN|FN 

� min
uN

E x
T
N Q + A

T
SN+1A xN + u

T
NRuN|FN  + 2E x

T
N|FN E βN|βN− 1 A

T
SN+1BuN + E β2N|βN− 1 u

T
NB

T
SN+1BuN

+ Tr 
ω

M
T
SN+1M

⎛⎝ ⎞⎠.

(26)

+e following two cases are under consideration:

(1) When βN− 1 � 0, we can obtain that

V
0
N � min

uN

E x
T
N Q + A

T
SN+1A xN + u

T
NRuN|FN 

+ 2λE x
T
N|FN A

T
SN+1BuN + λu

T
NB

T
SN+1BuN

+ Tr 
ω

M
T
SN+1M

⎛⎝ ⎞⎠.

(27)

Furthermore, since we have shown R + λBTSN+1B is
positive definite, then it holds

V
0
N � min

uN

E uN + R + λB
T
SN+1B 

− 1
× λB

T
SN+1AxN 

T



· R + λB
T
SN+1B 

× uN + R + λB
T
SN+1B 

− 1
λB

T
SN+1AxN 

+ x
T
N Q + A

T
SN+1A − λ2AT

SN+1B

× R + λB
T
SN+1B 

− 1
B

T
SN+1AxN|FN

+ Tr 
ω

M
T
SN+1M

⎛⎝ ⎞⎠.

(28)

By using completing square skill, we know that the
optimal control can be presented as

u
0,∗
N � − R + λB

T
SN+1B 

− 1
λB

T
SN+1AxN. (29)

+en, VN can be calculated as follows:

V
0
N � E x

T
NS

0
NxN|FN  + Tr PNΛ

0
N + ΣωM

T
SN+1M ,

(30)

where S0N and PN satisfy (17) and (11) for k � N,
respectively. And Λ0N is given by (21).

(2) When βN− 1 � 1, it holds

V
1
N � min

uN

E x
T
N Q + A

T
SN+1A xN + u

T
NRuN|FN 

+ 2(1 − λ)E x
T
N|FN A

T
SN+1BuN

+(1 − λ)u
T
NB

T
SN+1BuN + Tr 

ω
M

T
SN+1M

⎛⎝ ⎞⎠.

(31)

Also noting that R + (1 − λ)BTSN+1B> 0, so we have

V
1
N � min

uN

E uN + R +(1 − λ)B
T
SN+1B 

− 1


×(1 − λ)B
T
SN+1AxN

T

R +(1 − λ)B
T
SN+1B 

× uN + R +(1 − λ)B
T
SN+1B 

− 1
×(1 − λ)B

T
SN+1AxN 

+ x
T
N Q + A

T
SN+1A  − (1 − λ)

2
A

T
SN+1B

× R +(1 − λ)B
T
SN+1B 

− 1
× B

T
SN+1AxN|FN

+ Tr 
ω

M
T
SN+1M

⎛⎝ ⎞⎠.

(32)

Hence, the optimal controller of minimizing V1
N can be

given by

u
1,∗
N � − R +(1 − λ)B

T
SN+1B 

− 1
×(1 − λ)B

T
SN+1AxN,

(33)
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from uN � u1,∗
N , we get that

V
1
N � E x

T
NS

1
NxN|FN  + Tr PNΛ

1
N + 

ω
M

T
SN+1M

⎛⎝ ⎞⎠,

(34)

where S1N,Λ1N, andPN satisfy (18), (22), and (11),
respectively.

In this case, VN can be written as follows:

VN � βN− 1V
1
N + 1 − βN− 1( V

0
N

� βN− 1E x
T
NS

1
NxN|FN  + 1 − βN− 1( E x

T
NS

0
NxN|FN 

+ βN− 1Tr PNΛ
1
N + 

ω
M

T
SN+1M

⎛⎝ ⎞⎠ + 1 − βN− 1( Tr PNΛ
0
N + ΣωM

T
SN+1M 

� E x
T
NSNxN|FN  + Tr PNΛN + 

ω
M

T
SN+1M

⎛⎝ ⎞⎠.

(35)

To use the induction method, we assume the optimal
controls u∗k are given by (13) for k � l + 1, . . . , N, and re-
lationships (14)–(18) hold. Moreover, it is assumed that
Vk, k � l + 1, . . . , N can be presented as (19), i.e.,

Vk � E x
T
k Skxk|Fk  + 

N

m�k

Tr PmΛm + ΣωM
T
Sm+1M .

(36)

So, we can know that

Vl � min
ul,...,uN

E 
N

j�l

x
T
j Qxj + u

T
j Ruj  + x

T
N+1SN+1xN+1|Fl

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� min
ul

E x
T
l Qxl + u

T
l Rul + Vl+1|Fl 

� minul
E x

T
l Qxl + u

T
l Rul + x

T
l+1Sl+1xl+1|Fl  + 

N

k�l+1
Tr PkΛk + ΣωM

T
Sk+1M 

� minul
E x

T
l Qxl + u

T
l Rul + Axl + βlBul + Mωl( 

T
Sl+1 × Axl + βlBul + Mωl( |Fl  + 

N

k�l+1
Tr PkΛk + ΣωM

T
Sk+1M 

� minul
E x

T
l Q + A

T
Sl+1A xl + u

T
l Rul|Fl  + 2E x

T
l |Fl E βl|βl− 1 A

T
Sl+1Bul + E β2l |βl− 1 u

T
l B

T
Sl+1Bul

+ 
N

k�l+1
Tr PkA

T
Sk+1BE βk|Fk  × R + E β2k|Fk B

T
Sk+1B 

− 1
E βk|Fk  × B

T
Sk+1A 

⎫⎬

⎭ + 
N

k�l

Tr 
ω

M
T
Sk+1M

⎛⎝ ⎞⎠.

(37)

Also, two cases will be studied. Actually, if βl− 1 � 0, then
it holds that

V
0
l � min

ul

E x
T
l Q + A

T
Sl+1A xl + u

T
l Rul|Fl  + 2E x

T
l |Fl λA

T
Sl+1Bul + λu

T
l B

T
Sl+1Bul

+ 
N

k�l+1
Tr PkΛk(  + 

N

k�l

Tr ΣωM
T

Sk+1M .

(38)
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Since the positive definiteness of R + λBTSl+1B has been
shown before, thus V0

l can be written as follows:

V
0
l � min

ul

E ul + R + λB
T
Sl+1B 

− 1
λB

T
Sl+1Axl 

T



× R + λB
T
Sl+1B  × ul + R + λB

T
Sl+1B 

− 1
λB

T
Sl+1Axl 

+ x
T
l Q + A

T
Sl+1A − λA

T
Sl+1B

× R + λB
T
Sl+1B 

− 1
λB

T
Sl+1Axl|Fl

+ 
N

k�l+1
Tr PkΛk(  + 

N

k�l

Tr ΣωM
T
Sk+1M .

(39)

Hence, the optimal control of minimizing V0
l can be

given as follows:

u
0,∗
l � − R + λB

T
Sl+1B 

− 1
λB

T
Sl+1Axl. (40)

In the case of ul � u
(0)∗
l , we can obtain

V
0
l � E x

T
l S

0
l xl|Fl  + 

N

k�l

Tr PkΛ
0
k + ΣωM

T
Sk+1M , (41)

where S0l satisfies (17) for k � l.
Besides, for the case of βl− 1 � 1, we can obtain

V
1
l � min

ul

E x
T
l Q + A

T
Sl+1A xl + u

T
l Rul|Fl 

+ 2E x
T
l |Fl (1 − λ)A

T
Sl+1Bul +(1 − λ)u

T
l B

T
Sl+1Bul

+ 
N

k�l+1
Tr PkΛk(  + 

N

k�l

Tr ΣωM
T
Sk+1M .

(42)

Since R + (1 − λ)BTSl+1B is strictly positive definite, so
we have

V
1
l � min

ul

E ul + R +(1 − λ)B
T
Sl+1B 

− 1


×(1 − λ)B
T
Sl+1Axl

T
R +(1 − λ)B

T
Sl+1B 

× ul + R +(1 − λ)B
T
Sl+1B 

− 1
(1 − λ)B

T
Sl+1Axl 

+ x
T
l Q + A

T
Sl+1A − (1 − λ)A

T
Sl+1B

× R +(1 − λ)B
T
Sl+1B 

− 1
(1 − λ)B

T
Sl+1Axl|Fl

+ 
N

k�l+1
Tr PkA

T
Sk+1B(1 − λ)

× R +(1 − λ)B
T
Sk+1B 

− 1
(1 − λ)B

T
Sk+1A

+ 

N

k�l

Tr ΣωM
T
Sk+1M .

(43)

And we can obtain

u
1,∗
l � − R +(1 − λ)B

T
Sl+1B 

− 1
×(1 − λ)B

T
Sl+1Axl, (44)

from ul � u1,∗
l , we have

V
1
l � E x

T
l S

1
l xl|Fl  + 

N

k�l

Tr PkΛ
1
k + ΣωM

T
Sk+1M , (45)

in which S1l is given by (18).
From that, the optimal controller u∗k is valid for k � l.
+erefore, we can prove that Vl can be calculated as

below:

Vl � βl− 1V
1
l + 1 − βl− 1( V

0
l

� βl− 1E x
T
l S

1
l xl|Fl  + 1 − βl− 1( E x

T
l S

0
l xl|Fl 

+ βl− 1 

N

k�l

Tr PkΛ
1
k + ΣωM

T
Sk+1M 

+ 1 − βl− 1(  

N

k�l

Tr PkΛ
0
k + ΣωM

T
Sk+1M 

� E x
T
l Slxl|Fl  + 

N

k�l

Tr PkΛk + ΣωM
T
Sk+1M .

(46)

Until now, the procedures of the induction method are
complete, and we have shown that (13)–(22) hold.

Finally, we will prove that the optimal cost function J∗N is
given by (23).

In fact, noting that J∗N � E[V0], and the following as-
sertions hold for k � 0, . . . , N,

Sk � E Sk  � τ0k− 1S
0
k + τ1k− 1S

1
k,

Λk � E Λk  � τ0k− 1Λ
0
k + τ1k− 1Λ

1
k,

Pk � E Pk  � π0
kPk,

(47)

then it follows

J
∗
N � E E x

T
0 S0x0|Fl  + 

N

k�0
Tr PkΛk + 

ω
M

T
Sk+1M

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

� E x
T
0 S0x0  + 

N

k�0
E Tr PkΛk + ΣωM

T
Sk+1M  

� Tr Π0S0( 

+ 
N

k�0
Tr PkΛk + ΣωM

T
Sk+1M ,

(48)

in which Π0 � E(x0x
T
0 ).

+us, the optimal cost function (23) has been verified.
+is ends the proof. □

Remark 2. For the strategy proposed in the paper, we an-
alyze and clarify its advantages and disadvantages. For
Problem 1, the main technique adopted in deriving the main
results is the optimality principle of dynamic programming
approach. Furthermore, when the controller cannot obtain
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accurate state information, we give the optimal estimation
(conditional expectation) of the NCSs with Markovian
packet losses and use recursion to calculate the error co-
variance matrix. It is verified that the ‘separation principle’
holds, i.e., the control gain matrix and the estimation gain
can be calculated separately. +e obtained results are new to
the best of our knowledge.

Remark 3. It can be easily seen from the derivations that the
obtained results in +eorem 1 include previous works as
special cases (see, for e.g., [8, 18]). For example, if the packet
losses processes βk  and θk  are independently identically
distribution (i.i.d) Bernoulli processes, then the main results
can be reduced to the case in [8, 18].

Remark 4. In this paper, we mainly investigate the finite
horizon optimal control for NCSs with two kinds of Mar-
kovian packet loss channels. +e infinite horizon will be
reported in the future work. +us, the convergence analysis
of the proposed recursive estimator is not given in this paper.
Actually, by defining the Lyapunov function candidate with
the optimal cost function of infinite horizon, the stabiliza-
tion problem can be solved. In this case, the finite horizon
Riccati equations converge to algebraic Riccati equations.

Remark 5. +edifferences between this paper and [17] are as
follows. Firstly, different from the measurement equation
considered in this paper, the measurement equation in [17]
is yk � Cxk + υk, where C is the system matrix and υk is the
measurement noise. Secondly, the design of the estimator is
different. In [17], parameters similar to the standard Kalman
filter are used to obtain the estimation equation. In this
paper, the optimal estimator and the error covariance matrix
with the optimal estimator are obtained recursively. Finally,
in [17], only the data loss of the control signal sent from the
controller is considered, while this paper considers not only
the packet loss from the controller to the actuator but also
the packet loss from the sensor to the actuator.+ere are also
differences in the information sets available to the two
controllers at any given time.

Remark 6. By adopting the dynamic programming ap-
proach, we derive the optimal output feedback control,
which can be regarded as a special case of output feedback
control problem. As for the general output feedback control
problem, i.e., yk � Hxk + vk or yk � ck(Hxk + vk), we will
study this case in the future. Obviously, the general case is
more challenging and complicated. We will try to extent the
obtained results and methods to the general case.

Remark 7. A pseudocode of obtaining the control signal of
this paper is shown in Figure 2.

4. Numerical Examples

4.1. Optimal Estimation and LMMSE. Without loss of
generality, we consider the higher-order system with the
following coefficients:

A �
1 0.1
0 1 , B �

1
0 , M �

1 0
0 1 , ωk ∼ N

0
0 ,

1 0
0 1  , μ �

0
0 , Σ0 �

1 0
0 1 , a � 0.2, α � 0.5,

λ � 0.6, p � 0.4, q � 0.3, b � 0.4, R � 1, Q �
1 0
0 1 ,

SN+1 �
1 0
0 1 , and the time horizon N � 50. It is noted that

the controller uk is Fk-measurable, which cannot affect the
performance of the estimators. Furthermore, under As-
sumption 1, the output feedback optimal controller can be
calculated by +eorem 1.

In order to show the optimality of the estimator given in
Lemma 2, we will provide numerical examples to compare
the proposed estimator in Lemma 2 and the linear minimum
mean square error estimator (LMMSE).

As shown in Figures 3 and 4, as expected, it can be easily
judged that the proposed estimator given in Lemma 2 can
achieve better performance than the LMMSE given in [34].

4.2. Probability Display. In this simulation, we see more
clearly the process of probability change. θk  denotes the
packet loss process, which obeys the two-state Markovian
chain with θk ∈ 0, 1{ }. +e initial distribution is
P(θ0 � 0) � 1 − b � 0.6. As shown in Figure 5, the dotted
line represents the change of P(θk � 0), and the solid line
indicates the change of P(θk � 1).

4.3. >e Effect of TPM on System Performance. In order to
show the transition probability matrix (TPM) effect on the
system performance, in this paper, numerical results can be
carried out for different cases.

We consider the higher-order system with the following

coefficients: A �
1 0.5
0 − 1 , B �

1
0 , M �

0.1 0
0 0.1 ,

ωk ∼ N
0
0 ,

1 0
0 1  , μ �

0
0 , Σ0 �

1 0
0 1 , R � 1,

Q �
1 0
0 1 , SN+1 �

1 0
0 1 , a � 0.3, b � 0.2, the transition

Algorithm 1 �e Optimal Control Law
Input: the value function, Vk; Sk satisfies the modified Riccati equation; βk ∈ {0, 1};
Output: the optimal control uk

∗

for k = N, do
if βN–1 = 0, then compute VN

0, uN
0,∗;

else compute VN
1, uN

1,∗;
end if

uN
∗ = βN–1 uN

1,∗ + (1 – βN–1) uN
0,∗;

end for
k = l + 1, ..., N, assume uk

∗ and Vk are hold;
for k = l, do

if βl - 1 = 0 then, compute Vl
0, ul

0,∗;
else compute Vl

1, ul
1,∗;

end if
ul
∗ = βl–1 ul

1,∗ + (1 - βl–1) ul
0,∗;

end for
final;
return uk

∗
;

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

Figure 2: +e pseudocode of obtaining the control signal.
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probability matrix of βk is 1 − α α
λ 1 − λ , the transition

probability matrix of θk is 1 − p p

q 1 − q
 , and the time

horizon N � 30.

Case 1: assume the transition probability matrix of βk is
0.6 0.4
0.7 0.3 , and the transition probability matrix of θk

is 0.5 0.5
0.6 0.4 , and we derive the cost function 1

Case 2: assume the transition probability matrix of βk is
0.8 0.2
0.7 0.3 , and the transition probability matrix of θk

is 0.5 0.5
0.6 0.4 , and we obtain the cost function 2

As shown in Figure 6, we can see that different transition
probability matrices have different effects on the perfor-
mance of the system.When the transition probability matrix
changes, the cost function of the system also changes.

5. Conclusion

In this paper, we have investigated the optimal control
problem for NCSs with two kinds of Markovian packet
losses. By adopting the optimality principle of dynamic
programming approach, for the first time, we derive the
optimal control strategy, which is based on the given
modified Riccati equations. Moreover, we also have shown
that the separation principle is applicable for the considered
problem, and the optimal control gain and the optimal
estimator can be calculated separately. For future research,
we plan to extend the obtained results to investigate the
stabilization problem of the infinite horizon.
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