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In this research, we use the double-delayed feedback control (DDFC) method in order to control chaos in a finance system. Taking
delays as parameters, the dynamic behavior of the system is investigated. Firstly, we study the local stability of equilibrium and the
existence of local Hopf bifurcations. It can find that the delays can make chaos disappear and generate a stable equilibrium or
periodic solution, which means the effectiveness of DDFC method. By using the normal form theory and center manifold
argument, one derives the explicit algorithm for determining the properties of bifurcation. In addition, we also apply some
mathematical methods (stability crossing curves) to show the stability changes of the financial system in two parameters’ (τ1, τ2)
plane. Finally, we give some numerical simulations by Matlab Microsoft to show the validity of theoretical analyses.

1. Introduction

In the past few decades, many scholars produced the in-
creasing interest in nonlinear dynamic economic methods
[1–11]. In the fields of finance, because of the influence of
nonlinear factors, all sorts of economy problems become
more and more complicated. )e misalignment of certain
parameters in the economic system can lead to runaway
markets and possibly even a financial crisis [12–15]. )ere-
fore, it is more and more important to study the internal
structure characteristics of a complex financial system and
uncover its causes, so as to predict and control the system.

A lot of work has been carried out in modeling nonlinear
economic dynamics, such as Goodwin’s model, van der Pol
model, IS-LM model, and nonlinear finance system
[14, 16–25]. However, it is well known that even a simple
nonlinear system can exhibit chaotic behavior. Chaos is the
inherent randomness of deterministic systems. Since the first
discovery of chaos in economics from 1985, a great impact
has been produced on the study of western economics
because chaos in the economic system means the inherent
uncertainty in macroeconomic operation. Over the past two
decades, many efforts had been made to control chaos, such
as stability and chaos synchronization, at unstable fixed

points. In recent years, many methods had been put forward
to control and synchronize chaos, such as OGYmethod [26],
PC method [27], fuzzy control [28], impulsive control
method [29, 30], stochastic control [31–33], linear feedback
control [34], delay feedback approach [35–44], and multiple
delay feedback control (MDFC) [45]. Delayed feedback
control (DFC) was first proposed by Pyragas [46] in order to
stabilize unstable periodic orbits (UPO). )en, the DFC
method was extended to the multidelay [47]. One of the
main characteristics of the DFC method is that it does not
need the knowledge of the internal dynamics of the system
beyond the period nor does it require a preliminary un-
derstanding of the required UPO. At the same time of UPO
control, using the DFC method to realize USS stability had
become an area of concern and had been applied to some
real systems. It is very successful in stabilizing UPO for the
DFC method, but the control of USS is less efficient. In [45],
authors put forward the MDFC method and conducted
numerical simulations, which showed that the MDFC
method preceded the DFC method in USS stability.

In [16], authors put forward a financial system de-
scribing the temporal changes using three variables: x(t)

denotes the interest rate, y(t) expresses the investment
demand, and z(t) represents the price index:
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_x(t) � (y − a)x + z,

_y(t) � 1 − by − x2,

_z(t) � − x − cz,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where the parameters a, b, and c represent the saving
amount, the investment cost, and the elasticity of market
demand, respectively, and a, b, and c are positive constants.
From [48], it is known that, under the parameter values
a � 0.9, b � 0.2, and c � 1.2, system (1) exists a strange
attractor, as shown in Figure 1.

In this paper, our object is to control the strange attractor
by using the DDFC method and study the following system:

_x(t)�(y − a)x+z+k1 x(t) − x t − τ1(  +k2 x(t)− x t − τ2(  ,

_y(t)�1 − by − x2,

_z(t)� − x − cz,

⎧⎪⎪⎨

⎪⎪⎩

(2)

where k1 ∈ R and k2 ∈ R are the feedback strengths and τ1
and τ2 are nonnegative delays.

)e initial conditions of system (2) are given as

x(♭) � φ1(♭),

y(♭) � φ2(♭),

z(♭) � φ3(♭), ♭ ∈ [− τ, 0],

(3)

where φ � (φ1,φ2,φ3)
T ∈ C � C([− τ, 0],R3) and τ � max

τ1, τ2 .
)e purpose of this paper is to analyze and numerically

study system (2). Our results show that the stability of system
varies with delays. When the delay passes a certain critical
value, the chaotic oscillation disappears and can be trans-
formed into stable equilibrium or periodic orbit, which
indicates that the chaotic property changes with the changes
of delays.

)is article is organized as follows. In Section 2, by
studying the distribution of eigenvalues of exponential
polynomials and using the results in [49, 50], the local
stability and existence of local Hopf bifurcation are obtained.
In Section 3, the properties of Hopf bifurcation are given by
using central manifold theory and normal form method. In
Section 4, using the crossing curve methods, it can obtain the
stable changes of equilibrium in (τ1, τ2) plane to overcome
the problem that no information is given on the plane
(τ1, τ2) that comes into being stable or unstable equilibrium
in Section 2. To support the analysis results, some numerical
simulations are carried out in Section 5. Finally, some
conclusions and discussions are given.

2. Stability ofEquilibriumandHopfBifurcation

Firstly, it gives the existence of equilibria.

Lemma 1.

(i) If c(1 − ab) − b≤ 0 holds, then system (2) has only a
boundary equilibrium E0(0, 1/b, 0)

(ii) If c(1 − ab) − b> 0 holds, then system (2) has two
interior equilibria E∗± (±κ, (1 + ac/c),∓κc− 3/2) be-
sides E0, where κ � (1 − ab − b/c)1/2.

In the following text, it always assumes that c(1 − ab) −

b> 0 is satisfied and only considers the stability of E∗+ and the
other equilibria can be analyzed similarly.

Let u1 � x − κ, u2 � y − (1 + ac/c), and u3 � z + κc− 3/2,
then system (2) becomes

_u1(t) �
1
c

+ k1 + k2 u1(t) + κu2(t) + u3(t) − k1u1 t − τ1( 

− k2u1 t − τ2(  + u1(t)u2(t),

_u2(t) � − 2κu1(t) − bu2(t) − u2
1(t),

_u3(t) � − u1(t) − cu3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

whose characteristic equation is

∇ λ, τ1, τ2(  � λ3 + a2λ
2

+ a1λ + a0 + k1e
− λτ1 λ2 + b1λ + b0 

+ k2e
− λτ2 λ2 + b1λ + b0  � 0,

(5)

where

a0 � c 2κ2 − b k1 + k2(  ,

a1 � 2κ2 + bc −
b

c
− (b + c) k1 + k2( ,

a2 � b + c −
1
c

+ k1 + k2 ,

b0 � bc,

b1 � b + c.

(6)

Now, we use the method in [49, 50] to study the root
distribution of (5). When τ1 � τ2 � 0, (5) becomes

∇(λ, 0, 0) � λ3 + k1 + k2 + a2( λ2 + k1b1 + k2b1 + a1( λ

+ k1b0 + k2b0 + a0 � 0.

(7)

By Routh–Hurwitz criterion, all roots of (7) have neg-
ative real parts if and only if

(H1)a2 + k1 + k2 > 0,

a0 + k1b0 + k2b0 > 0,

a2 + k1 + k2(  a1 + k1b1 + k2b1( > a0 + k1b0 + k2b0,

(8)

holds.

2.1. 3e Case τ1 > 0 and τ2 � 0. In this part, let τ2 � 0, and
choose τ1 as the parameter to study the distribution of the
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root of (5). Let iω be the root of (5), then ω must satisfy the
following equations:

− ω3 + a1 + k2b1( ω � k1 b0 − ω2( sinωτ1 − b1ω cosωτ1 ,

a2ω2 − a0 − k2 b0 − ω2(  � k1 b0 − ω2( cosωτ1 + b1ω sinωτ1 .

⎧⎨

⎩

(9)

Adding the squares of both sides of (9), it yields to

ω6
+ pω4

+ qω2
+ r � 0, (10)

where

p � k2 + a2( 
2

− 2 a1 + k2b1(  − k
2
1,

q � a1 + k2b1( 
2

− 2 a2 + k2(  a0 + b0k2(  + 2b0k1 − k
2
1b

2
1,

r � a0 + k2b0( 
2

− k
2
1b

2
0.

(11)

Furthermore, from (9), it can be obtained that

cosωτ1 �
Q b0 − ω2(  − pb1

k1 b0 − ω2( 
2

+ k1b
2
1ω2
≔ S1,

sinωτ1 �
p b0 − ω2(  + Qb1ω

k1 b0 − ω2( 
2

+ k1b
2
1ω2
≔ S2,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where p � − ω3 + (a1 + k2b1)ω and
Q � a2ω2 − a0 − k2(b0 − ω2).

Let z � ω2, then (10) becomes

h(z) ≔ z
3

+ pz
2

+ qz + r � 0. (13)

Applying the results in [49], the following conclusions
hold.

Lemma 2.

(i) If r≥ 0 and△≤ 0 hold, then (13) has no positive root

(ii) If r< 0 holds, then (13) has at least a positive root
(iii) If r≥ 0 and△> 0 hold, then (13) has a positive roots

iff z∗1 > 0 and h(z∗1 )≤ 0, where z∗1 � (− p +
��
△

√
)/3

and △ � p2 − 3q

Without loss of generality, it supposes that (13) has three
positive roots, denoted by z1,z2, andz3, respectively. 3en,
(10) has three positive roots ωk �

���
zk

√
(k � 1, 2, 3).

Substituting ωk into (9) gives

τ(j)

1k �

1
ωk

arccos S1(  + 2jπ , S2 ≥ 0,

1
ωk

− arccos S1(  + 2(j + 1)π , S2 < 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

where k � 1, 2, 3, j � 0, 1, . . ..
Define τ01 � mink�1,2,3 τ(0)

1k . Let λ(τ1) � c(τ1) + iω(τ1)
be the root of (5) with τ2 � 0 satisfying c(τ(j)

1k ) � 0 and
ω(τ(j)

1k ) � ωk.

Lemma 3. Suppose that h′(zk)≠ 0, then (d(c (τ(j)

1k )))/dτ1
≠ 0 and Sign d(c(τ(j)

1k ))/dτ1  � Sign h′(zk) .

Proof. Let τ2 � 0, and differentiate both sides of (5) about τ1,
and it has

dλ
dτ1

 
− 1

�
3λ2 + 2 b1 + k2( λ + a1 + k2b1 eλτ1

k1λ λ2 + b1λ + b0 

+
2λ + b1

λ λ2 + b1λ + b0 
−
τ1
λ

.

(15)

Hence,
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Figure 1:)ere exists chaotic attractor for system (1). (a) Time series of the solutions of system (1). (b))ree-dimensional phase diagram of
system (1).
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d c τ(j)

1k  

dτ1
⎡⎢⎢⎣ ⎤⎥⎥⎦

− 1

�Re
3λ2 + 2 b1 + k2( λ + a1 + k2b1 eλτ1 + k1 2λ + b1( 

k1λ λ2 + b1λ + b0 
−
τ1
λ

⎧⎨

⎩

⎫⎬

⎭

τ1�τ(j)

1k

�
1
Γ

3ω6
k + 2pω4

k + qω2
k  �

zk

Γ
h′ zk( ,

(16)

where Γ � k2
1[b21ω

4
k + (ω2

k − b0)ω2
k]. Since Γ > 0 and zk > 0,

then we have

Sign
d c τ(j)

1k  

dτ1

⎧⎨

⎩

⎫⎬

⎭ � Sign h′ zk(  . (17)

By 3 and applying the Hopf bifurcation theorem in [51],
for system (2) it has the following theorem. □

Theorem 1. It assumes that (H1) holds:

(i) If r> 0 and △≤ 0 hold, then, for all τ1 ≥ 0, E∗+ is
locally asymptotically stable (LAS)

(ii) If either r< 0 or r≥ 0 and △> 0, z∗1 > 0, h(z∗1 )≤ 0
hold, then for τ1 ∈ [0, τ01), E∗+ is LAS

(iii) If all conditions in (ii) and h′(zk)≠ 0 hold, then
system (2) undergoes Hopf bifurcations at E∗+ when
τ1 � τ(j)

1k , j � 0, 1, 2, . . . , k � 1, 2, 3

We know that the condition (H1) guarantees that all roots
of (7) have negative real parts. If (H1) is violated, we define

A � a2 + k1 + k2, B � a1 + k1 + k2( b1, C � a0 + k1 + k2( b0.

(18)

Let λ � Λ − A/3, then (7) becomes

Λ3 + p1Λ + q1 � 0, (19)

where p1 � B − A2/3 and q1 � (2A3/27) − (AB/3) + C.
Define

Δ1 �
p1

3
 

3
+

q1

2
 

2
,

α �
���
[3]


−
q1

2
+

���
Δ1


,

β �
���
[3]


−
q1

2
−

���
Δ1


.

(20)

Then, from Cardano’s formula, it has the following
)eorem.

Theorem 2.

(i) If △1 < 0, then (19) has three real roots
(ii) If Δ1 > 0, then (19) has a real root α + β − A/3 and a

pair of conjugate complex roots − (((α + β)/2)+

(A/3)) ± i((
�
3

√
(α − β))/2)

Furthermore, we assume that

(H2)Δ1 > 0,

α + β
2

+
A

3
< 0,

α + β −
A

3
< 0,

α − β≠ 0.

(21)

Theorem 3. It assumes that (H2) holds. For system (2), it
has the following results.

(i) If r> 0 and Δ≤ 0, then, for all τ1 ≥ 0, E∗+ of system
(2) is unstable.

(ii) If either r< 0 or r≥ 0 and Δ> 0, z∗1 > 0, h(z∗1 )≤ 0
hold, then for τ1 ∈ [0, τ01), E∗+ of system (2) is un-
stable. In addition, if dR eλ(τ01)/dτ1 < 0, then E∗+ is
LAS when τ1 ∈ (τ01, τ11), where τ11 is the second
critical value.

(iii) If all conditions in (ii) and h′(zk)≠ 0 hold, then
system (2) undergoes Hopf bifurcations at E∗+ when
τ1 � τ(j)

1k , j � 0, 1, 2, . . . , k � 1, 2, 3.

From the abovementioned discussion, one can know
that the stable switch may exist as τ1 varies for system (2)
with τ2 � 0. Define I as stable interval of τ1.

2.2.3e Case τ1 ∈ I and τ2 > 0. In this part, let τ1 ∈ I, τ2 > 0,
and λ � iϖ(ϖ � ϖ(τ2)> 0) be the root of (5), and it has

− ϖ3 + a1ϖ − k1 b0 − ϖ2( sinϖτ1 + k1b1ϖ cosϖτ1
� k2 b0 − ϖ2( sinϖτ2 − b1ϖ cosϖτ2 ,

a2ϖ2 − a0 − k1 b0 − ϖ2( cosϖτ1 − k1b1ϖ sinϖτ1
� k2 b0 − ϖ2( cosϖτ2 + b1ϖ sinϖτ2 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

which yields to

cosϖτ2 �
Q1 b0 − ϖ2(  − p1b1

k2 b0 − ϖ2( 
2

+ k2b
2
1ϖ2
≔ T1,

sinϖτ2 �
p1 b0 − ϖ2(  + Q1b1ϖ
k2 b0 − ϖ2( 

2
+ k2b

2
1ϖ2
≔ T2,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where

4 Complexity



p
1

� − ϖ3 + a1ϖ − k1 b0 − ϖ2 sinϖτ1 + k1b1ϖ cosϖτ1,

(24)

and

Q
1

� a2ϖ
2

− a0 − k1 b0 − ϖ2 cosϖτ1 − k1b1ϖ sinϖτ1.

(25)

Hence, we have

g(ϖ) ≔ ϖ6 + b
2
1 − 2a1 − k

2
2 + k

2
1 ϖ4 + a

2
1 − 2a0b1

+ 2b0 − b
2
1  k

2
2 − k

2
1 ϖ2

+ a
2
0 − b

2
0 k

2
2 − k

2
1  + 2 k1 a0 − b1ϖ

2
  b0 − ϖ2 

+ k1b1ϖ a1ϖ − ϖ3 cosϖτ1

+ 2 k1b1ϖ a0 − b1ϖ
2

  − k1 a1ϖ − ϖ3  b0 − ϖ2  

sinϖτ1 � 0,

(26)

with g(0) � a2
0 − b20(k2

2 − k2
1) + 2[k1(a0 − b1ϖ2) (b0 − ϖ2) +

k1b1ϖ(a1ϖ − ϖ3)] and g(+∞) � +∞.
It can be easily known that equation (26) has at most N

positive roots, denoted by ϖk(k � 1, 2, . . . , N). From (22),
we have

τ(i)
2k �

1
ϖk

arccos T1(  + 2iπ , T2 ≥ 0,

1
ϖk

− arccos T1(  + 2(i + 1)π , T2 < 0, i � 0, 1, 2, . . . .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(27)

Denote

τ02 � τ(0)
2k0

� mink∈ 1,2,...,N{ } τ(0)
2k ,

ϖ0 � ϖk0
.

(28)

Let λ(τ2) � α(τ2) + iϖ(τ2) be the root of (5) satisfying
α(τ(j)

2k ) � 0 and ϖ(τ(j)

2k ) � ϖk. By computation, we obtain

α′ τ
0
2  � [ RS − TU − 2k

2
2ϖ

2
0 + 2b0k

2
2ϖ

2
0 − b

2
1k

2
2ϖ

2
0 + R Dϖ0 − ETϖ0( sinϖ0τ

0
2

− (Q D + PE)ϖ0 cosϖ0 τ1 + τ02  +(− EQ + P D)ϖ0

sinϖ0 τ1 + τ02 − ERϖ0 + DTϖ0( cosϖ0τ
0
2 +(SP + UQ)cosϖ0τ1 +(QS − PU)sinϖ0τ1

− 1
,

(29)

where

[ � b
2
1k

2
2ϖ

4
0 + b

2
0 − ϖ20 

2
k
2
2ϖ

2
0,

P � − k1 − b1 + b0τ1 − τ1ϖ
2
0 ,

Q � − k1 − 2ϖ0 + b1τ1ϖ0( ,

R � − 3ϖ20 + a1,

D � − k1 b0 − ϖ0( ,

E � − k1b1ϖ0,

S � a1ϖ
2
0 − ϖ40,

T � 2b1ϖ0,

U � − b1ϖ
3
0 + a0ϖ0.

(30)

To sum up, we have the following theorem.

Theorem 4. Suppose that either (H1) or (H2) is satisfied,
and τ1 ∈ I for system (2).

(i) If (26) has no positive roots, then for all τ2 ≥ 0, E∗+ is
LAS.

(ii) If (26) has positive roots, then E∗+ of is LAS when
τ2 ∈ [0, τ02). In addition, if α′(τ

0
2)≠ 0, then system (2)

undergoes Hopf bifurcation at E∗+ when τ2 � τ02.

Remark 1. Obviously, there exists a Hopf bifurcation at τ02
when τ1 is fixed in the stable interval I. However, if we

choose τ1 in the unstable interval, then there may be no τ∗2
such that when system (2) is unstable in τ2 ∈ [0, τ∗2 ), it is
stable in τ2 > τ∗2 . )e result will be discussed in the latter
section by using the stability crossing curve method in [52].

Remark 2. For some τ1 and τ2, if (5) has two pairs of purely
imaginary roots ± iw1 and ± iw2, all the other roots have
negatively real parts. Let w1: w2 � l1: l2; then, system (2)
undergoes a double Hopf bifurcation (DHB) with the ratio
l1: l2. If l1, l2 ∈ Z+, then it is called a resonant DHB; otherwise,
it is called a nonresonant DHB. Since in system (2) there are
several parameters besides τ1 and τ2, the co-dimension 2 bi-
furcation may occur. An interesting study can be found in [53].

3. Property of Hopf Bifurcation at E∗+

In Section 3, we have obtained some sufficient conditions to
guarantee that the Hopf bifurcation occurs in system (2) at
E∗+ when τ2 � τ02. In this section, we assume that )eorem 4
(ii) is satisfied to establish the explicit formula for the
property of Hopf bifurcation at τ2 � τ02 using the method
proposed by Hassard et al. [54].

For convenience, we assume τ1 > τ2 and the phase space
C � C([− τ1, 0],R3). Let τ2 � τ02 + ϑ, ϑ ∈ R and dropping
“–”. )en, system (2) occurs Hopf bifurcation at ϑ � 0.
System (2) can be transformed into the following system:

_Ut � Lϑ Ut(  + f ϑ,Ut( , (31)
where Ut(θ) � U(t + θ) ∈ C, and Lϑ: C⟶ R3, f: R×

C⟶ R3 are given, respectively, by

Complexity 5



Lϑφ � A1φ(0) + B1φ − τ1(  + B2φ − τ02 , (32)

where

A1 �

k1 + k2 +
1
c

κ 1

− 2κ − b 0

− 1 0 − c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B1 �

− k1 0 0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B2 �

− k2 0 0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

f(ϑ,φ) �

φ1(0)φ2(0)

− φ2
1(0)

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(33)

where φ � (φ1,φ2,φ3)
T ∈ C.

By the Riesz representation theorem, for Θ ∈ [− τ1, 0],
there exists a bounded variation function ζ(Θ, ϑ) such that

Lϑφ � 
0

− τ1
dζ(Θ, ϑ)φ(Θ). (34)

In fact, one may choose

ζ(Θ, ϑ) �

0, Θ � − τ1,

B1, Θ ∈ − τ1, − τ02( ,

B1 + B2, Θ ∈ − τ02, 0( ,

A1 + B1 + B2, Θ � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(35)

For φ ∈ C1([− τ1, 0], R3), define

A(ϑ)φ �

0

− τ1
dζ(s, ϑ)φ(s), Θ � 0,

_φ(Θ), Θ ∈ − τ1, 0 ,

⎧⎪⎪⎨

⎪⎪⎩

R(ϑ)φ �
f(ϑ,φ), Θ � 0,

0, Θ ∈ − τ1, 0 .


(36)

For Ut � U(t + θ) ∈ C1, it has dUt/dΘ � dUt/dt. )en,
system (31) can be rewritten as

_Ut � A(ϑ)Ut + R(ϑ)Ut, (37)

where Ut(θ) � U(t + θ).
For α1 ∈ C([− τ1, 0],R3) and ψ, α2 ∈ C1([0, τ1],R3∗),

define

A
∗ψ(s) �


0

− τ1
dζT(t, 0)ψ(− t), s � 0,

− _ψ(s), s ∈ 0, τ1( ,

⎧⎪⎪⎨

⎪⎪⎩
(38)

and the inner product

〈α1, α2〉 � α1(0)α2(0) − 
0

− τ1

Θ

η�0
α1(η − Θ)dζ(Θ)α2(η)dη,

(39)

where ζ(Θ) � ζ(Θ, 0). By direct computations, we obtain
that q(Θ) � (1, ], ς)Teiϖ0Θ is an eigenvector of A corre-
sponding to the eigenvalue iϖ0, and q∗(η) � D

(1, ]∗, ς∗)eiϖ0η is an eigenvector of A∗ corresponding to the
eigenvalue − iϖ0. Furthermore, it has that

〈q∗(η), q(Θ)〉 � 1,

〈q∗(η), q(Θ)〉 � 0,
(40)

where

] � −
2κ

b + iϖ0
,

ς � −
1

c + iϖ0
,

]∗ �
κ

b − iϖ0
,

ς∗ �
1

c − iϖ0
,

D � 1 + ]∗]∗ + ς∗ς∗ − τ1k1e
− iϖ0τ1 − τ02k2e

− iϖ0τ02 
− 1

.

(41)

LetUt be the solution of system (31) when ϑ � 0. Define
Z(t) � 〈q∗,Ut〉; then,

_Z(t) � iϖ0Z(t) + q
∗
(0)f(Z,Z), (42)

where
f � f(0,W(Z,Z) + 2Re Zq ),

W(Z,Z) � Ut − 2Re Zq ,

W(Z,Z) � W20
Z2

2
+ W11ZZ + W02

Z
2

2
+ · · · .

(43)

Rewriting (42) as
_Ut � iϖ0Z(t) + g(Z,Z), (44)

where

g(Z,Z) � g20
Z2

2
+ g11ZZ + g02

Z
2

2
+ g21

Z2Z

2
+ · · · .

(45)

Furthermore,
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_W �
AW − 2Re q∗(0)fq(Θ) , Θ ∈ [− τ, 0),

AW − 2Re q∗(0)fq(Θ)  + f, Θ � 0,

⎧⎪⎨

⎪⎩
�
def
AW + H(Z,Z,Θ), (46)

where

H(Z,Z,Θ) � H20(Θ)
Z2

2
+H11(Θ)ZZ+H02(Θ)

Z
2

2
+ · · · .

(47)

Notice that

U1(t) � Z + Z + W
(1)
20 (0)

Z2

2
+ W

(1)
11 (0)ZZ + · · · ,

U2(t) � ]Z + ]Z + W
(2)
20 (0)

Z2

2
+ W

(2)
11 (0)ZZ + · · · .

(48)

Hence, we can obtain the following important quantities:

g20 � 2D ] − ]∗( , g11 � D ] + ] − 2]∗( ,g02 � 2D ] − ]∗( ,

g21 � 2D W
(2)
11 (0) +

1
2
W

(2)
20 (0) + W

(1)
20 (0)

1
2
] − ]∗ 

+ W
(1)
11 (0) ] − 2]∗( ,

(49)

where

W20(Θ) �
ig20

ϖ0
q(0)e

iϖ0Θ +
ig02

3ϖ0
q(0)e

− iϖ0Θ + E1e
2iϖ0Θ,

W11(Θ) � −
ig11

ϖ0
q(0)e

iϖ0Θ +
ig11

ϖ0
q(0)e

− iϖ0Θ + E2,

E1 �

G − κ − 1

2κ 2iϖ0 + b 0

1 0 2iϖ0 + c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

×

]

− 1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

E2 �

1
c

κ 1

− 2κ − b 0

− 1 0 − c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

×

− (] + ])

2

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(50)

where G � 2iϖ0 − (k1 + k2 + 1/c) + k1e
− 2iϖ0τ1 + k2e

− 2iϖτ02 .

Substituting E1 and E2 into W20(Θ) and W11(Θ), re-
spectively, furthermore, g21 can be computed. )us, it can
obtain the following quantities:

C1(0) �
i

2ϖ0
g20g11 − 2 g11



2

−
g02



2

3
⎛⎝ ⎞⎠ +

g21

2
,

E2 � −
Re C1(0) 

Reλ′ τ02( 
,

T2 � −
Im C1(0)  + E2Imλ′ τ02( 

ϖ0
,

B2 � 2Re C1(0) .

(51)

Hence, we have the following result.

Theorem 5. Hopf bifurcation is supercritical (subcritical) if
E2 > 0(< 0). 3e bifurcation periodic solutions are orbitally
stable (unstable) if B2 < 0(> 0). 3e period increase (de-
crease) if T2 > 0(< 0).

4. Crossing Curve Method

)e results in )eorem 4 clearly show that the stability of
system (2) changes depending on the parameters of system.
However, the (τ1, τ2) plane analysis results for bifurcation
generation are not obtained by this method in Section 2. Gu
et al. [52] gave an effective approach to separate the stable
and unstable regions in the (τ1, τ2) plane by using the
stability crossing curves. In this part, we carry out the
method. on the basis of equation (5), and it can define the
following polynomials about λ:

p0(λ) � λ3 + a2λ
2 + a1λ + a0,

p1(λ) � k1 λ2 + b1λ + b0 ,

p2(λ) �
k2

k1
p1(λ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(52)

satisfying
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(i) deg p0(λ)( ≥max deg p1(λ)( , deg p2(λ)(  

(ii)p0(0) + p1(0) + p2(0)≠ 0

(iii)The polynomialsp0(λ),

p1(λ) andp2(λ) do not have any common zeros

(iv) lim
λ⟶∞

p1(λ)

p0(λ)




+
p2(λ)

p0(λ)




 < 1

(53)

)e following discussions will follow the continuity of
the zeros with respect to the delay parameters as stated in the
following lemma [52].

Lemma 4. As the delays (τ1, τ2) continuously vary within
R2

+, the number of zeros (counting multiplicity) of Δ(λ, τ1, τ2)
on C+ can change only if a zero appears on or across the
imaginary axis.

The characteristic equation (5) has the same zeros with
the zeros of

Δ λ, τ1, τ2(  � 1 + δ1(λ)e− λτ1 + δ2(λ)e− λτ2 � 0, (54)

where δs(λ) � ps(λ)/p0(λ), s � 1, 2. )erefore, in general,
we may obtain all the crossing points and directions of
crossing from the solutions of Δ(λ, τ1, τ2) � 0 instead of
∇(λ, τ1, τ2) � 0. Now, based on the procedure proposed by
[52], the procedure is comprised of the following steps.

The first step is to determine the crossing set Ω of ω that
satisfies the feasibility condition so that the purely imaginary
root exists, and geometrically, the vectors that satisfy (54)
form a triangle (see Figure 2).

From Figure 2, the crossing set Ω can be represented as

L1(ω) � δ1(iω)


 + δ2(iω)


≥ 1, (55)

L2(ω) � δ1(iω)


 − δ2(iω)


≤ 1. (56)

The second step is to determine the inner angles
θ1, θ2 ∈ [0, π] of the triangle in Figure 2. From the cosine
law, it has

cos θ1 �
1 + δ1(iω)



2

− δ2(iω)



2

2 δ1(iω)



,

cos θ2 �
1 + δ2(iω)



2

− δ1(iω)



2

2 δ2(iω)



.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

For any ω ∈ Ω, one can obtain (τ1, τ2) from (54) as
follows:

τu
±

1 (ω) �
1
ω

arg δ1(iω)(  ± θ1 +(2u − 1)π ≥ 0,

u � u
±
0 ,u
±
0 + 1,u

±
0 + 2, . . . ,

(58)

and

τb
±

2 (ω) �
1
ω

arg δ2(iω)( ∓θ2 +(2b − 1)π ≥ 0,

b � b
±
0 ,b
±
0 + 1,b

±
0 + 2, . . . ,

(59)

where u ±0 and b ±0 are the smallest integers so that the right
sides of (58) and (59) are nonnegative.

Let

S
±
u,b � τu

±

1 (ω), τb
±

2 (ω)  

�
1
ω

arg δ1(iω)(  +(2u − 1)π ± θ1 ,

1
ω

arg δ2(iω)(  +(2b − 1)π∓θ2 ,

(60)

then

Tω � ∪
u≥u+

0 ,b≥b+
0

S
+
u,b ∪ ∪

u≥u−
0 ,b≥b−

0

S
−
u,b , (61)

which is the set of all (τ1, τ2) such that Δ(λ, τ1τ2) has a zero
at λ � iω.

T � Tω: ω ∈ Ω  identifies the stability crossing curves
in (τ1, τ2) plane, and the crossing set Ω is composed by a
finite number of intervals with finite length. Let these in-
tervals be Ωk, k � 1, 2, . . . ,N, arranged in such an order that
the left endpoint of Ωk increases with increasing k. )en,
Ω � ∪Nk�1Ωk, and the left endpoints of the intervals ωl

k and
the right endpoints ωr

k must only satisfy one of the three
equations: L1(ω) � 1 and L2(ω) � ± 1.

Let

T
±
u,b,k � ∪

ω∈Ωk

S
±
u,b,

T
k

� ∪
+∞

u�− ∞
∪

+∞

b�− ∞
T

+
u,b,k∪T

−
u,b,k ∩R2

+.
(62)

Then, T � ∪Nk�1T
k.

Hence, we can divide these endpoints into three types
according to the conditions satisfied by the equation ωl

k or
ωr

k. If ω
l
1 � 0, then Ω1 may have a special type. As stated by

[52], the possible shapes of Tk must belong to one of the
following three types:

Im

1

θ1θ2

δ2 (iω)e–iωτ2

δ1 (iω)e–iωτ1

Re

Figure 2: Triangle formed by 1, |δ1(iω)|, and |δ2(iω)|.
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(i) A series of closed curves.
(ii) A series of spiral-like curves oriented along hori-

zontally, vertically, or diagonally.
(iii) A series of open-ended curves whose ends approach
∞.

If the left endpoint of Ωk is of Type l and its right
endpoint is of Type r, we call an interval Ωk is of Type lr.
)ere are a total of 12 possible types, where

Type 1: L2(ω) � 1 is satisfied.S+
u,b,k linksS

−
u,b− 1,k at the

end.
Type 2: L2(ω) � − 1 is satisfied. S+

u,b,k links S−
u+1,b,k at

the end.
Type 3: L1(ω) � 1 is satisfied. S+

u,b,k links S−
u,b,k at the

end.
Type 0: ωl

k � 0. As ω⟶ 0, S+
u,b,k and S−

u,b,k approach
∞.

In 12 possible types, Type 11, Type 22, and Type 33 form
a series of closed curves. Type 12 and Type 21, Type 13 and
Type 31, and Type 23, and Type 32 form series spiral-like
curves oriented along diagonally, vertically, and horizon-
tally, respectively. Type 01, Type 02, and Type 03 form a
series of open-ended curves.

Next, to determine the existence of Hopf bifurcation, we
consider the direction of the root of (5) through the
imaginary axis by the method given in [52]. By (54) and the
implicit function theorem, τ1 and τ2 can be expressed as the
function of λ � iω. As λ moves along the imaginary axis,
(τ1, τ2) � (τu±1 (ω), τb

±

2 (ω)) moves along Tk. For a fixed
ω ∈ Ωk, let

Re i
λ

zΔ λ,τ1 ,τ2( )
zλ 

λ�iω
� R0,

Im i
λ

zΔ λ,τ1 ,τ2( )
zλ 

λ�iω
� I0,

− Re 1
λ

zΔ λ,τ1 ,τ2( )
zτs

 

λ�iω
� Rs,

− Im 1
λ

zΔ λ,τ1 ,τ2( )
zτs

 

λ�iω
� Is,

(63)

where s � 1, 2.
The direction in which the ω increases is called the

positive direction of the curve, which is reversed when the
curve passes the point corresponding to the Ωk endpoint.
When we move in the positive direction of the curve, we also
call the region on the left-hand side the region on the left.
)e following results come from [52].

Lemma 5. Let ω ∈ (ωl
k,ωr

k) and (τ1, τ2) ∈ T
k so that iω is a

simple root of (5) and for any ω′ ≠ω, Δ(iω′, τ1, τ2)≠ 0. 3en,
as (τ1, τ2) moves from the right-side region to the left-side
region of the corresponding curve inTk, a pair of roots of (54)
cross the imaginary axis to the right side ifR2I1 − R1I2 > 0.
If the inequality is reversed, the crossing direction is opposite.

Theorem 6. Let ω, τ1, and τ2 satisfy the conditions in
Lemma 5. 3en, when (τ1, τ2) crosses the curve along the
direction (ℓ1, ℓ2), a pair of roots of (54) cross the imaginary
axis to the right side if

ℓ1 R0I1 − R1I0(  + ℓ2 R0I2 − R2I0( > 0. (64)

If the inequality is reversed, the crossing direction is
opposite.

5. Numerical Simulations

In this part, we will carry out some numerical simulations by
using Matlab Microsoft to confirm the theoretical analyses.

Firstly, as an example, we investigate the following
system:

_x(t) � (y − 0.9)x + z − x(t) − x t − τ1(   − 2 x(t) − x t − τ2(  ,

_y(t) � 1 − 0.2y − x2,

_z(t) � − x − 1.2z,

⎧⎪⎪⎨

⎪⎪⎩

(65)

and the initial functions are φ1(θ) ≡ 2,φ2(θ) ≡ 3, and
φ3(θ) ≡ 2. With these parameters, condition (H2) holds.
When τ2 � 0, (10) has two positive roots ω1≐0.9752 and
ω2≐1.9997. Substituting them into (14) gives, respectively,

τ(j)
11 � 0.3795 + 6.4430j,

τ(i)
12 � 2.5811 + 3.1421i, j, i � 0, 1, 2, . . . .

(66)

Furthermore,
d(Reλ(τ(j)

11 ))/dτ1 < 0 and d(Reλ(τ(i)
12 ))/dτ1 > 0. By )eorem

4, E∗+ is unstable when τ1 ∈ [0, 0.3795)∪(2.5811, +∞), and
LAS when τ1 ∈ (0.3795, 2.5811). )e numerical simulation
results are shown in Figures 3–5.

Fix τ1 � 2.2 ∈ (0.3795, 2.5811), and it computes
τ02≐2.4692. By )eorem 4, we know that E∗+ is LAS for
τ2 ∈ [0, 2.4692). Choosing τ2 � 1, E∗+ is stable (see Figure 6).
Furthermore, by Section 3, it has C1(0) � − 10.1592+

0.7794i,B2 < 0 and E2 > 0 when τ2 � 2.4692, and the bi-
furcating periodic solution is stable, which is illustrated in
Figure 7.

Next, one gives some examples for the crossing curve
method using Matlab Microsoft. Firstly, it still chooses the
parameters in system (65). It can obtain the crossing set
based on the equation of L1(ω) and L2(ω). In equations (58)
and (59), we regard τ1 and τ2 as the function of ω, by
drawing the parametric equation curves in (τ1, τ2) plane,
and it obtains the crossing curves.)e crossing set has only a
interval Ω1 and ωl

1 � 0.9893 andωr
1 � 2.6715, satisfying

L1(ω) � 1 with ω � ωl
1 and ω � ωr

1 (see Figure 8(a)). So, the
interval Ω1 is Type 33 and the crossing curves form a series
of closed curves (see Figures 8(b) and 8(c)). Firstly, it chooses
τ1 � 10> 2.5811 and τ2 � 0, and it can obtain that E∗+ is
unstable (see Figure 9). In the following, it chooses, re-
spectively, τ2 � 1, 3.35, 3.7 for fixed τ1 � 10, and it can find
that E∗+ is stable when τ2 � 1 (see Figure 10) and τ2 � 3.7 (see
Figure 11), unstable when τ2 � 3.35, and there exists a stable
periodic solution (see Figure 12). Furthermore, it can fix
a � 0.9, b � 0.2, and c � 1.2, and let k1 and k2 change, and
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Figure 3: E∗+ is unstable, and chaos phenomenon still exists for system (65) when τ1 � 0.1 ∈ [0, 0.3795). (a) Time series of the solutions. (b)
)ree-dimensional phase diagram.
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Figure 4: E∗+ is stable and the chaos phenomenon disappears for system (65) when τ1 � 0.8 ∈ (0.3795, 2.5811). (a) Time series of the
solutions. (b) )ree-dimensional phase diagram.
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Figure 5: E∗+ is unstable and a stable periodic solution exists for system (65) when τ1 � 2.77> 2.5811. (a) Time series of the solutions. (b)
)ree-dimensional phase diagram.
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the crossing curves can produce different shapes (see
Figures 13–15). When k1 � 1 and k2 � − 5, the crossing sets
have two intervals Ω1 � (0.3696, 0.9733) and Ω2 �

(2.9688, 5.4793). Here, ωr
1 and ωl

2 satisfy L2(ω) � − 1 while
ωl
1 and ωr

2 satisfy L1(ω) � 1 (see Figure 13(a)). So, the in-
terval Ω1 belongs to Type 32 and the interval Ω2 belongs to
Type 23.)e crossing curves are spatial-like curves, as shown
in Figures 13(b) and 13(c). Choosing k1 � − 4 and k2 � 2, the
crossing sets include two intervals Ω1 � (0.2097, 1.0151)

and Ω2 � (2.3341, 6.2418) (see Figure 14(a)). )e crossing
curves belongs to Type 31 and Type 13 with the spiral-like
shape (see Figure 14(b)). Here, the stability crossing curves
inΩ1 � (0.2097, 1.0151) belonging to type 31 are not drawn.
If k1 � 3 and k2 � 1, the crossing set includes a interval
Ω1 � (0, 0.7486). Since ωl

1 � 0 and L1(ωr
1) � 0 (see

Figure 15(a)), the stability crossing curves belongs to Type 03
with the open-ended shapes (see Figure 15(b)). )ese show
that the changes of the feedback strengths k1 and k2 can alter

the stable region of the system in (τ1, τ2) plane, and it has an
important effect on the stability of the financial system.

In addition, for the following two systems:
_x(t) � (y − a)x + z,

_y(t) � 1 − by − x2 + k1 y(t) − y t − τ1(  

+ k2 y(t) − y t − τ2(  ,

_z(t) � − x − cz,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(67)

and
_x(t) � (y − a)x + z,

_y(t) � 1 − by − x2,

_z(t) � − x − cz + k1 z(t) − z t − τ1(   + k2 z(t) − z t − τ2(  ,

⎧⎪⎪⎨

⎪⎪⎩

(68)

that is, delayed feedback terms appear on the investment
demand or the price index, respectively. Systems (67) and
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Figure 6: E∗+ is stable for system (65) with τ1 � 2.2 and τ2 � 1. (a) Time series of the solutions. (b) )ree-dimensional phase diagram.
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Figure 7: E∗+ is unstable and there exists a stable periodic solution for system (65), where τ1 � 2.2 and τ2 � τ02. (a) Time series of the
solutions. (b) )ree-dimensional phase diagram.
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(68) can be investigated as system (2) and can also obtain
similar results to system (2).

)e time-delay feedback controller ke− dτ[u(t) − u(t −

τ)] with delay correlation coefficients can also be designed to

control system (1) which can modify the bifurcation char-
acteristics of a nonlinear system to obtain some specific
dynamical behaviors. Note that the strength of feedback
control is in the form of ke− dτ , and the function decreases
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Figure 9: E∗+ for system (2) is unstable and there exists a stable periodic solution when τ1 � 10 and τ2 � 0 with feedback strength sets:
k1 � − 1 and k2 � 0. (a) Time series of the solutions. (b) )ree-dimensional phase diagram.
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Figure 10: E∗+ for system (2) is stable when τ1 � 10 and τ2 � 1 with feedback strength sets: k1 � − 1 and k2 � − 2. (a) Time series of the
solutions. (b) )ree-dimensional phase diagram.
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Figure 11: E∗+ for system (2) is stable when τ1 � 10 and τ2 � 3.7 with feedback strength sets: k1 � − 1 and k2 � − 2. (a) Time series of the
solutions. (b) )ree-dimensional phase diagram.
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Figure 12: E∗ for system (2) is unstable and there exists a stable periodic solution when τ1 � 10 and τ2 � 3.35 with feedback strength sets:
k1 � − 1 and k2 � − 2. (a) Time series of the solutions. (b) )ree-dimensional phase diagram.
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exponentially with delay τ. )is means that the feedback
effects of past states diminish over time. Hence, it can carry
out the feedback with time-delay correlation coefficients in
system (1). )e systems with coefficient dependent delay
increase the complexity of the analysis and are challenging,
especially those with two time delays. )e research is set
aside for future consideration.

6. Conclusion

)is paper analyzes a class of chaotic financial systems with
two feedback delays. System (1) exists in chaos under some
parameters. )e purpose of this study is to control the chaos
of the system. For controlling chaos, we improve the DFC
method and introduce the double-delay feedback control
method in system (1). We introduce the control term in the
equation of the interest rate. )e system may exist in three
equilibria, and we choose one of these equilibria as the
research target. It finds that the single delay feedback control
can make the system stable and produce the stable switches,
i.e., when τ1 changes with τ2 � 0, system (2) exists stable
switches and chaos may disappear. Furthermore, fixing τ1 in
a stability interval and taking the delay τ2 as a parameter,
proves the existence of the first critical value τ2. At this
critical value, the equilibrium loses stability and Hopf bi-
furcation occurs. )e properties of Hopf bifurcation are also
studied by using central manifold theory and normal form
method for determining the direction of Hopf bifurcation
and the stability of bifurcating periodic solution. )e
abovementioned results are obtained under the condition
fixed τ1 in a stability interval; however, if we choose the τ1 in
the unstable interval, then there may exist no the critical
value τ02 such that τ02 is the first Hopf bifurcation value.
Hence, for obtaining the complete result separating the
stable and unstable regions in the (τ1, τ2), using the stability
crossing curve methods in [52], it obtains the curve sets in
which Hopf bifurcation occurs in (τ1, τ2) plane for fixed
a, b, and c. By numerical simulations, it can find that the
different shape crossing curves, and crossing sets can

produce by changing k1 and k2. )eoretical analysis and
numerical simulation results show that, for chaotic financial
systems, chaotic oscillation can be controlled by delays. In
other words, the multiple delay financial systemwe study has
chaotic oscillations when τ1 � τ2 � 0. When the delay in-
creases, the chaos disappears, the equilibrium point gains
stability or the system appears periodic oscillation, and the
periodic solution is generated by the Hopf bifurcation. )e
DDFC method can control the chaotic behavior of the
system more effectively than the DFC method. When τ1
cannot change the chaos behavior of system (2), system (2)
can be stabilized by varying τ2 value. )ese show that the
effectiveness of the DDFC method.
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