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Low-Rank Representation (LRR) is a powerful subspace clustering method because of its successful learning of low-dimensional
subspace of data. With the breakthrough of “OMics” technology, many LRR-based methods have been proposed and used to
cancer clustering based on gene expression data. Moreover, studies have shown that besides gene expression data, some other
genomic data in TCGA also contain important information for cancer research. Therefore, these genomic data can be integrated as
a comprehensive feature source for cancer clustering. How to establish an effective clustering model for comprehensive analysis of
integrated TCGA data has become a key issue. In this paper, we develop the traditional LRR method and propose a novel method
named Block-constraint Laplacian-Regularized Low-Rank Representation (BLLRR) to model multigenome data for cancer
sample clustering. The proposed method is dedicated to extracting more abundant subspace structure information from multiple
genomic data to improve the accuracy of cancer sample clustering. Considering the heterogeneity of different genome data, we
introduce the block-constraint idea into our method. In BLLRR decomposition, we treat each genome data as a data block and
impose different constraints on different data blocks. In addition, graph Laplacian is also introduced into our method to better
learn the topological structure of data by preserving the local geometric information. The experiments demonstrate that the
BLLRR method can effectively analyze integrated TCGA data and extract more subspace structure information from multigenome
data. It is a reliable and efficient clustering algorithm for cancer sample clustering.

1. Introduction

Cancer has seriously threatened the health of people all over
the world. For cancer patients, timely detection, accurate
diagnosis, and effective treatment are vital for saving lives
[1]. Cancer classification, as an important prerequisite for
early diagnosis and treatment of cancer, has always been a
challenging focus in cancer research. Modern medical re-
search shows that the cause of cancer is the variation and
mutation in genes, and these gene mutations and abnor-
malities cause pathological differences in cancer, forming
different classifications in clinical diagnosis [2]. Thus, cancer

research at the genetic level has received much attention
from biologists.

With the advent of postgenome era in bioinformatics
research, vast quantities of genomic data are being generated
by DNA-microarray and deep-sequencing techniques [3-6].
Because these techniques can concomitantly profile thou-
sands of genes, these genomic expression data produced by
these technologies can fully reflect the transcription activity at
a certain point, which affords researchers’ avenues to un-
derstand and study life mechanism in genome-wide range.

The Cancer Genome Atlas (TCGA), as the largest
component of International Cancer Genome Consortium
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(ICGQ), is by far the largest open genome database for
cancer. As of the end of the TCGA project, the TCGA
database has collected more than 11,000 cancer cases in-
volving 33 cancer types [7]. TCGA project aims to com-
prehensively and systematically study the biological and
molecular basis of the formation, growth, and metastasis of
cancer cells by mapping the genome of human cancers. The
TCGA database can provide us with diverse genomics data.
These genome data provide an unprecedented opportunity
for us to systematically and comprehensively consider dif-
ferent genetic aberrations of biological processes. Therefore,
cancer research based on TCGA data has become a hotspot
in the field of bioinformatics.

Clustering of cancer samples is an important means of
cancer classification. Its purpose is to find samples’ sample
groups with similar expression. Based on TCGA data, a large
number of articles on cancer clustering have been produced.
For example, Yu et al. developed a method named Graph-
based Consensus Clustering (GCC) to research the classes of
the samples based on microarray data [8]. Zheng et al.
adopted Nonnegative Matrix Factorization (NMF) and
sparse NMF methods to study tumor clustering [9]. Based on
the maximum correntropy criterion, Wang et al. proposed a
new Nonnegative matrix factorization method named NMF
maximum correntropy criterion (NMF-MCC) for cancer
clustering from gene expression data [10]. Kong et al.
presented a P-norm Singular Value Decomposition (PSVD)
method for clustering of tumor [11]. Feng et al. enforced
graph-Laplacian regularization and P-norm on PCA and
presented the PgLPCA method for selecting feature genes
and sample clustering [12]. Virmani et al. used DNA
methylation data to cluster lung cancer [13]. Ye et al. studied
tumor clustering based on independent component analysis
(ICA) and affinity propagation (AP) [14]. Based on genomic
data, Liu et al. adopted Robust Principal Component
Analysis (RPCA) approach to research tumor clustering
[15]. Liu et al. presented a network-assisted coclustering
method to identify the cancer subtype [16]. These studies
show that besides gene expression data, other genomic data
in TCGA also contain the feature information needed for
cancer clustering and can be used as feature source for
cancer clustering research. Therefore, it is reasonable to
think that the integrated data composed of multiple genome
data can contain more cancer clustering features than the
single genome data, which is helpful to study cancer clus-
tering better. However, different genomic data in the TCGA
database come from different categories of genomics assays
and therefore have different characteristics. In other words,
these genomic data are heterogeneous, which makes the
integration and analysis of different genome data become a
major bottleneck in bioinformatics research [17]. Hence,
most cancer clustering methods are based on single genomic
data in the TCGA database, more frequently on gene ex-
pression data. This may ignore the interaction of different
genetic factors, which is not conducive to the detection of
cancer pathogenesis [18]. Obviously, these clustering
methods cannot be directly used for comprehensive analysis
of integrated TCGA data. In this case, how to establish an
effective clustering algorithm for comprehensive analysis of
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TCGA integrated data to further improve the reliability of
cancer clustering has become an urgent problem.

In recent years, Liu et al. developed a novel matrix
transformation method known as Low-Rank Representation
(LRR) method [19] for subspace segmentation. The LRR
method is based on an important assumption that the high-
dimensional data are approximated as mappings of un-
known low-dimensional space. That is, the high-dimen-
sional data can be recovered from the low-dimensional
space. Under this assumption, LRR aims at finding the
lowest-rank structural representation of each sample
through low-rank constraint. And based on the recovered
lowest-rank representation matrix, each sample is grouped
into its own subspace. In LRR, because the global space
information of input data is exploited to recover the sub-
space structures embedded in the high-dimensional data,
LRR can effectively pick up the underlying subspace
structures of data. As a result, the LRR method has achieved
excellent performance in subspace segmentation and has
been frequently applied in many fields [20-26]. It is well
known that, in the real world, high-dimensional data often
reside on unknown nonlinear manifolds. However, the
classical LRR method loses sight of the local structure in-
formation in data, resulting in the loss of the inherent to-
pological characteristics of the nonlinear manifold.

Meanwhile, with the deepening of manifold learning
theory and graph theory research, more and more re-
searchers introduce the graph regularization constraint into
their research algorithms [27-33]. For example, Long et al.
presented a graph-regularized discriminative nonnegative
matrix factorization (GDNMF) method [29]; in the GDNMF
model, the discriminative information and local geometrical
information were taken into account by imposing the graph
regularization constraint on the NMF model. Huang et al.
presented Hypergraph-based Attribute Predictor (HAP) for
attribute learning [31]. To further improve the classification
performance of Extreme Learning Machine (ELM), Peng
et al. proposed a graph-regularized ELM named as GELM
[32]. Cheng et al. proposed a Graph-regularized Dual Lasso
method to integrate the geometrical structure within traits
and genetic markers [33]. Similarly, in order to learn the
topological structure of data better, researchers introduced
manifold learning into the LRR method [34-38]. For ex-
ample, in order to improve the effectiveness of facial ex-
pression recognition, Wang et al. presented a regularized
low-rank representation approach by combining linear
subspace learning with data recovery [34]. Yin et al. com-
bined LRR with graph regularizer and developed the
Nonnegative Sparse Hyper-Laplacian-regularized LRR
(NSHLRR) method [36]. Wang et al. put forward Laplacian-
regularized Low-Rank Representation (LLRR) to identify
different expression genes [37]. Besides, these LRR-based
methods combining graph regularization have also aroused
great interest of biologists and been used in bioinformatics
modeling for cancer clustering or cancer classification. Gan
et al. applied latent low-rank representation to derive fea-
tures for tumor clustering [39]. Wang et al. proposed Mixed-
norm Laplacian regularized Low-Rank Representation
(MLLRR) and applied it to tumor clustering [40]. Xia et al.
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presented a self-training subspace clustering algorithm
under low-rank representation (SSC-LRR) to model gene
expression data for cancer classification [41]. Just recently,
Wang et al. used the LLRR method to cluster cancer samples
based on gene expression data [42]. Although these studies
show that these LRR-based methods with manifold con-
straint have good performance in cancer clustering, the
applicability of these methods in multitype integrated data
analysis needs further study.

Inspired by the success of the LRR method and graph
regularization, in this work, we present a novel method
referred to as Block-constraint Laplacian-regularized Low-
Rank Representation (BLLRR) to research cancer sample
clustering. BLLRR method is devoted to obtaining a lowest-
rank representation matrix which reflects the similarity
between samples through comprehensive analysis of in-
tegrated TCGA data. Considering that different types of
TCGA data have different characteristics and noise, in our
method, we treat each type of data as a data block and
impose different constraint strengths on different types of
data. These different parameters can well balance the noise
from different genomic data. In additional, in order to
maintain the nonlinear geometrical relationships of real
data, graph Laplacian based on manifold is introduced into
BLLRR. Graph Laplacian, also named graph regularization,
can maximize the smoothness of the nonlinear manifold of
data by maintaining local geometrical relationships within
data, which greatly enhances the capability of the BLLRR
method to learn the subspace structure. Our contributions
of this paper are listed as follows. (1) A framework of cancer
sample clustering based on multigenome data is come up
with. This will bring cancer clustering research out of the
confinement of analyzing single gene expression data. (2)
We develop a novel method called BLLRR to model in-
tegrated TCGA data. In the BLLRR method, we introduce
the block-constraint idea to decompose integrated TCGA
data. Block-constraint solves the bottleneck problem of
heterogeneous data integration and analysis by imposing
different constraints on different genome data. Besides, in
order to smooth the nonlinear manifold structure of data,
graph regularization is introduced into BLLRR. Both graph
regularization and block-constraint enable our method to
pick up the subspace structures embedded in multigenome
data well. (3) In BLLRR, adaptive balance parameters are
proposed to balance the noise of different types of data.
Namely, the constraint strength of each type of data is
constantly adjusted with iteration, which greatly reduces
the trouble of parameter selection and makes the model
more adaptable. (4) BLLRR model is applied to the clus-
tering of cancer samples, and many experiments of cancer
clustering are provided. The experimental results sub-
stantiate the feasibility of cancer clustering based on in-
tegrated multigenome data and also show that the BLLRR
method has remarkable reliability and accuracy in cancer
sample clustering.

The rest of this paper is organized as follows. In
Methodology section, firstly, classical LRR and graph Lap-
lacian are briefly reviewed in 2.1 and 2.2, and then the
proposed BLLRR method is elaborate in 2.3. In Section 2.3.1,

the objective function of BLLRR is given. In Section 2.3.2, the
solving process of the BLLRR method is introduced, and the
iteration formulas of the optimal solution are given. In
Section 2.3.3, the model of decomposition of multigenome
data by BLLRR is established. Also, in Section 2.3.4, the
clustering process based on the optimal coefficient matrix
obtained by BLLRR is introduced. In Section 3, datasets used
for experiments are introduced, and the results and dis-
cussions of cancer sample clustering experiments are pre-
sented. In Section 4, we conclude the paper.

2. Methodology

2.1. LRR. LRR is a representation-based subspace clustering
method. The basic assumption of LRR is to treat high-di-
mensional data as coming from multiple low-dimensional
subspaces, and these subspaces are independent [19]. So,
high-dimensional data can be regarded as the mapping of
data in these low-dimensional subspaces. Based on this, the
LRR method is devoted to calculating the mapping weights
of high-dimensional data. The weight matrix is often known
as the coefficient matrix or low-rank representation matrix.
As the nuclear norm is commonly used to approximate rank
operator, the resulting problem of LRR is to solve a convex
optimization problem with nuclear norm regularization.
Supposing the high-dimensional data matrix is represented
by X, of which each column vector represents a data point,
the problem of LRR is formulated as

min || Z]|, + yllEl,
e (1)
st. X=AZ+E,

where A is referred to as a dictionary matrix by which the
whole low-dimensional space can be linearly spanned, Z is
known as the coefficient matrix corresponding to A, ||,
denotes the nuclear norm, ||Z], is the summation of the
singular values of Z, E is a noise or perturbation term, |-[;
denotes the I;-norm which is a regularization strategy to
produce sparse in matrices, ||E[; is the summation of ab-
solute values of elements in E, and y is a scalar parameter.
After LRR decomposition, the coefficient matrix Z is ob-
tained from high-dimensional data. Ideally, A is noiseless,
and the coefficient matrix Z is sparse and symmetric. In
general, data matrix X is selected as the dictionary matrix.
So, LRR can be reformulated as

min | Z], + yllEl,
ZE (2)
st. X=XZ+E.

In such a case, coefficient matrix Z reflects the mapping
relationships between all samples. These mapping rela-
tionships are actually the similarities between samples,
which can reveal the low-dimensional subspace structure
embedded in high-dimensional data. Given Z = [z,,z,,

..»Z,], the column vector z; denotes the similarities be-
tween the i-th sample and all samples. The more similar the
two samples are, the more likely they are to come from a
subspace. So, subspace clustering can be implemented based
on Z.



2.2. Graph Laplacian. As is known to all, the high-dimen-
sional data observed in the real world usually are located on
nonlinear low-dimensional manifolds. Keeping the local
geometric structure of data is very important for smoothing
the nonlinear manifold structure. Graph Laplacian, as a
popular approach to preserve the intrinsic structure em-
bedding in high-dimensional data, is proposed on an es-
sential idea named local invariance proposed by Hadsell
etal. [43]. Supposing that X = [x,X,,...,X,] is the observed
data, each column vector of X is a data sample. These data
samples and their neighbors form the local geometric
structures of original observed data. In practice, the
neighborhood relationship is assumed to be linear [44], i.e.,
each data sample from a local geometry can be treated as a
linear union of its neighbors. So, the linear representation
coefficients between data samples can efficiently characterize
the local geometric structures. According to this, we con-
struct a k-nearest-neighbor graph G. Here, each data sample
is treated as a node, so graph G is with n nodes. At the same
time, we define the weight of each edge connecting two
nodes of graph G as follows:

W - 1, if x ENk(xj)orxj € Ni(x),
Y 0, otherwise,

(3)

where W, is the weight value of edge associating nodes i and
j» x; and x; are data samples corresponding to node i and j,
respectively, and N (x;) is the set of k-nearest-neighbors of
node i. The weights of all edges in graph G constitute a
weight matrix denoted as W. Obviously, the affinity between
any two nodes of graph G can be measured by matrix W.
According to the idea of local invariance, the nature as-
sumption in manifold theory is that the affinity relations of
data samples in input space should be kept in a new space.
That is to say, if data samples are nearby to each other in the
intrinsic geometry of observed data, then their mappings on
the output low-dimensional manifold are nearby too. The
hypothesis can be achieved by neighborhood relationships.
In mathematics, the relationship can be formulated as
follows:

min ZJ [z -2 (4)

where z; and z; are the representations of x; and x; under the
low-dimensional manifold, respectively. Next, we define a
diagonal matrix S with size n xn, and the i-th diagonal
element of S is defined as S;; = ' ;W;;. Apparently, S; in-
dicates the total affinities related with sample x;, so matrix S
is often called the degree matrix. Accordingly, a Laplacian
matrix [45] L is defined as L = S — W. It is not difficult to

prove that the relationship defined by (4) can be rewritten as
) 2
mzmizj "zi - zj" Wi;
= mi -w)z"t (5)
min tr(Z(S W)Z )

= mZin tr(ZLZT).
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Because formulation (5) can describe the local adjacency
relation of graph G by edge weight matrix W which keeps the
affinity between pairs of nodes, it is called graph Laplacian.
This rule is essential to preserve the inherent geometric
structure of the original data distribution.

2.3. BLLRR Method

2.3.1. Definition of BLLRR. 'The traditional LRR [19] method
and its improved algorithms, such as NSHLRR [36], LLRR
[37], and SSC-LRR [41], improve the algorithm robustness
to noise by enforcing /,-norm or I, ; -norm constraint on the
perturbation item. In these methods, all samples are subject
to uniform constraint strength; therefore, these methods are
only applicable to the study of a single type of data. For
heterogeneous data, these methods cannot be used directly.
However, in practice, we need to obtain more useful in-
formation through comprehensive analysis of various het-
erogeneous data. For the analysis of multiple heterogeneous
data, there are two issues need to be considered. One is that
heterogeneous data have different characteristics because
they come from different experiments or environments. The
other is multiple heterogeneous data will bring more
complex noise. Based on these two aspects, when dealing
with multiple heterogeneous data, we introduce the block-
constraint idea. Namely, we treat each category of data as a
data block, and on different data blocks, we impose different
constraint strengths. Block-constraint can not only balance
the noise from different data but also preserve the feature
information in the data by following the characteristics of
heterogeneous data. In addition, similar to LLRR, to well
discover the intrinsic geometrical structure embedding in
the high-dimensional space, manifold constraint is also
introduced into the algorithm. So, the optimization problem
is formulated as follows:

. T .
min |1ZI, + aZl, + der(ZLZ )+;Yz||Ez||1 ©)

st. X=XZ+E Z>0,

where X = (X,,...,X,) € R™" is the input data matrix
that is a collection of multiclass data, where ¢ is the
number of data categories and X is the [-th category data.
Accordingly, E = (E,,...,E.) € R is the noise matrix,
to be specific, E, is the noise signal with regard to X;. « and
A are penalty parameters. y;(I = 1,...,c) is the weighting
parameter to balance the noise item of different categories.
In (6), the LRR method is combined with graph Laplacian
and block-constraint, so it is named as the Block-con-
straint Laplacian regularized Low-Rank Representation
method. Obviously, when ¢ =1, the BLLRR model de-
generates into the LLRR model whose objective function
is as follows:

min |Z|, + al|Zll, + Atr(ZLZ") + y|E],
LE (7)
st. X=XZ+E, Z>0.
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2.3.2. The Optimization of BLLRR. In order to recover the
low-rank representation from data, many algorithms have
been developed [46-48]. Specially, the ADM with Linearized
Adaptive Penalty (LADMAP) [48] is a more efficient al-
gorithm. In this paper, LADMAP is also applied to resolve
problem (6).

Firstly, an auxiliary variable J is introduced to make
problem (6) separable. So, equation (6) can be converted to
the following optimization problem:

. T N
pin V2. ol + der(ZLZ0) + Doy,

stX=XZ+E Z=], Z>0.

Then, we remove the linear constraints in (8) by in-
troducing the augmented Lagrangian formulation. There-
fore, optimization problem (8) can be transformed into the
following:

min |Z], +alJl, + Mr(ZLZ") + ) y|E],
T =1

+(M,X-XZ-E) +(M,,Z-7) ©)
+=(IX-XZ - EI} +1Z-J1}),

where M, and M, are Lagrangian multipliers, y is a penalty
parameter that can be adaptively adjusted, ||| is the matrix
Frobenius norm, and the value of || Y| is the sum of squares
of all elements in matrix Y.

Finally, in order to optimize the variables Z, J, and E by
alternate updating, the original optimization problem is
divided into three subproblems:

Ay =lzll, + Mtr(ZLZ") +(M,,X - XZ - E)

+(My,Z-)) +5 (1X - XZ - Bl +1Z - J1})

T U 1 2 (10)
=11Zll, + Atr(ZLZ") +5|X - XZ - E +-M,
2 U F
1 2
+H Z-J+-M,| ,
2 U F
Ay = alJll; +{My, Z-T) +gIIZ ~ I3 = alyll,
11)
1P (
L4 Z-J+-M,| ,
2 U F
Ay = Y y|B, + (M, X - XZ - E) +g||X—XZ—E||§
=1
c ‘I/l 1 2
> nle + |

(12)

(1) The Computation of Z. Fixed E and J, the iteration

formula of Z can be obtained by solving subproblem (10).
Firstly, we define a quadratic term as follows:

2

1
Q(Z.EJ. ..M, M,) = Atr(ZLZ") +g X-XZ-E+-M,
4 lF
u L
+=Z-J+-M,
2 IS 2

(13)

Then, subproblem (10) is recast as the following objective
function:

min|1Z, +(V,Q(Z) Z - Z) + Mz~ 2. (19)

where  V,Q(Zy) = AMZgLT + Zy L) + py (Zg — T + MK/
pi) + #K}T (XZy — X + Ex = M{ /i), n = 2MLI, + px
(1 + IXI13).
Finally, the solution of Z is given by
V,Q(Z
Zyg, = ®1/17yK<ZK - K "I( K)>, (15)

where @ (:) is an operator of singular value threshold [49]
and @, (A) is defined as ®, (A) = US, (})VT, in which e is a
threshold, S(-) is a shrinkage operator, and S, (x) is defined
as S, (x) = sgn (x)max (|x| — ¢ 0), where sgn (-) is a symbolic
operator.

(2) The Computation of J. Fixed the current value of other

variables, the iteration formula of J can be obtained by
solving subproblem (11). The solution of J is given by

MK
]K+1=max‘|0a/yK(ZK+1 +‘u2>>0}) (16)

K

where Q(-) is an operator of soft shrinkage and Q, (x) is
defined as Q, (x) = max(x — ¢ 0) + min (x + ¢, 0).

(3) The Computation of E. Similarly, fixed Z and J, the it-
eration formula of E can be obtained by solving subproblem
(12). According to Lemma 1 [50], an operator solving
subproblem (12) is denoted as I'(+). So, the solution of E is as
follows:

D]~ <
S D
I () =D, max<o, - ) _| ol

0, otherwise,
(17)

Dy, if[Dyf >,

forl=1,...,c

Here, E, is the [-th submatrix of E and denotes the noise
signal corresponding to X;. D = X - XZ,, + M/uy, and
D, is the [-th submatrix of D. ¢ = y,/uy denotes the threshold
of the corresponding block.

The iteration formulas of M;, M,, and y are as follows:

M11<Jr1 = MII< + Hx (X - XZK+1 + EK+1)’ (18)

K K
M, = M, + p (Zigr = T )s (19)
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where o, = { P if pyc - max{llZg = Ze,y I, Mg = Teor s 1Bx — Byl <&
P 1, otherwise :

The main procedure of BLLRR is shown in Algorithm 1.

2.3.3. The BLLRR Model of Integrated TCGA Data.
Though people have been studying cancer clustering based
on the gene expression for many years, it has been in-
creasingly recognized that DNA copy number variation and
DNA methylation also play important role in cancer un-
derstanding and clustering research [51-54]. Moreover, as
mentioned earlier, TCGA dataset can provide a variety of
genomic data for each sample, which make it possible to
study cancer based on a variety of biological processes.
Therefore, we integrate these different genomics data as an
integrated feature source to research cancer clustering.
Figure 1 shows a schematic diagram of the multiassay ge-
nomic data. In Figure 1, mRNA expression, DNA copy
number, and DNA methylation represent different genomics
assay data from TCGA, in which each row represents a
feature from a certain type of genome data, and each column
represents a sample. Therefore, in the integrated data, each
sample contains all the features from three categories of
genomic data.

Now, we focus on integrated multigenome data. In
our integrated data, there are three different types of
genome data. And each category data is regarded as a data
block. Because of the heterogeneity of different data
blocks, in the BLLRR method, we impose different
constraints on each data block, which are called as block-
constraint. After BLLRR decomposition, the coefficient
matrix Z, which reflects the similarity between samples, is
obtained. It is not difficult to understand that the samples
with high similarity can be regarded as located in the
same subspace. Consequently, based on Z, the samples
can be clustered. The schematic depiction of BLLRR
decomposition of integrated multigenome data is shown
as Figure 2. In this figure, X is the multigenome data
matrix, Z is the low-rank representation matrix, E is the
noise matrix, and y,; is the constraint intensity on the /-th
category data.

As shown in Figure 2, the observation data are
decomposed into two parts: one is the low-rank matrix and
the other is the noise matrix. Of course, an appropriate
restraint strength, i.e., scale parameter y, is critical to en-
hance the robustness of BLLRR and obtain accurate simi-
larity patterns between samples. Due to the different
constraints imposed on different types of data blocks, it is
difficult to tune parameter y by following the traditional
method of parameter tuning. Furthermore, because different
types of data have different noises, it is reasonable to think
that the noise of a certain type of data is only related to this
kind of data. Thus, we propose a new idea called parameter
self-regulation to set these parameters y; for different data
blocks. Specifically, the parameters are adjusted with the
iteration process. For the category [, the parameter y, is set as
follows:

Complexity

i il
Y = , (21)
"oy,

where y! is the constraint intensity of thei-th feature in the
category . As previously described, D = X— XZ,; + MK /u;
is an intermediate matrix generated in the iteration process,
and it has the same data dimension and corresponding data
block relationship with E. So, D; is the matrix corre-
sponding to the category I, and Di denotes the i-th feature
vector. As can be seen from formula (21), in the BLLRR
method, we impose different constraints on each feature
vector to balance the noise item of different categories of
data. And the constraint intensity of each feature vector is
calculated by the ratio of the F-norm of feature vector to
the F-norm of the data block matrix in which the feature
is located. In the iteration process of the BLLRR algo-
rithm, D is constantly updated, so the constraint strength
of each type of data is also constantly adjusted with
iteration.

2.3.4. Clustering with BLLRR. As discussed previously, the
coefficient matrix Z obtained after BLLRR decomposition
reflects the similarities between samples. According to Z,
the samples with high similarity are clustered into one
class. However, the observation data from real world are
inevitably noisy, so Z is usually neither sparse nor sym-
metric. Before using Z to implement clustering, we need to
do some processing on Z to improve the accuracy of
clustering and increase the interpretability of clustering.
Firstly, Z is normalized by rows and shrinked under the
appropriate threshold ({ that is very small and close to
zero. After the above treatment, Z becomes a sparse
matrix Z. That is, each sample is similar to only a few other
samples, which is critical for clustering problem. Next, we
construct an affinity graph using all the samples. Based on
Z, we define an affinity matrix Z to denote the affinities
between samples in the affinity graphs. In Z, both element
zZj;; and z;; denote the affinity of sample i and j, so Z; is
equal to z;;, and Z is a symmetric matrix. Congejguently,
the affinity matrix Z is defined as Z = (|Z| + | (Z)" |)/2. So
far, based on the affinity matrix, the sample clustering
problem can be regarded as a graph segment problem.
After the above two steps of processing, the affinity matrix
becomes sparse and symmetrical. However, the affinity
matrix does not have the block structure needed for
clustering and cannot directly obtain the clustering results
of samples. Finally, a classical spectral clustering meth-
od—K-means is adopted to obtain the final clustering
label of the samples based on Z.

The main clustering procedure of BLLRR is shown in
Algorithm 2.

3. Experimental Results and Discussion

Firstly, the original datasets from TCGA and their integrated
datasets for experiments are introduced. Then, based on
experimental datasets, we carry out cancer sample clustering
experiments to test the effectiveness of our method. In
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addition, in order to further demonstrate the performance of
BLLRR, we choose K-means, GNMF [27], gLPCA [55], LRR
[19], and LLRR [37] as comparison methods in our

Input: Observation matrix X, Laplacian matrix L
Parameter a, A
Output: Z
Initial: Zy
e = 1006 = 1072, 7 = 1.25 x | X2,

Loop until convergence

Updating Zy,, as (15)

Updating J,, as (16)

Updating Ey,, as (17)

Updating M{*! as (18)

Updating MX*! as (19)

Updating p,, as (20)
End Loop

=Ey=J,=M!=M) =0,4y=10"3,p, =254, = 1073,

ALGoRITHM 1: LADMAP for solving (9).
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FIGURE 2: The schematic diagram of BLLRR decomposition of integrated multigenome data.

method in detail.

experiments. In the following section, we give experimental
results and discuss the clustering performance of the BLLRR
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Output: Z

Input: Observation data X, clustering number K

(1) Get the coeflicient matrix Z of problem (8) using BLLRR method.
(2) Normalize Z by rows as z; = z;/|1z],.

(3) Shrink Z to get the sparse matrix Z by zZj; = { H v

(4) Compute the symmetrical affinity matrix by Z=(Z+ I(Z)TI)/Z.A
(5) Adopt K-means to get the cluster label of each sample based on Z.

z; ifz;>(C
0  otherwise’

ArGoriTHM 2: Clustering with BLLRR.

3.1. Dataset. The genomic data used in our experiment are
from TCGA. Here, we download three publicly published
cancer datasets: Colon Adenocarcinoma (COAD) dataset,
Esophagus Cancer (ESCA) dataset, and Head and Neck
cancer (HNSC) dataset. Each dataset contains two types of
sample labels. One is normal, and the other is tumor. In the
COAD dataset, there are 262 tumor samples and 19 normal
samples. In the ESCA dataset, there are 183 tumor samples
and 9 normal samples. In the HNSC dataset, there are 398
tumor samples and 20 normal samples. So, the total number
of samples in the three datasets is 281, 192, and 418, re-
spectively. In addition, each dataset includes three categories
of genome data: DNA copy number variation, mRNA ex-
pression level, and DNA methylation. Also, in the three
datasets, each sample from the same category of genome
data contains the same number of genes. Specifically, in
DNA copy number data, one sample contains 23,627 genes.
In mRNA expression data, one sample contains 20,502
genes. And in DNA methylation data, one sample contains
21,031 genes.

As stated earlier, besides mRNA expression data, both
DNA copy number data and DNA methylation data also play
important role in cancer clustering research. According to
Figure 1, we integrate the three types of genome data from
each dataset into multigenome data for cancer sample clus-
tering. The three integrated data are COlInteg corresponding
to the COAD dataset, ESInteg corresponding to the ESCA
dataset, and HNInteg corresponding to the HNSC dataset.
Thus, COInteg contains 281 samples and each sample con-
tains 65,160 genes, ESInteg contains 192 samples and each
sample contains 65,160 genes, and HNInteg contains 418
samples and each sample contains 65,160 genes.

3.2. Evaluation Index of Clustering Performance. In clus-
tering research, evaluation is a necessary work. Many in-
dexes have been designed to evaluate the performance of the
clustering algorithm, such as accuracy (AC), true positive
rate (TPR), false positive rate (FPR), receiver operating
characteristic (ROC) curve, precision, and F1-measure. In
this paper, we use AC, TPR, and FPR to evaluate the
clustering performance of the BLLRR algorithm. Next, we
will introduce them concisely.

3.2.1. AC. For a given dataset, the ratio of the number of
samples correctly clustered to the total number of samples is

defined as AC [56]. In practice, AC is calculated by com-
paring the clustering labels and real labels of samples. The
mathematical definition of AC is as follows:

AC = Zfil@(s,»,Nmap (Ti))’ (22)

where N is the total number of samples contained in each
experimental dataset, r; is the clustering label of sample i
assigned by the clustering algorithm, s; is the real label of
sample i, and J (s;, map (r;)) is a function that compares the
clustering label of a sample with its real label and gets the
result of the comparison. If the clustering label is consistent
with the real label, the function value is 1; otherwise, the
value is 0. And map (r;) is a mapping function that matches
the clustering label of the sample to its real label to facilitate
label comparison. By the Kuhn-Munkres method [57], the
best matching can be achieved.

3.2.2. TPR and FPR. TPR and FPR, as common metrics
widely used to evaluate clustering quality, are all calculated
based on the confusion matrix. So, let us start with a brief
introduction to confusion matrices. Confusion matrix, also
known as the error matrix, is a standard format for eval-
uating. Obfuscation matrix is a two-dimensional matrix.
Each row represents an actual class, and each column
represents a predicted class. The confusion matrix of a
simple case with two classes is shown in Table 1. Generally,
among these two classes, the one we are concerned with is
designated as a positive class and the other as a negative
class. In this table, true positive (TP) denotes the number of
positive class samples that are correctly clustered into
positive class. True negative (TN) indicates the number of
negative class samples that are correctly clustered into
negative class. False positive (FP) denotes the number of
negative class samples that are incorrectly clustered into
positive class. False negative (FN) means the number of
positive class samples that are incorrectly clustered into
negative class. TPR and FPR are defined as follows:

TP
TPR = ———,
TP + FN
(23)
FP
FPR=——.
FP + TN

From the calculation formulas of TPR and FPR, we can
see that the TPR represents the ratio of the number of
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TaBLE 1: The confusion matrix with two clusters.

Assigned class

Positive Negative
Positive TP N
Actual class Negative FP ™

samples correctly clustered into the positive class to the total
number of samples in the positive class, and the FPR rep-
resents the ratio of the number of samples incorrectly
clustered into the positive class to the total number of
samples in the negative class.

3.2.3. Experimental Results. In this section, based on ex-
perimental datasets, many sample clustering experiments
are performed to fully demonstrate the performance of our
method.

Firstly, we apply LLRR to cluster cancer samples based
on DNA copy number variation, mRNA expression level,
DNA methylation, and their integrated data. As mentioned
earlier, when the BLLRR method is applied to single ge-
nomic data, the BLLRR model is equivalent to the LLRR
model. The accuracies of the cluster are shown in Table 2. In
Table 2, DNA copy number variation is denoted by CN,
mRNA expression level is denoted by GE, and DNA
methylation is denoted by ME. And the best result on each
dataset is shown in bold.

From Table 2, we can see that the clustering accuracy of
each single genome data from our three experimental
datasets is over 92%. This indicates that each of the three
categories of genomic data contains useful information for
cancer sample clustering. Next, we compare the clustering
results on different genomic data of each dataset. Table 2
shows that, for the COAD dataset and the ESCA dataset, the
clustering accuracy on GE data is the best, reaching 95.35%
and 96.51%, respectively. And for the HNSC dataset, the
clustering accuracy on ME data is the best, reaching 97.22%.
This comparison further indicates that, besides GE data, CN
data and ME data can also be used as feature source data to
study the clustering of cancer samples. At last, for each
dataset, we compare the clustering accuracy on integrated
multigenome data with that on the single genome data. It is
not difficult to see that, on all three datasets, the clustering
effect of integrated data is worse than the best clustering
effect achieved on single genome data. The fundamental
reason for this result is that the LLRR method ignores the
heterogeneity of different genome data and imposes the
same constraint intensity on integrated multigenome data.
So, when LLRR is used to decompose multigenome data, the
noise and characteristic information of different genome
data cannot be well processed. Obviously, the LLRR model is
only suitable for single genome data but not for multi-
genome data. Summing up the above analysis, we come to
the following two conclusions: (1) DNA copy number
variation, mRNA expression level data, and DNA methyl-
ation are of great significance to the clustering of cancer
samples, so it is reasonable to integrate them into multi-
genome data for cancer sample clustering. (2) When

processing integrated multigenome data, the heterogeneity
of data must be fully considered.

Secondly, in order to test the clustering performance of
the BLLRR method based on multigenome data, the cancer
sample clustering experiments are conducted on the three
integrated multigenome data. As comparison methods, K-
means, GNMF, gLPCA, LRR, and LLRR are also used to
cluster cancer samples. Moreover, for the sake of the
comparability of the experimental results, we uniformly use
K-means algorithm to get the final clustering results for
GNMF, gLPCA, LRR, and LLRR, just like the BLLRR
method. As we all know, because K-means will randomly
select cluster centers for each clustering, when clustering
with K-means, there is a small difference in each clustering
result. In order to reduce the impact of this difference on the
evaluation of experimental results, in all our experiments, we
take the average of 30 clustering results as the final result. To
be specific, for GNMF, gLPCA, LRR, LLRR, and BLLRR,
firstly, we decompose the experimental data and get a matrix
for clustering. Then, we use K-means to repeat clustering 30
times based on the obtained matrix and take the mean of 30
times clustering accuracies as the final clustering result.
Table 3 gives the clustering accuracy of each method on
multigenome data in detail. Similarly, for each dataset, the
best result is displayed in bold.

Of these methods used for comparison, LRR and LLRR
are LRR-based clustering methods; K-means, GNMF, and
gLPCA are traditional methods. Firstly, as can be seen from
Table 3, the clustering accuracies of LRR and LLRR are
higher than those of three traditional methods on the whole.
This benefits from the successful learning of the subspace
structure embedded in data by LRR-based methods, which
reflects the importance of the subspace structure for clus-
tering research. Secondly, comparing LRR with LLRR, we
can see that the clustering performance of LLRR is better
than that of LRR. This is due to the introduction of the graph
regularization term in the LLRR method. As introduced
previously, graph regularization can preserve the geomet-
rical relationships of data and furthermore smooth the
nonlinear manifold. Therefore, LLRR has better ability to
learn the subspace structure than LRR. Thirdly, we compare
BLLRR with LLRR. It is very clear that, on each integrated
data, the clustering accuracy of BLLRR is higher than that of
LLRR. For LLRR and BLLRR, their basic clustering ideas are
consistent. Furthermore, in both algorithms, graph Lap-
lacian is introduced to help better obtain the subspace
structure of data. The main difference between the two
methods is that when decomposing multigenome data, the
idea of block-constraint is introduced into the BLLRR
method. In the BLLRR method, each category of genome
data contained in the integrated data is regarded as a data
block, and different constraints are imposed on different
data blocks. Because block-constraint considers the pecu-
liarities of different genome data in multigenome data, it can
improve the robustness of BLLRR to complex noise from
multigenome data and protect the feature information of
each genome data well. However, in the LLRR method, the
integrated multigenome data are regarded as single genome
data and imposed on a uniform constraint strength, which
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TaBLE 2: The clustering accuracy of LLRR on single genome data and integrated multigenome data.
COAD ESCA HNSC

Dataset

CN GE ME COlnteg CN ME ESInteg CN GE ME HNInteg
LLRR 92.88 95.35 94.19 95.04 94.79 96.51 94.79 96.39 94.98 96.28 97.22 96.31

TaBLE 3: The clustering accuracy on multigenome datasets.

Multigenome data K-means GNMF gLPCA LRR LLRR BLLRR
COlnteg 86.99 81.85 93.70 93.59 95.04 98.56
ESInteg 96.35 96.35 94.80 95.83 96.39 96.88
HNInteg 82.34 84.99 86.82 94.98 96.31 97.58

ignores the peculiarities of different types of data. So, BLLRR
can deal with multiple heterogeneous data more effectively
than LLRR. Finally, comparing the results of BLLRR shown
in Table 3 with the results of LLRR based on single genomic
data shown in Table 2, we can see that, on all the three
datasets, the clustering results of BLLRR on multigenome
data are better than the best results of LLRR on single ge-
nomic data. This indicates that multigenome data contain
more subspace structure information than single genome
data and can be used as comprehensive feature source for
cancer research. Meanwhile, it again illustrates that BLLRR
is capable of mining more useful subspace information from
multiple genomic data for sample clustering. Based on the
above analysis, we can conclude that the BLLRR method has
powerful ability to learn the intrinsic subspace structure
within multiple heterogeneous data and can effectively
cluster cancer samples by decomposing multiple genomic
data.

Now, we would like to further explain the importance of
parameter y; and the rationality of our setting of y;. Firstly, as
can be seen from formula (21), we set the corresponding
parameter y; according to the overall expression level of
different genomic data, which helps to set up appropriate
constraints for each genome data with different expression
levels. Moreover, y; will be continuously updated in the
iteration. So, parameter y; will help to process the complex
noises in multigenomic data better. Then, we compare the
experimental results of the BLLRR method and the LLRR
method to illustrate the rationality of parameter y;,. As
discussed earlier, when a uniform constraint strength is
applied to multiple genome data, BLLRR degenerates into
LLRR. From the comparative analysis of Tables 2 and 3, we
can get the following two points. One is that, for the LLRR
method, the clustering results on multigenomic data are
worse than those on single genome data. This indicates that
it is not feasible to impose uniform constraints on multi-
genomic data to deal with different noise levels. Second, for
the BLLRR method, its clustering result on multigenomic
data is better than that on single genome data. This proves
that parameter y; can effectively balance the complex noises
in different genomic data. Summarizing the above analysis,
both the formula and the experimental results show that the
parameter y; obtained in BLLRR is reasonable and effective.

However, the samples in our experimental datasets are
extremely imbalanced, that is, there are more tumor samples

and fewer normal samples. Sample imbalance is a common
problem in the field of bioinformatics. In order to indicate
the degree of sample imbalance, for each integrated data, we
calculate the ratios of two types of samples, as shown in
Table 4. In Table 4, nn; and ny represent the number of tumor
samples and the number of normal samples, respectively. So,
np/ny denotes the ratio of tumor samples to normal samples,
and ny/ny; denotes the ratio of normal samples to tumor
samples. In this case, the normal samples are surrounded by
a large number of tumor samples, which is disadvantageous
to the clustering of normal samples.

Finally, in view of this situation, we use TPR and FPR as
evaluation measures to research the clustering effect of each
class of samples. In cancer clustering research, researchers
tend to pay more attention to disease samples, that is, cancer
samples or tumor samples. Therefore, we regarded cancer
samples as positive samples and normal samples as negative
samples. The values of TPR and FPR on all multigenome
data are recorded in Table 5. According to the definition of
TPR, the larger the value of TPR, the better the clustering
effect of cancer samples. And for FPR, the smaller the value
of FPR is, the better the clustering effect of normal samples
is. So, in Table 5, for each data, both the maximum values of
TPR and the minimum values of FPR are remarked in bold.
And for ease of comparison, we also use histograms to il-
lustrate the results as shown in Figures 3 and 4.

In our data, because positive class samples are far more
than negative class samples, in the following description,
positive class samples are also called majority class samples
and negative class samples are also called minority class
samples. From Figure 3, we can find that the PTR values of
various methods are generally high on all three data, es-
pecially on ESInteg, the mean value of PTR exceeds 99%. In
addition, as can be seen from Figure 4, most FPR values
exceed 60%. Especially, from Table 5, we also see that the
FPR values of GNMF on COInteg and LRR on HNInteg are
100%. These results show that the extreme imbalance of
sample distribution is beneficial to the clustering of majority
class samples, but it is a great challenge to the clustering of
minority class samples. In order to demonstrate the clus-
tering performance of BLLRR for minority class samples, we
compare LRR, LLRR, and BLLRR. Firstly, as can be seen
from Table 5, for LRR, the values of TPR and FPR are the
highest on each data. This shows that the LRR method is
sensitive to the extremely imbalanced datasets when learning
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TaBLE 4: The ratios of two types of samples on each multigenome data.
Multigenome data nr ny nrlny ny/ny
COlnteg 262 19 13.79 0.07
ESInteg 183 9 20.33 0.05
HNInteg 398 20 19.90 0.05
TaBLE 5: The true positive rate and false positive rate on multigenome data.
Multigenome data Metrics K-means GNMF gLPCA LRR LLRR BLLRR
COlnte TPR 88.80 88.79 98.15 100.00 98.89 99.92
& FPR 38.00 100 48.84 94.74 67.19 24.21
ESInte TPR 99.45 99.45 98.61 100.00 99.11 99.45
& FPR 66.67 66.67 78.22 88.89 66.30 55.56
TPR 85.03 88.21 93.37 99.75 99.46 99.44
HNInteg
FPR 71.00 79.00 86.00 100.00 67.00 34.33
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FiGure 3: The true positive rates of six methods on each multi-
genome data.

subspace. That is, when the dataset is extremely unbalanced,
the LRR method can only learn the subspace structure of
majority class samples well but cannot learn the subspace
structure of minority class samples well. So, LRR is not
suitable for the study of subspace clustering in the case of
extremely unbalanced samples. Secondly, as can be seen
from Figure 4, compared with LRR, LLRR improves the
clustering performance of minority class samples. This
turther shows that graph regularization helps to learn
subspace information better by preserving local geometric
structures in high-dimensional data, which is of great sig-
nificance for the clustering of minority class samples. Finally,
we compare BLLRR with LLRR. We can see from Figure 4
that, on each data, the FPR value of the BLLRR method is far
less than that of the LLRR method and is the smallest of all
the comparison methods. This shows that block-constraint is
beneficial to extract more abundant structural information
from multigenome data, thus avoiding the loss of the

FIGURE 4: The false positive rates of six methods on each multi-
genome data.

intrinsic subspace structure of minority class samples in
manifold learning. In addition, this experimental result also
proves the validity of the BLLRR method for clustering
samples on extremely unbalanced data. To sum up, BLLRR
can effectively learn the subspace structure embedded in
multigenome data so that BLLRR can still cluster each class
of samples effectively even though the samples are extremely
unbalanced.

4. Conclusion

In this paper, we put forward a novel method termed BLLRR
to analyze integrated TCGA data. In the BLLRR model, the
graph Laplacian is introduced to make the BLLRR method
respect the local geometric relationship of data better when
learning the manifold structure. In addition, in order to deal
with heterogeneous data better, the idea of block-constraint
is introduced, which makes it convenient for BLLRR to
impose different constraint intensities on different data
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blocks. Because block-constraint can well balance the
complex noise of multiclass data and better preserve the
useful characteristic information of each class of data, our
method is competent to learn the subspace structure of
multiple heterogeneous data. Then, we apply the BLLRR
method to cancer sample clustering based on multigenome
data. Firstly, the integrated multigenome data are decom-
posed by BLLRR, and a coeflicient matrix is obtained.
Secondly, we construct the affinity matrix to denote the
affinities between samples based on the coefficient matrix.
Finally, we regard sample clustering as a problem of graph
segmentation and use K-means to achieve the cancer sample
clustering. The experimental results show that our method
has remarkable subspace learning ability. Especially for
minority class samples in extremely unbalanced datasets, the
clustering performance of the BLLRR method is obviously
better than other methods. So, the BLLRR method is an
efficient and reliable method for multigenome data analysis.
In future, we will continue to work on the comprehensive
analysis of TCGA data.
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