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In this paper, a class of two-parameter mixed-mode oscillation with time delay under the action of amplitude modulation is
studied. ,e investigation is from four aspects. Firstly, a parametric equation is considered as a slow variable. By the time-history
diagram and phase diagram, we can find that the system generates a cluster discovery image. Secondly, the Euler method is used to
discrete the system and obtain the discrete equation. ,irdly, the dynamic characteristics of the system at different time scales are
discussed when the ratio of the natural frequency and the excitation frequency of the system is integer and noninteger. Fourthly,
we discuss the influence of time delay on the discovery of clusters of this kind of system.,e research shows that the time lag does
not interfere with the influence of the cluster image, but the dynamics of the upper and lower parts of the oscillation in each period
will be delayed. So, we can improve peak performance by adjusting the time lag and obtain the desired peak. Finally, we explore the
multistate dynamic response of a two-dimensional nonautonomous Duffing system with higher order. According to bifurcation
diagram and time-history curve, bistable state will appear in the system within the critical range. With the gradual increase of
parameters, the chaotic attractor will suddenly disappear which will lead to the destruction of the bistable state.

1. Introduction

In recent years, with the rapid development of science
and technology, the nonlinear problems of the actual
power systems in various fields have become more and
more prominent. In the national economy, national
defense industry, and engineering technology, a large
number of practical problems urgently need to be pro-
cessed by nonlinear dynamics theory and methods, which
will promote the development of nonlinear dynamics
into a more comprehensive and in-depth development
period.

,e researcher can conduct a comprehensive analysis
and discussion from two important aspects of amplitude and
frequency. For example, when we focus on low-frequency
forces, i.e., the external excitation frequency is much smaller
than the natural frequency of the original system, and the
oscillator can exhibit a typical fast-slow dynamic called
mixed-mode oscillation (MMO). Sadhu [1] researched the

canards and mixed-mode oscillations in a singularly per-
turbed two predators-one prey model. Upadhyay et al. [2]
studied mixed-mode oscillations and the synchronous ac-
tivity in the noise-induced modified Morris–Lecar neural
system. Kingston and ,amilmaran [3] discussed the
bursting oscillations and mixed-mode oscillations in the
driven Lienard system. Shimizu et al. [4] made a thorough
exploration of mixed-mode oscillations and chaos from a
simple second-order oscillator under weak periodic per-
turbation. ,e oscillating behavior appeared in the above
four articles is generally expressed as a periodic state
characterized by a combination of a relatively large am-
plitude (spike state) close to the harmonics and a small-
amplitude oscillation (stationary state). Due to its com-
plexity and diversity, the system with delayed feedback has a
wide range of practical backgrounds which are always an
inevitable hysteresis when studying the laws of the motion of
the objective. ,erefore, it has important theoretical sig-
nificance and practical value in the research of delayed
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feedback system. Inaba et al. [5] studied the feedback control
problem of network systems with discrete delay and dis-
tributed delay. ,us, unlimited distributed delays were first
introduced in discrete network domains. Weicker et al. [6]
focused on the rapid transition layers among the plateaus
and demonstrated their contribution to the total cycle. Porte
et al. [7] experimentally characterized the mechanism of
strong chaos in semiconductor lasers with delayed feedback.
Sun et al. [8] proposed a method for time delay identification
in a multidegree-of-freedom (MDOF) linear system with
multiple feedbacks. Dmitrishin et al. [9] studied the robust
stability problem of the linear delayed feedback control
(DFC) mechanism.

As one of the research directions of nonlinear dy-
namics, the multitime scale plays the nonlinear essential
characteristics in the perspective of dynamics. Its theo-
retical method has been widely applied to neuroscience,
chemistry, physics, bioscience, and other fields. ,erefore,
nonlinear systems with multiple time scales have attracted
attention of many scholars at home and abroad. ,e effects
of slow variables on the rupture of pancreatic cells were
investigated [10] on the basis of the Chay–Keizer model
with three time scales. Izumiet al. [11] discussed the re-
lationship between fast scale bifurcation and slow scale
bifurcation in the discontinuous circuit. Yu et al. [12]
studied the delayed feedback control problem of bursting
synchronization in the small-world neural network pre-
sented by the neural network in some areas of the cerebral
cortex. Yu et al. [13] studied the generation of complex
cluster patterns in the Duffing oscillator with delayed
feedback and proposed the symmetric fold-fold and
symmetric Hopf-Hopf bursting patterns. Cornforth and
Lipson [14] introduced the fast and slow analysis method
and applied it to the study of multitime scale problems in
nonlinear systems. Han et al. [15] proposed a general
method for analyzing the mixed-mode vibration of a
system with two excitation frequencies. ,e validity of this
method was verified by the Duffing and van der Pol
equations. Yang et al. [16] discussed the influence of delay
coupling on bursting synchronous differential feedback
control in the modularized neural network. Meng et al.
[17] presented and analyzed two different types of bursting
in a two-compartment neuron model with the current
feedback control due to totally different generation
mechanisms. Li et al. [18] investigated the Brusselator with
different time scales, which behave in the classical slow-
fast effect. Zhou et al. [19] established a 3D discrete system
featuring a new series of complex fast-slow behaviors
caused by different bursters. Ding and Li [20] studied the
Rulkov model with self-inhibiting synapses and time de-
lays and compared them with the Rulkov model without
self-inhibiting synapses. Fan and Wang [21] studied the
effects of different time delays and coupling intensities on
the synchronization and cluster transition of Hind-
marsh–Rose neuron system. Bertram and Rubin [22]
described the fast-slow analysis technique and applied it to
relaxation oscillations, neuronal bursting oscillations,
canard oscillations, and mixed-mode oscillations. Han
et al. [23] studied the dynamics of the bursting by Duffing

system with multifrequency excitation. Qian and Yan [24]
studied a two-degree-of-freedom nonlinear-coupled
Duffing system with an external excitation and two ex-
ternal excitations by the fast-slow analysis method. Han
et al. [25] proposed two new bursting modes, fork-shaped
delay, and multifrequency excitation of the Duffing sys-
tem. Different patterns of electrical bursting were pro-
posed, and the types and generation mechanisms of these
bursting oscillations were analyzed by using fast-slow
dynamics. For instance, Shen et al. [26] introduced the fast
and slow analysis method and applied it to the study of
multitime scale problems in nonlinear systems. Yu et al.
[27] studied the generation of some new cluster modes in
multidelay-controlled oscillators. ,e bifurcation condi-
tion of the fast subsystem and its stability related to time
delay were calculated. Zhang et al. [28] analyzed the effects
of time scales on the dynamic behavior of the system.
McKenna and Bertram [29] explained the mechanism
behind the oscillation in cells by using the fast-slow
analysis method. Han et al. [30] proposed an approximate
frequency-truncation fast-slow analysis method to analyze
the dynamics of a fast-slow system with two incommen-
surate excitation frequencies. Yu and Wang [31] analyzed
the dynamics involving different waves in a double-well
potential oscillator coupling amplitude modulation con-
trol of low frequency. Zhou et al. [32] investigated the
bursting in Sprott B system with a single excitation and
showed that Hopf bifurcation delay may exhibit due to the
effect of slow passage through the supercritical Hopf bi-
furcation. Wang et al. [33] dealt with transitions through
Melnikov thresholds and the corresponding fast-slow
dynamics in a family of biparametric mechanical
oscillators.

From nature to humanity society, the phenomenon of
time delay is everywhere. In natural and social phenomena,
the changes and development of many systems are not only
related to the current state of the system but also depend on
some past state of the system. In other words, time delay is
inevitable in the system. Plaut and Hsich [34] discussed
parametric excitation systems with time delay, through
numerical simulation, and they found that the system had
very complicated dynamics. ,en, through the method of
multiple scales, they studied the weak nonlinear time-delay
system which is only in damping and discussed the main
resonance, the harmonic resonance, superharmonic reso-
nance, and time-delayed effect on the steady-state motion
frequency amplitude curve. Raghothama and Narayanan
[35] used the incremental harmonic equilibrium (IHB)
method to analyze the dynamic response of systems with
quadratic and cubic nonlinear time-delay parameters,
studied the stability of the periodic solution of the system by
Floquet theory, and obtained the bifurcation diagram of the
system by combining the stability analysis with the path-
following algorithm with arc-length parametric continua-
tion. Maccari [36] studied dynamic response with a time-
delay state feedback of van der Pol by using the asymptotic
perturbation (asymptotic perturbation) method to get the
system amplitude and frequency equation of two groups of
slowly varying. Ji and Leung [37] considered a parametric
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excitation of Duffing time-delay feedback problems through
the multiscale method to study the main parameters of the
resonance system and analyzed the stability of the steady-
state solution. It is found that saddle bifurcation and sub-
critical fork bifurcation exist in the system equilibrium
point.

It is also an important part in the field of nonlinear
dynamics to study the multistability problem of systems.
Multistability means that a system is neither stable nor
completely unstable but switches between two or more
mutually exclusive states over time. Multistable systems are
also susceptible to noise, initial conditions, or system pa-
rameters. ,e methods of solving the problem include the
analytical method, numerical analysis method, and experi-
mental method. In the fields of chemistry, electricity,
ecology, neuroscience and so on, the characteristic of the
multistable state has been widely applied and has produced
the vital influence to the research and development of these
disciplines. ,erefore, the system containing the multistable
state has been paid attention by many scholars at home and
abroad. Loukaides et al. [38] verified that the multistable
structure could be produced by single additive
manufacturing operation through analyzing examples, nu-
merical simulation, and physical prototype of selective laser
sintering production of titanium alloy. Yang and Ma [39]
systematically studied the mechanical responses of two new
two-dimensional (2D) mechanical metamaterials and real-
ized phase transition/shape reconstruction and zero Pois-
son’s ratio on the basis of the multistable mechanism,
achieving great morphological changes. Huang and Xü [40]
obtained the mathematical model by introducing time-delay
feedback to a plane autonomous nonlinear system, and the
results showed that time delay can not only make the system
Hopf bifurcation and produce periodic vibration but also
make the system appear multistable periodic motion or
periodic attractor. Schmitz et al. [41] discussed an example
of the application of the multistable state to chemistry,
showing that the phenomenon of the multistable state is
usually described by discussing the steady-state solution of a
nonlinear process, which is given by an abstract mathe-
matical model of single variable x and evolves according to
the differential equation. Lai et al. [42] studied the dynamic
behaviors such as multistability and bifurcation of a class of
neural network systems with time delay. ,e results show
that the system has 16 kinds of stable states and its own
attractive region. Huang et al. [43] discussed the phenom-
enon of multistable synchronization in the synchronous
region of the Kuramoto phase oscillator on a one-dimen-
sional closed loop under the action of asymmetric coupling
and further theoretically analyzed its steady-state law and
steady-state stability.

Here, we describe analytical and numerical studies of a
class of two-parameter mechanical systems with delayed
feedback:

€x + _x − α _x − ax(t − τ) + bx
3

� f1 + f2 cos ω1t( 􏼁( 􏼁cos ω2t( 􏼁,

(1)

where a is the linear restoring parameter and α> 0 is the
nonlinear damping coefficient. f1 > 0 is the unmodulated
amplitude, f2 is the degree of forcing modulation, ω1 is the
modulation frequency, and ω2 is the forcing frequency.

First of all, we analyze the case for f2 � 0. By the singular
perturbation methods, equation (1) can be given by

€x + _x − α _x − ax(t − τ) + bx
3

� f1 cos ω2t( 􏼁. (2)

Let c � f1 cosω2t, and use the Euler method obtained
the following discrete systems:

xn+1 � kn,

kn+1 � a1xn + c1kn − b1 xn( 􏼁
3

− d1xn − e1kn + c,
(3)

where a1 � (Δt)2 + τΔt, b1 � b(Δt)6, c1 � 2 + αΔt, d1 � 1+

α(Δt)2, and e1 � τΔt. Set a � b � 1, α � 1,ω2 � 0.01, and
f1 � 1. Figure 1 shows the time-history curve and phase
portraits of the system when τ � 0.3. As shown in the figure,
we can found that the trajectory of system (2) undergoes
symmetrical folding bifurcation, and it is a typical fast and
slow oscillation system.

From the previous developments, this paper focuses on
a class of two-parameter mixed-mode vibrations with time
delay under the action of amplitude modulation. ,e
structure of this paper is as follows. In Section 2, the bi-
furcation of the undisturbed model will be investigated. In
Section 3, we will discuss the oscillating dynamics when
the natural frequency is equal to the excitation frequency.
In Section 4, we will study the mixed-mode oscillation
dynamics reflected by the system when the natural fre-
quency and the resonant frequency are not equal. In
Section 5, the influence of the time delay is discussed. In
Section 6, we explore the multistate dynamic response of a
two-dimensional nonautonomous Duffing system with
higher order. In Section 7, further conclusions are
presented.

2. Representation and Local Bifurcation of the
Unperturbed Model

We consider the left side of equation (1). When τ � 0.3, the
unperturbed form

_x � y,

_y � αy + ax(t − τ) − bx
3

− y
3
.

(4)

Using Taylor’s expansion, we have x(t − τ) ≈ x(t) −

τx′(t),

_x � y,

_y � αy + ax − aτy − bx
3

− y
3
.

(5)

By calculation, the system has three equilibrium points:
E±(±

���
a/b

√
, 0) and E0 � (0, 0). With α> 0 and a> 0, from

the stability analysis, we know, E± are unstable and E0 is a
saddle point. In order to improve the bifurcation analysis of
system (5), we employ the Melnikov method. Using the
following transformations,
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x � ε1/3X,

y � ε2/3Y,

t � ε1/3t1,

a � ε2/3ξ1,

τ � ε2/3τ1,

α � ε4/3ξ2,

(6)

so system (5) turns into
_X � Y,

_Y � ξ1X − bX
3

+ ε ξ2Y − Y
3

− τξ1Y􏼐 􏼑.
(7)

Setting ξ1 � 1 and ε � 0, we get the integrable Hamil-
tonian system as follows:

_X � Y,

_Y � X − bX
3
.

(8)

And the corresponding Hamiltonian function is
H(X, Y) � 1/2Y2 − 1/2X2 + b/4Y4. As shown in Figure 2,
the phase portraits can express the homoclinic trajectories
for H(X, Y) � 0.

In order to discuss the value of parameters, we set

x0(t) � ±
�
2
b

􏽲

sec (t),

y0(t) � ∓
�
2
b

􏽲

sec (t)tanh(t).

(9)

,e Melnikov functions
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Figure 1: Phase portraits (a) and time series (b, c) of fast-slow system (2) for a � b � α � 1, ω2 � 0.01, f1 � 1, and τ � 0.3.
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Figure 2: ,e phase portraits of Hamiltonian function.
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M± ξ2( 􏼁 � ξ2 􏽚
+∞

− ∞
y
2
0(t)dt − 􏽚

+∞

− ∞
y
4
0(t)dt (10)

are given to verify the existence of Hamiltonian bifurcations.
By calculating, we get the Melnikov function as

M± ξ2( 􏼁 �
4ξ2
3b

−
16
35b2

. (11)

From Melnikov function theory, when
M±(ξ2) � 4ξ2/3b − 16/35b2 � 0, that is, ξ2 � 12/35b, we get
the approximate bifurcation of homoclinic orbits. Let ξ1 � 1,
and then according to transformation equation (7), the
Melnikov threshold α � 12a2/35b. To illustrate the existence
of saddle-node bifurcations in limit cycles at this time, we
lead into a periodic orbit c(e) by the level energy of e and
period of T(e). In the case of e ∈ (− 1/4, 0), there is a small-
amplitude period; if e> 0, c(e), there becomes a large-am-
plitude period. ,erefore, the Melnikov function for cyclic
orbits is

M± ξ2, e( 􏼁 � ξ2 􏽚
T(e)

0
y
2
0(t)dt − 􏽚

T(e)

0
y
4
0(t)dt. (12)

,rough numerical simulation, it can be seen that the
saddle-node bifurcations of the two periodic orbits are very
close to the Melnikov threshold. Figure 3 shows that when
the parameter enters region 2 from region 1 through the
saddle junction, the system transits from the equilibrium
state of the two small-amplitude limit cycles to a larger
amplitude periodic orbit. It also indicates that the Melnikov
threshold curve leads to the disappearance of the two limit
cycles, resulting in a stable large-amplitude limit cycle. In
order to facilitate the expansion discussed below, we only
consider the parameters of the region where there are two
small-amplitude periods and the unstable saddle point of the
ordinary equilibrium point. ,erefore, the numerical sim-
ulation parameter values given in this paper are fixed at
α � a � b � 1.

3. OscillatoryDynamics with Equal Frequencies

,is section focuses on the oscillating dynamics when the
natural frequency is equal to the excitation frequency. We
discuss the case when f2 � 0 and f1 is a variable. ,en, the
case where both f2 and f1 are variables is discussed.

3.1. Oscillation Mechanism of MMOs for f2 � 0. For f2 � 0,
we set β � cos(ω2t), and the fast system is driven by

€x + _x
3

− α _x − ax(t − τ) + bx
3

� f1β. (13)

We obtain its perturbed form by scale transformation as
follows:

_X � Y,

_Y � ξ1X − bX
3

+ ε ξ2Y − Y
3

− τξ1Y + f1β􏼐 􏼑.
(14)

By further calculating the Melnikov function, we have

M± ξ2( 􏼁 � ξ2 􏽚
+∞

− ∞
y
2
0(t)dt − 􏽚

+∞

− ∞
y
4
0(t)dt + f1β􏽚

+∞

− ∞
y0(t)dt.

(15)

,us, the Melnikov function of the local periodic orbit
can be expressed as

M± ξ2, e( 􏼁 � ξ2 􏽚
T(e)

0
y
2
0(t)dt − 􏽚

T(e)

0
y
4
0(t)dt + f1β􏽚

T(e)

0
y0(t)dt.

(16)

In equation (16), these basic integrals are constants.
When the value of y0(t) is given by a determined value, we
can get the critical threshold of the function. With the
change of β, f1β will periodically affect the saddle-junction
bifurcation, which leads to the phase trajectory transition
from a small-amplitude periodic orbit to a large-amplitude
periodic orbit, which further determines the oscillation
phenomenon.

Given the parameter value a � b � α � 1,ω2 � 0.1, τ �

0.3, and f1 � 1, Figure 4 shows the trajectory phase diagram
and time-history curve of the system. ,e transition of the
system between two small-amplitude periodic orbits can be
seen from Figure 4. ,is excitation oscillation can be
expressed as a closed singular orbit formed by two fast and
slow motion trajectories.

3.2. Oscillation Mechanism of MMOs as Varying f1 and f2.
When f1 ≠ 0, f2 ≠ 0, and ω1 � ω2, set β � cos(ω1t) �

cos(ω2t), and we assume

€x + _x
3

− α _x − ax(t − τ) + bx
3

� f1 + f2β( 􏼁β. (17)

Use the scale change to obtain its perturbed form as
_X � Y,

_Y � ξ1X − bX
3

+ ε ξ2Y − Y
3

− τξ1Y + f1 + f2β( 􏼁β􏽨 􏽩.

(18)

,en, we get the Melnikov function
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0.5 1.0 1.5 2.00.0
a

Figure 3: Melnikov threshold curve of the unperturbed model and
the qualitative branching at b � 1.
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M± ξ2( 􏼁 � ξ2 􏽚
+∞

− ∞
y
2
0(t)dt − 􏽚

+∞

− ∞
y
4
0(t)dt + f1(

+ f2β)β􏽚
+∞

− ∞
y0(t)dt.

(19)

And theMelnikov function of the local periodic orbit can
be written as

M± ξ2, e( 􏼁 � ξ2 􏽚
T(e)

0
y
2
0(t)dt − 􏽚

T(e)

0
y
4
0(t)dt + f1(

+ f2β)β􏽚
T(e)

0
y0(t)dt.

(20)

Once the value of y0(t) is determined in equation (20),
we can obtain the critical threshold of the function. With the
change of β, (f1 + f2β)β will periodically affect the saddle-
junction bifurcation, which leads to the phase trajectory
transit from a small-amplitude periodic orbit to a large-
amplitude periodic orbit, which determines the oscillation
phenomenon.

Take the parameter value a � b � α � 1,ω2 � ω1 �

0.01, τ � 0.3, f1 � 1, and f2 � 0.5. ,e time-history curve
of the system is seen in Figure 5. From the figures, we can
observe that the mixed-mode oscillation at this time has
two asymmetric small-amplitude periodic orbits and a set
of independent large-amplitude periodic orbits in each
period.

4. Oscillatory Dynamics with Two
Resonant Frequencies

,is section mainly discusses the mixed-mode oscillation
dynamics reflected by the systemwhen the natural frequency
and the resonant frequency are not equal. Without loss of
generality, assume that the two frequencies are proportional,
and ω1 is a positive integer multiple of ω2, i.e., ω1 � nω2, n is
an integer greater than 1, or ω1 is a noninteger multiple of
ω2, i.e., n is an irrational number, and then system (1) can be
turned into

€x + _x
3

− α _x − ax(t − τ) + bx
3

� f1 + f2 cos nω2( 􏼁( 􏼁cos ω2( 􏼁.

(21)

,en, we will discuss three cases: (1) the dynamics of the
system with n being a small positive integer; (2) the oscil-
lation behavior with n being a large positive integer; and (3)
the coupling of time-delay systems with n being an irrational
number.

4.1. Oscillation Mechanism of MMOs for a Relatively Small n.
Since n is a small real number, then the natural frequency ω1
is still a low frequency. ,us, ω1 and ω2 can be treated as a
fast and slow form with a single slow variable. Borrowing De
Moivre’s formula, we arrive at

cos(nx) � C
0
ncos

n
x + C

2
ncos

n− 2
x(i sinx)

2
+ · · ·

+ C
m
n cos

n− m
x(i sinx)

m
,

(22)

where m is the maximum value not greater than n. Let us see
some simple examples. When n takes 2 and 3, respectively,
we can get cos(2x) � 2 cos2 x − 1 and cos(3x) � 4 cos3 x −

3 cosx. Let n � 2, the oscillation behavior of the system is
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Figure 4: ,e phase trajectory (a) and time series (b) for the parameters a � b � α � 1,ω2 � 0.1, f1 � 1, f2 � 0, and τ � 0.3.
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Figure 5: ,e time series for the parameters
a � b � α � 1,ω2 � ω1 � 0.01, f2 � 0.5, f1 � 1, and τ � 0.3.
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shown in Figure 6, and the values of the parameters are a �

b � 1, α � 0.1,ω1 � 0.02,ω2 � 0.01, τ � 0.5, f1 � 0.5, and
f2 � 2, respectively.

From Figure 6, the oscillation mode can be clearly di-
vided into different parts, and the upper and lower oscil-
lations are connected by the jump connection. And
compared with previous Figure 6, the number of different
oscillations is significantly increased in the gentle region and
the peak region in each cycle.

Now, considering the situation of divergence when n � 2
and setting β � cos(ω1t) and cos(ω2t) � 2β2 − 1A, we have

€x + _x
3

− α _x − ax(t − τ) + bx
3

� f1β
2

+ f2β
3

− f2β.

(23)

Perturbation form by reference to the scale change
method is

_X � Y,

_Y � ξ1X − bX
3

+ ε ξ2Y − Y
3

− τξ1Y + f1β
2

+ f2β
3

− f2β􏽨 􏽩.

(24)

,en, we obtain the Melnikov function

M± ξ2( 􏼁 � ξ2 􏽚
+∞

− ∞
y
2
0(t)dt − 􏽚

+∞

− ∞
y
4
0(t)dt + f1β

2
+ f2β

3
􏼐

− f2β􏼁 􏽚
+∞

− ∞
y0(t)dt.

(25)

,e Melnikov function of the local periodic orbit can be
written as

M± ξ2, e( 􏼁 � ξ2 􏽚
T(e)

0
y
2
0(t)dt − 􏽚

T(e)

0
y
4
0(t)dt + f1β

2
􏼐

+ f2β
3

− f2β􏼑 􏽚
T(e)

0
y0(t)dt.

(26)

If y0(t) in equation (26) is given, the critical threshold of
the function can be determined. With the change of β,
f1β

2 + f2β
3 − f2β periodically affects the saddle-junction

bifurcation, causing the phase trajectory to change from a
small-amplitude periodic orbit to a large-amplitude periodic
orbit and generating oscillation behavior.

4.2. Oscillation Mechanism of MMOs for a Relatively Large n.
When n is a sufficiently large integer, there is a large step gap
between the natural frequency and the excitation frequency.
Since there are many oscillatory components in each os-
cillation mode, the De Moivre’s formula cannot be used for
analysis. Now, in this example, we discuss the following.

Letting β � cos(ω2t), then system (1) can be described as

€x + _x − α _x − ax(t − τ) + bx
3

� f1 + f2 cos ω1t( 􏼁( 􏼁β.

(27)

Accordingly, its perturbation form is
_X � Y,

_Y � ξ1X − bX
3

+ ε ξ2Y − Y
3

− τξ1Y + f1 + f2 cos ω1t( 􏼁( 􏼁β􏽨 􏽩.

(28)

So, the Melnikov function of the system becomes

M± ξ2( 􏼁 � ξ2 􏽚
+∞

− ∞
y
2
0(t)dt − 􏽚

+∞

− ∞
y
4
0(t)dt + f1(

+ f2 cos ω1t( 􏼁􏼁 􏽚
+∞

− ∞
y0(t)dt.

(29)

,us, we obtain the Melnikov function of the periodic
orbit as follows:

M± ξ2, e( 􏼁 � ξ2 􏽚
T(e)

0
y
2
0(t)dt − 􏽚

T(e)

0
y
4
0(t)dt + f1(

+ f2 cos ω1t( 􏼁􏼁 􏽚
T(e)

0
y0(t)dt.

(30)

If we can determine the value of y0(t) in equation (30),
then we also can get the critical threshold of the function.
,e value of the natural frequency ω also affects the function
M±(ξ2, e). In this case, as β changes, the system periodically
crosses the saddle-junction of the limit cycle, resulting in
more complex oscillatory behavior.

,rough numerical simulation, we use Figure 7 to il-
lustrate the dynamic behavior of the mixed-mode oscillation
when there is a gap between the natural frequency and the
excitation frequency. Here, we set the parameters of the
system a � b � 1, α � 0.1,ω1 � 2,ω2 � 0.01, τ � 0.3, and
f1 � f2 � 0.5. From Figure 7, we can find the transition
between two local limit cycles.

4.3. Oscillation Mechanism of MMOs for an Irrational
Number n. In this section, we consider the coupled Duffing
equation with multiple-frequency external forces and
delayed feedbacks as follows:

x″ + δ1x′ − y(t − τ) + x
3

� β1 cos ω1t( 􏼁 + β3 cos ω2t( 􏼁,

y″ + δ2y′ − x(t − τ) + y
3

� β2 cos ω1t( 􏼁 + β4 cos ω2t( 􏼁,

(31)
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Figure 6: ,e time history of fast-slow system (1) at ω1 � 2ω2,
where the parameters are a � b � 1, α � 0.1,ω1 � 0.02,ω2 � 0.01,

τ � 0.3, f1 � 0.1, and f2 � 2.
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where δi(i � 1, 2)(δ > 0) are the dampings, βi(i � 1, 2, 3, 4)

are the excitation amplitudes, and ωi(i � 1, 2) are the cor-
responding excitation frequencies. τ(τ ≥ 0) is the time delay
and ω1 � Ο(ε), where ε≪ 1.

4.3.1. General Method. We study the dynamic behavior of
fast-slow system (31) with two slow variables by using the
fast-slow analysis method. ,e two slow variables can be
represented by functions containing c(t), that is, cos(ω1t) �

f1(c(t)) and cos(ω2t) � f2(c(t)), and the system can be
transformed into a fast-slow system with only one slow
variable c(t). ,erefore, the system can be studied by the
traditional fast-slow analysis method.

According to Taylor series expansion, we obtain

cos(nt) � f
∗
n (cos(t)), (32)

where

f
∗
n (x) � C

0
nx

n
− C

2
nx

n− 2 1 − x
2

􏼐 􏼑 + C
4
nx

n− 4 1 − x
2

􏼐 􏼑
2

− · · ·

+ i
m

C
m
n x

n− m 1 − x
2

􏼐 􏼑
m/2

.

(33)

Set ω2 � nω1 (n is a positive integer), and then equation
(32) becomes

x″ + δ1x′ − y(t − τ) + x
3

� β1c(t) + β3f
∗
n (c(t)),

y″ + δ2y′ − x(t − τ) + y
3

� β2c(t) + β4f
∗
n (c(t)),

(34)

where c(t) � cos(ω1t). Furthermore, the fast subsystem can
be regarded as

x″ + δ1x′ − y(t − τ) + x
3

� β1c + β3f
∗
n (c),

y″ + δ2y′ − x(t − τ) + y
3

� β2c + β4f
∗
n (c).

(35)

4.3.2. 3e Duffing System with Commensurate Excitation
Frequencies. We begin our analysis by considering the
case when ω1 � 0.01 and ω2 � 0.03, name ω2 � 3ω1.

Setting δ1 � 2, δ2 � 1, β1 � β2 � 1.2, β3 � 0.5, and β4 � 0.555.
Figure 8 shows the time-history curve of the system when
τ � 0, τ � 1, and τ � 2. As shown in the figure, periodic
oscillations occur in these states. Each periodic oscillation is
composed of large-amplitude oscillations and small-ampli-
tude oscillations. When appearing small-amplitude oscilla-
tion, the system is said to be in a resting state. When the
system trajectory passes through the bifurcation point, it loses
its equilibrium state and shows a large oscillation. At this
point, the system moves from the resting state to the excited
state. When the orbit of the system jumps back and forth
between the resting state and the excited state, it is called
bursting. ,e two frequencies are engaged in the bursting of
the system. It is seen that each bursting pattern can be divided
into two parts, i.e., the upper and lower oscillations which are
connected by catastrophic jumps.

To further study the dynamic behavior in Figure 8, the
equilibrium curve and the transformation phase diagram of
fast subsystem (32) were drawn by setting ω1 � 0.01, ω2 �

0.03, δ1 � 2, δ2 � 1, β1 � β2 � 1.2, β3 � 0.5 and β4 � 0.555
(see Figure 8). So, we have the fast subsystem

x″ + δ1x′ − y(t − τ) + x
3

� β1c + β3f
∗
3(c),

y″ + δ2y′ − x(t − τ) + y
3

� β2c + β4f
∗
3(c),

(36)

where c(t) � cos(0.01t) is the control parameter. Figure 9
shows the equilibrium curve and the transformation phase
diagram τ � 0. It leads to an S-shaped equilibrium curve.
,e solid line represents the stable equilibrium point, and
the dotted line represents the unstable equilibrium point;
FB indicates the fold bifurcation point, and it can be seen
from the figure that there are two stable equilibrium points
and two fold bifurcation points in the fast subsystem. With
the change of c, the system trajectory moves to the right
along the stable equilibrium and loses the balance after
meeting the fold bifurcation point and then jumps to the
lower part of the balance curve.,e system is excited from a
static state. Due to the attraction of the lower balance, the
rail line tends to be stable and exits the excited state into the
static state until c attains its maximum value, and then the
rail line moves to the left. By this way, two jumps are
completed in a cycle.

Figures 9(c)–9(f) are the equilibrium curve and the
transformation phase diagram when τ � 1 and τ � 2. ,e
solid line represents the stable equilibrium point, while the
dotted line represents the unstable equilibrium point; FB
indicates the fold bifurcation point. ,e similar fold bi-
furcation occurred in Figures 9(a) and 9(b), and almost the
same rail line was drawn. Combining the equilibrium curve
and the transformation phase diagram, we found that the
occurrence of bursting is not significantly disturbed even if
the time delay increased, and the dynamic behavior of the
system do not lose its typical characteristics with the change
of time delay.

To further study the influence of time delay on the
bursting, Figure 10 shows the plot of the peak parts of
Figures 8(a)–8(c). We find that the time delay causes the
dynamic changes in the upper and lower parts of the os-
cillation within each period.
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Figure 7: ,e time history of fast-slow system (1) at ω1 � 200ω2,
where the parameters are a � b � 1, α � 0.1,ω1 � 2,ω2 � 0.01,

τ � 0.3, and f1 � f2 � 0.5.
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4.3.3. 3e Duffing System with Incommensurate Excitation
Frequencies. Now, we consider that the ratio of two fre-
quencies is not the ratio of two integers, i.e., there is at least
one of the two excitation frequencies which is irrational. We
assume that, in system (31), ω1 is a rational frequency, while
ω2 is an irrational frequency, e.g., ω2 � π/100. ,en, the
irrational frequency ω2 leads to a rational sequence
Ωn � π/100, in which πn denotes the 10− n-grade truncated π,
i.e., an approximation of π. For example, π3 � 3.141 and
π6 � 3.141592. Set δ1 � 2, δ2 � 1, β1 � β2 � 1.2, β3 � 0.5,
β4 � 0.555, and τ � 1. Figure 11 shows the time-history
curve of the system when ω1 � 0.01, ω2 � π/100, ω1 � 0.01,

ω2 �
�
3

√
/100, ω1 � π/100, ω2 � 0.01, and ω1 �

�
3

√
/100,

ω2 � 0.01.,e complex bursting behavior in the system with
delayed feedback is universal. Compared with Figure 8, the
upper and lower vibration of each bursting curve is more
intense.

Since the ratio of two excitation frequencies is not the
ratio of two integers, we cannot directly use the traditional
fast and slow analysis method to analyze the behavior of the
system with incommensurate excitation frequencies. So, we
try to use the numerical simulation to draw the overlap of the
bursting with incommensurate excitation frequencies and
the one with truncated and commensurate excitation
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Figure 8: Time series of the bursting for δ1 � 2, δ2 � 1, β1 � β2 � 1.2, β3 � 0.5, β4 � 0.555,ω1 � 0.01, ω2 � 0.03. (a1, a2) τ � 0, (b1, b2) τ � 1,
and (c1, c2) τ � 2.
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Figure 9: Continued.
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frequency (see Figure 12). It is shown that the yellow curve
agrees well with the red curve, i.e., the bursting pattern in
Figure 12(a) with 10− 2-grade truncated frequency agrees

well with the one in Figure 11(a), and the bursting pattern in
Figure 12(b) with 10− 3-grade truncated frequency agrees
well with the one in Figure 11(b).,erefore, we can conclude
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Figure 9: Fast-slow analysis of the bursting (a1, b1, a2, b2), (c1, d1, c2, d2), and (e1, f1, e2, f2) is related to the bursting patterns in Figure 8
(a1, a2), (b1, b2), and (c1, c2).
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Figure 10: ,e plot of the peak part of Figures 8(a)–8(c).
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Figure 11: Continued.
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that the bursting mode related to the incommensurate ex-
citation frequency can be well approximated to the
10− n-grade truncated excitation frequency.

,en, the bursting in Figure 10(a) can be used to analyze
the following system:

x″ + δ1x′ − y(t − τ) + x
3

� β1f
∗
50(c) + β3f

∗
157(c),

y″ + δ2y′ − x(t − τ) + y
3

� β2f
∗
50(c) + β4f

∗
157(c),

(37)

where c(t) � cos(0.0002t) is the control parameter so that
we can continue to study the fast subsystem by the fast-slow
analysis method.

5. TheEffect of TimeDelay onClusterDiscovery

Time delay is an important parameter of time-delay systems,
which affects the dynamic bifurcation and stability of the
system. ,is section mainly discusses the influence of time
lag on the occurrence and development of cluster discovery
before and after approximation and then confirms the ef-
fective time lag range by numerical simulation to reduce the
error size and obtain the desired peak dynamics. Here, we
mainly consider the system

€x + _x − α _x − ax(t − τ) + bx
3

� f1 cos ω2t( 􏼁. (38)

Set x(t − τ) ≈ x(t) − τx′(t) in the numerical simulation
of the two cases before and after the approximation of the
time lag which is performed.

Now, we take the parameters a � b � α � 1,ω2 � 0.01,

f1 � 1, τ � 1, τ � 0.6, τ � 0.5, and τ � 0.3. Figures 13–16
compare the time-history curves of the system before and
after approximation. From the comparison of these fig-
ures, the time lag does not affect the generation of cluster
images, respectively. By comparing the preapproximation
and the approximation of the system delay, it is found that
the approximation of the system in Figures 13 and 14
causes the dynamics of the upper and lower portions of
the oscillation to change in each cycle. Figures 15 and 16
show the approximation of the system is almost consistent
with the dynamic behavior before the approximation.
,erefore, the effective time range of the system should be
0∼0.3. In the above sections, we generally take τ � 0.3.

6. The Multistate Dynamic Response of
the System

In dynamic systems, multistability is the property that there
are multiple stable equilibrium points in the vector space
spanned by the state of the system. According to the
mathematical, there must also be points of instability be-
tween the stable points. Near the unstable equilibrium point,
any system will be sensitive to noise, initial conditions, and
system parameters, which will lead to the development of the
system in many different directions. Here, we mainly
consider the system
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Figure 11: Time series of the bursting for δ1 � 2, δ1 � 1, β1 � β2 � 1.2, β3 � 0.5, β4 � 0.555, and τ � 1. (a1, a2) ω1 � 0.01, ω2 � π/100 and
(b1, b2) ω1 � 0.01, ω2 �

�
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/100. (c1, c2) ω1 � π/100, ω2 � 0.01 and (d1, d2) ω1 �

�
3

√
/100, ω2 � 0.01.
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Figure 12: Bursting pattern with incommensurate excitation frequencies (red curve) agrees well with the one with truncated, commensurate
excitation frequencies (yellow curve).
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Figure 13: Time history of system (36). ,e red line represents the
curve before time-delay approximation, and the blue line repre-
sents the curve after time-delay approximation when the param-
eters are a � b � α � 1,ω2 � 0.01, f1 � 1, and τ � 1.
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Figure 14: Time history of system (36). ,e red line represents the
curve before time-delay approximation, and the blue line repre-
sents the curve after time-delay approximation when the param-
eters are a � b � α � 1,ω2 � 0.01, f1 � 1, and τ � 0.6.
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_x � y,

_y � − a1x + a2y + y
5

− f cosΩt,
(39)

where x(t) and y(t) are the real function. f> 0 is the
amplitude, and ω is the frequencies. a1 and a2 are the
physical parameters.

Use the Euler method to obtain the following discrete
systems:

xn+1 � yn,

yn+1 � ayn − b xn( 􏼁 − cy
5
n + β,

(40)

where a � 2 − a2(Δt), b � a1(Δt)
2 + a2(Δt) + 1, c � (Δt)5,

and β � f cosΩt. Next, we will study the multistate dynamic
response of the above discrete system. Set a and b as the real
parameter and β as the control parameter. Controllable slow
periodic motion is expressed as Zn � f cosΩt, in which the
external excitation frequency is taken as 0.001. For conve-
nience of calculation, we set c � 1.

Now, we take β as the bifurcation parameter to explore
the coexistence of chaotic attractors, periodic attractors, and
chaotic attractors or the occurrence of numbers and sizes
when parameters a and b take different values.

Case 1. Dynamic response without jumping phenomenon.
According to Figures 17 and 18, when a � 1.2 and

β � 0.24, the system is in a single periodic motion. When
− 0.6< β< − 0.5 and 0.5< β< 0.6, the system is in double
periodic motion. And there is no jump occurring at β � 0.

Case 2. When a � 1.2 and b � 0.23, dynamic occurs in the
jumping phenomenon at β � 0.

From Figures 19 and 20, we know, when − 0.53< β<
− 0.43 and 0.43< β< 0.53, the system is in double periodic
motion. When − 0.43< β< 0.43, the system is in a single
periodic motion. But, there appear jumping phenomenon
when β is near 0.

Case 3. ,e transition of the system from the bistable state
to the chaotic attractor to the monoperiodic attractor.

As shown in Figure 21, when β±c � ±0.91, the system is
in a state of bistable, and chaotic attractor and haploid
cycle attractor coexist. When β> 0.91 and β< − 0.91, the
system enters into haploid periodic motion, and the
bistable state disappears. And we also found that as β
increases or decreases, namely, more than the critical
value, the system of the chaotic attractor suddenly
disappeared.

Case 4. ,e transition of the system from the bistable state
to the chaotic attractor to the double periodic attractor.

When a � 1.9 and b � 0.17, from Figure 22, we obtain
β±c � ±0.042, and the system is in a state of bistable, and
chaotic attractor and double period attractor coexist.
When β> 0.042 and β< − 0.042, the system enters into
double periodic motion, and the bistable state disappears.
And as β increases or decreases, namely, more than the
critical value, the system of the chaotic attractor
disappeared.

Case 5. ,e transition of the system from the bistable state
to the chaotic attractor to the quadruple periodic attractor.

When a � 1.9 and b � 0.23, from Figure 23, we obtain
β±c � ±0.026, and the system is in a state of bistable, and
chaotic attractor and haploid cycle attractor coexist. When
β> 0.026 and β< − 0.026, the system enters into quadruple
periodic motion, and the bistable state disappears. And as β
increases or decreases, namely, more than the critical value,
the system of the chaotic attractor disappeared.

Case 6. ,e transition of the system from the bistable state
to the chaotic attractor to the chaotic attractor.

From Figure 24, we obtain β±c � ±0.026, and when a �

1.9 and b � 0.14, the system is in a state of bistable, and
chaotic attractor and haploid cycle attractor coexist.
When β> 0.026 and β< − 0.026, the system enters into
quadruple periodic motion, and the bistable state dis-
appears. And as β increases or decreases, namely, more
than the critical value, the system of the chaotic attractor
disappeared.
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Figure 15: Time history of system (36). ,e red line represents the
curve before time-delay approximation, and the blue line repre-
sents the curve after time-delay approximation when the param-
eters are a � b � α � 1,ω2 � 0.01, f1 � 1, and τ � 0.5.
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Figure 16: Time history of system (36). ,e red line represents the
curve before time-delay approximation, and the blue line repre-
sents the curve after time-delay approximation when the param-
eters are a � b � α � 1,ω2 � 0.01, f1 � 1, and τ � 0.3.
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Figure 17: Bifurcation diagram of β.
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Figure 18: Time series diagram.
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Figure 19: Bifurcation diagram of β.
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Figure 20: Time series diagram.

Duffing system where a = 1.9 and b = 0.23

–1.0

–0.5

0.0

0.5

1.0

x

–0.2 –0.1 0.0 0.1 0.2 0.3–0.3
β

Figure 21: Bifurcation diagram of β.

Duffing system where a = 1.9 and b = 0.17
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Figure 22: Bifurcation diagram of β.
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7. Conclusion

In this paper, we study the mixed-mode dynamics of a class
of oscillators with time-delay modulated amplitude. Com-
bine theoretical analysis and numerical simulation to make
time-history graphs and phase diagrams to explain when the
natural frequency and excitation frequency are the same or
proportional. We use the Melnikov method to explore the
influence of threshold parameters on the bifurcation. We
also discuss the coupled time-delay Duffing system to il-
lustrate the dynamic behavior when the frequency ratio is
irrational. Meanwhile, we analyze the effect of time-delay
approximation before and after the delay approximation on
the system clustering phenomenon. Finally, we explore the
bifurcation behavior of the fast subsystem. ,e numerical
simulation results show that, near the critical value βc, the
chaotic attractor will coexist with multiple periodic orbits or
chaos. By studying the bifurcation of stability and multi-
stability of these systems with parameter excitation, these
results have certain practicability and interest for the

mathematical modeling of the systems studied in the fields of
physics, chemistry, and mechanics. We can also idealize the
required systems in more fields.
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