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)is paper investigates the nonlinear vehicle platoon control problems with external disturbances. )e quadratic spacing policy
(QSP) is applied into the platoon control, in which the desired intervehicle distance is a quadratic function in terms of the vehicle’s
velocities. Comparing with the general constant time headway policy (CTHP), the QSP is more suitable to the human driving
behaviors (HDB) and can improve the traffic capacity. )en, a novel platoon control scheme is proposed based on the distributed
integrated sliding mode (DISM). Since the external disturbances are taken into consideration, the sliding mode method is
employed to handle the disturbances. Moreover, the stability and string stability of the proposed platoon control system are
strictly analyzed. In final, numerical simulations are provided to verify the proposed approaches.

1. Introduction

In recent years, the vehicle platoon control has received
substantially increasing interests in the intelligent trans-
portation system [1–3] due to its significant advantages in
reducing traffic jams, improving the traffic safety, and in-
creasing traffic capacity [4–6]. Generally, the objective of the
vehicle platoon control is to drive a group of vehicles into a
desired platoon from arbitrary initial positions. From this
definition, we can find that the dynamics of vehicle, the
communication topology, and the spacing policy play im-
portant roles in the vehicle platoon control.

To reach the desired platoon, many control theories have
been applied to vehicle driving, including the consensus
control [7], adaptive control [8–10], model predictive
control [11], and the sliding mode control [12–17]. For
example, a distributed consensus strategy with second-order
dynamics is proposed to achieve the platooning of vehicles in
[7], where the actuator saturation and absent velocity
measurement are considered. In [8], the vehicle platoon
control with velocity constraints, input saturations, and
unknown driving resistances are handled by the adaptive
neural sliding mode control techniques. By using the model
predictive control method, a novel vehicle platoon control

scheme with multiple constraints and communication de-
lays is proposed in [11]. While considering the state of the
leader and the braking force, a distributed integrated sliding
mode-based platoon control algorithm is given in [12]. In
these existing results, the sliding mode control method has
attracted increasing interests due to its significant advan-
tages in dealing with the external disturbances. For instance,
the neuroadaptive quantized PID sliding mode control
method for heterogeneous vehicle platoon is presented with
external disturbances and unknown actuator dead-zone in
[13]. )e Pontryagin’s minimum principle (PMP) based set-
point optimization and sliding mode control law are pro-
posed for vehicle platoon in [14]. In [15], a distributed
adaptive integrated sliding mode control method is devel-
oped to show the stability and string stability of the proposed
vehicle platoon control system. Although these existing
sliding mode control methods have great advantages in
vehicle platoon control, the above studies mostly use the
linear dynamics, which greatly limits their applications.
Hence, it is necessary to further investigate the sliding mode-
based platoon control with nonlinear vehicles.

In addition, another key point of vehicle platoon is to
select a reasonable intervehicle spacing strategy. It can im-
prove the traffic capacity and reduce the road pressure [18].
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Generally, there are two strategies for the desired platoon: the
constant-spacing policy (CSP) and the variable-spacing policy
(VSP). )e differences between these spacing policies are the
evolution policies of the desired distance between any adja-
cent vehicles [19]. Comparing with the CSP, the desired
distances in VSP are usually time-varying and related to the
vehicle’s velocities. In detail, the constant time headway policy
(CTHP) and the quadratic spacing policy (QSP) are two
classical spacing policies in VSP. Particularly, the desired
distance in QSP is a quadratic function in terms of the ve-
hicle’s velocities. It can meet the requirement of human
driving behaviors (HDB). For example, the vehicle platoon
control with QSP is proposed in [20], where the traffic flow
stability and energy consumption are considered. In [21], a
novel platoon control scheme with QSP is presented for the
heavy trucks in mixed traffic situations, in which the fuel
economy and pollution are taken into consideration. While
considering the vehicle characteristics and road conditions, a
vehicle platoon control algorithm with novel QSP is proposed
for the longitudinal spacing control in [22]. Although the QSP
shows great advantages in vehicle platoon control, there are
few results applying the QSP into the vehicle platoon control
with nonlinear dynamics.

Motivated by this fact, a distributed integrated sliding
mode (DISM) based vehicle platoon control strategy with
both QSP and nonlinear dynamics is proposed. )e finite-
time stability and string stability of the proposed vehicle
platoon control system are strictly analyzed. In detail, a third-
order nonlinear dynamics with external disturbances is ap-
plied to describe the vehicles. )en, the vehicle platoon with
QSP is presented to maintain the desired intervehicle spacing.
Since the QSP is a quadratic function in terms of the vehicle’s
velocities, the characteristic of this policy is more practical
than the existing results with CTHP and CSP [23]. Moreover,
the finite-time stability for each vehicle is shown by using the
Lyapunov stability theory, and the string stability of the

proposed vehicle platoon control system is demonstrated
based on the coupled sliding mode method. In addition, an
approximation function is employed to overcome the chat-
tering in the sliding mode control.

)e remainder of this paper is presented as follows. In
Section 2, the preliminaries and problem formulation are
presented. )en, the DISM-based vehicle platoon control
with nonlinear dynamics and QSP is proposed, and the
stability of proposed platoon control system is analyzed in
Section 3. To illustrate the proposed approaches, numerical
simulations are presented in Section 4. In final, Section 5
draws the conclusion and describes the future work.

Notations: throughout this paper, (1) R and R+ represent
the set of all real numbers and the set of all nonnegative real
numbers, respectively. (2) ‖ · ‖ stands for the Euclidean norm
of a vector. (3) | · | denotes the absolute value of real
numbers. (4) )e sgn(·) denotes the signum function.

2. Preliminaries and Problem Formulation

2.1. Vehicle Dynamics. Consider a group of nonlinear ve-
hicles, which includes one leader and N followers. Index
these vehicles as 0, 1, . . . , N, where 0 denotes the leader, and
1, . . . , N are the followers. )e dynamic model of each
vehicle is shown as

_ri(t) � vi(t),

_vi(t) � ai(t),

_ai(t) � fi vi(t), ai(t)( 􏼁 + gi vi(t)( 􏼁bi(t) + ωi(t),

⎧⎪⎪⎨

⎪⎪⎩
(1)

where ai(t), vi(t), and ri(t) are the acceleration, velocity,
and position of the ith vehicle (i � 0, 1, 2, . . . , N), respec-
tively; ωi(t) is the external disturbance of the ith vehicle, and
|ωi(t)|≤Ω; bi(t) is the engine control input; fi(vi(t), ai(t)),
and gi(vi(t)) are the nonlinear terms and are given as

fi vi(t), ai(t)( 􏼁 � −
1
ζ i

ai(t) +
ρCidciv

2
i (t)

2mi

+
dmi

mi

􏼠 􏼡 −
ρCidcivi(t)ai(t)

mi

,

gi vi(t)( 􏼁 �
1

miζ i

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where mi is the mass of the ith vehicle; ρ is the mass density of
the air; dci is the coefficient of drag; dmi is the mechanical
resistance;Ci is the cross-section area of the ith vehicle; and ζ i

is the engine time.
)en, in order to solve the nonlinear vehicle dynamics of

(1), a feedback linearization controller is introduced as
follows:

bi(t) � ui(t)mi +
ρCidciv

2
i (t)

2
+ dmi + ζ iρCidcivi(t)ai(t).

(3)

Substituting (2) and (3) into (1), the model of the ith

vehicle is described as

_ri(t) � vi(t),

_vi(t) � ai(t),

_ai(t) � −
ai(t)

ζ i

+
ui(t)

ζ i

+ ωi(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)
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where ui(t) denotes the control input for the ith vehicle after
linearization.

Remark 1. We use the real nonlinear vehicle dynamic model
in this paper, and a feedback linearization method is
deployed to transform the vehicle dynamic model into a
third-order linear system. Comparing with the existing
results, it is more similar to the real dynamics of a vehicle
and more practical significance in vehicle platoon control.

For the communication topology, we have the following
assumption.

Assumption 1. Suppose the communication topology
among the vehicles is bidirectional. )at is, each vehicle can
only communicate with its adjacent neighbors.

2.2. Intervehicle Spacing Policy. )e intervehicle spacing
policy plays an important role in vehicle platoon control. For
the intervehicle spacing policy, we usually select a proper
function to construct the desired distance among the ve-
hicles.)eQSP is a classical spacing policy in vehicle platoon
control. It is a quadratic function in terms of the vehicle’s
velocities, which is greatly suitable to the human driving
behavior (HDB, di,i− 1 � A + TV + GV2). )e detailed QSP is
shown by

di,i− 1 � p0v
2
i (t) + p1vi(t) + x, (5)

where di,i− 1 denotes the desired distance between two ad-
jacent vehicles; x is the standstill spacing; and p0 is the
designed positive parameter and is given as
p0 � (η/(2amax)), with η being the safety factor depending
on the road or weather, and amax denoting the absolute value
of themaximum possible deceleration. p1 is the time delay in
platoon systems, which compensates for the delay in braking
or acceleration (about 10ms–80ms [23]).

Remark 2. Generally, the intervehicle spacing policy is
closely related to the parameters p0 and p1. When p0, p1 > 0,
the intervehicle spacing policy is QSP. In contrast, when
p0 � 0, p1 > 0 and p0 � 0, p1 � 0, the intervehicle spacing
policy reduces to a CTHP and a CSP, respectively, which
have been studied extensively in vehicle platoon. Hence,
comparing to the CTHP and CSP, the QSP is more general
and practical. For the CSP, supposed that the distance of the
adjacent vehicles maintained the same constant spacing,
which may increase the traffic jams, the CTHP is also re-
quired to maintain a constant time headway parameter.
Comparing with the general CSP and CTHP, the nonlinear
QSP can be regarded as the VTHP to adjust the time
headway and increase traffic capacity, which can also
guarantee string stability and traffic flow stability. Hence, the
vehicle platoon control with QSP is more practical in
applications.

2.3. Problem Formulation. Based on the QSP, the spacing
error ei(t) can be written as

ei(t) � δi(t) − x − p0v
2
i (t) − p1vi(t), (6)

where δi(t) � ri− 1(t) − ri(t) − l denotes the distance be-
tween any two adjacent vehicles; l is the length of each
vehicle.

On this basis, we intend to design a DISM-based vehicle
platoon control scheme with nonlinear dynamics and QSP.
)is paper has to meet the following requirements:

(1) Stability: the finite-time stability of each vehicle is
guaranteed

(2) String stability [24]: the transient errors are not
enlarging with vehicle index due to any maneuver of
the lead vehicle, if the error propagation transfer
function Gi(s) satisfies

Gi(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
Ei+1(s)

Ei(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 1, for i � 1, . . . , N, (7)

where Ei(s) denotes the Laplace transform of ei(t)

(3) For each vehicle, it must satisfy that

vi(t)⟶ v0(t),

δi(t)⟶ x + p0v
2
0(t) + p1v0(t), for i � 1, . . . , N.

(8)

3. The DISM-Based Platoon Control Scheme

In this section, a novel DISM-based vehicle platoon control
scheme is proposed for a group of nonlinear vehicles with
QSP. )e finite-time stability of each vehicle and string
stability of the proposed platoon control system are strictly
analyzed.

First, the integrated sliding mode surface for the ith

vehicle is shown as

si(t) � _ei(t) + α1ei(t) + α2 􏽚
t

0
ei(τ) dτ, (9)

where α1 and α2 are the positive constants.
According to Hurwitz stability theory, α1 and α2 are

required to make all the eigenvalues of p2 + α1p + α2 � 0
contain a real-negative part. In this case, let α1 � 2ϵ and
α2 � ϵ2, where ϵ is a positive constant [25].

Since the sliding mode surface in (9) cannot guarantee
the string stability of the vehicle platoon, an improved
coupled sliding mode surface is provided as follows:

Si( t ) �
si+1(t) − βsi(t), i � 1, . . . , N − 1,

− βsi(t), i � N,
􏼨 (10)
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where β is the parameter of coupled intensity satisfying
0< β≤ 1. )e relationship between Si(t) and si(t) is shown
as

S(t) � Bs(t), (11)

where s(t) � s1(t) s2(t) . . . sN(t)􏼂 􏼃
T, S(t) � S1(t) S2(􏼂

t). . .SN(t)]T, and

B �

− β 1 · · · 0 0

0 − β 1 · · · 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · − β 1

0 0 · · · 0 − β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

To further show the relationship between si and Si, we
have the following lemmas.

Lemma 1. Equivalence of the convergence of the CSS and
each sliding surface toward zero [26]: Si becomes zero for all
i � 1, . . . , N, if and only if si becomes zero.

According to (6), (9), and (10), _Si is presented as

_Si(t) � _si+1 − β _si, i � 1, 2, . . . , N − 1,

� €ei+1(t) + α1 _ei+1 + α2ei+1(t)􏼂 􏼃 − β €ei(t) + α1 _ei(t) + α2ei(t)􏼂 􏼃

� − β ai− 1(t) − ai(t)􏼂 􏼃 − ϕi(t) −
ai(t)

ζ i

+
ui(t)

ζ i

+ ωi(t)􏼢 􏼣 − 2p0a
2
i (t)􏼠 􏼡 + Di(t)

� βϕi(t) −
ai(t)

ζ i

+
ui(t)

ζ i

+ ωi(t)􏼢 􏼣 − β ai− 1(t) − ai(t)􏼂 􏼃 + 2βp0a
2
i (t) + Di(t),

(13)

where ϕi(t)≜ 2p0vi(t) + p1, and Di(t) � [€ei+1(t)+ α1 _ei+1(t)

+α2ei+1(t)] − β [α1 _ei(t) + α2ei(t)].
For i � N, we obtain that

_SN(t) � − β _sN

� − β €eN(t) + α1 _eN(t) + α2eN(t)􏼂 􏼃

� − β aN− 1(t) − aN(t)􏼂 􏼃 − ϕN(t) −
aN(t)

ζN

+
uN(t)

ζN

+ ωN(t)􏼢 􏼣 − 2p0a
2
N(t)􏼠 􏼡 + DN(t)

� βϕN(t) −
aN(t)

ζN

+
uN(t)

ζN

+ ωN(t)􏼢 􏼣 − β aN− 1(t) − aN(t)􏼂 􏼃 + 2βp0a
2
N(t) + DN(t),

(14)

where ϕN(t)≜ 2p0vN(t) + p1, and DN(t) � − β[α1 _eN(t) +

α2eN(t)].
)en, the following two lemmas are provided to show

the finite-time stability and string stability.

Lemma 2. (Barbalat Lemma [27]). If ϕ(t): R⟶ R+ is a
uniformly continuous function for t≥ 0 and the limit of the
integral limt⟶∞ 􏽒

t

0 ϕ(τ) dτ exists and is finite, then

lim
t⟶∞

ϕ(t) � 0. (15)

Lemma 3. (Finite-Time Stability [28]). Suppose there is a
positive definite Lyapunov function V(x, t) defined on
U × R+, where U is the neighborhood of the origin. >ere are
positive real constants c> 0 and a ∈ (0, 1), such that _V(x, t) +

cVa(x, t) is negative semidefinite on U. >en, V(x, t) is lo-
cally finite-time convergent. In addition, the settling time T

satisfies T≤ ( V1− a(x0, t) )/(c(1 − a)) for any given initial
condition x(t0) in the neighborhood of the origin in U.

)en, we have the following DISM-based vehicle platoon
control schemes.
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ui(t) � −
1

βϕi(t)
− βζ i ai− 1(t) − ai(t)􏼂 􏼃 + ζ iDi(t) + 2βζ ip0a

2
i (t) + ζ icsgn Si(t)( 􏼁􏽮 􏽯 + ai(t), i � 1, 2, . . . , N, (16)

with

Di( t ) �
€ei+1(t) + α1 _ei+1(t) + α2ei+1(t)􏼂 􏼃 − β α1 _ei(t) + α2ei(t)􏼂 􏼃, i � 1, . . . , N − 1,

− β α1 _eN(t) + α2eN(t)􏼂 􏼃, i � N,
􏼨 (17)

where ϕi(t)≜ 2p0vi(t) + p1; according to the velocity of each
vehicle bound, |ϕi(t)|≤Φ. c is the positive design parameter
of the controller and satisfies that c> βΩΦ.

To formally show the finite-time stability of each vehicle
and string stability of the whole vehicle platoon, the fol-
lowing theorems are proposed.

Theorem 1. Consider a vehicle platoon system described by
(4). >e communication topology among vehicles is bidirec-
tional, and the QSP is shown in (5). >en, by using the
proposed platoon control law in (16), the finite-time stability
of each vehicle can be guaranteed.

Proof. Consider the following Lyapunov function candidate:

V(t) � 􏽘
n

i�1
V(t)i � 􏽘

n

i�1

1
2
S
2
i (t). (18)

)en, taking the derivation of Vi(t), we obtain that

_V(t) � 􏽘
n

i�1
Si(t) _Si(t). (19)

Substituting (13)–(16) into (19), it follows

_V( t ) � 􏽘
n

i�1
Si( t )[ βϕi( t ) −

ai( t )

ζ i

+
ui( t )

ζ i

+ ωi( t )􏼠 􏼡􏼨

− β( ai− 1( t ) − ai( t ) ) + 2βp0a
2
i ( t ) + Di( t ) ]􏼩

� 􏽘
n

i�1
Si( t )[ − csgn( Si( t ) ) + βϕi( t )ωi( t )􏼈 􏼉

� 􏽘
n

i�1
− csgn( Si( t ) )Si( t ) + βϕi( t )ωi( t )Si( t )􏼈 􏼉

≤ 􏽘
n

i�1
− c Si( t )

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + βΦΩ Si( t )

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯

� 􏽘
n

i�1
− [ c − βΦΩ ] Si( t )

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯≤ 0.

(20)

Denoting φ(t)≜ [c − βΦΩ] 􏽐
n
i�1 |Si(t)| and integrating it

from 0 to t, we have that

V(0) − V(t)≥ 􏽚
t

0
φ(τ) dτ. (21)

Since _V(t)≤ 0, we have that V(0) − V(t)≥ 0 is positive
and bounded if V(0) is bounded.)en, according to Lemma
2, we obtain that

lim
t⟶∞

φ(t) � lim
t⟶∞

[c − ΦβΩ] 􏽘
n

i�1
Si(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0. (22)

As c − ΦβΩ> 0, it follows that limt⟶∞Si(t) � 0. )en,
according to (9), (11), and Lemma 1, si(t) and ei(t) would
converge to zeros. Furthermore, as c − ΦβΩ≥ c> 0, (20) can
also be written as

_V(t)≤ − [c − βΦΩ] 􏽘
n

i�1
Si(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ − c

�����
2V(t)

􏽰
, (23)

and equivalently _V(t) + c
�����
2V(t)

􏽰
≤ 0, where

�����
2V(t)

􏽰
satis-

fying
�����
2V(t)

􏽰
≤

������
2V(0)

􏽰
− ct. )en, we can get that V(t) � 0

and equivalently Si(t) � 0 when T≥ (
������
2V(0)

􏽰
/c) by Lemma

3. It indicates that si(t) and spacing error ei(t) converge to
zero in a finite time. On this basis, the finite-time stability of
each vehicle is guaranteed.

Theorem 2. Since 0< β≤ 1 and Si(t)⟶ 0 in finite time,
then the string stability of whole vehicle platoon system is
guaranteed.

Proof. Since Si(t)⟶ 0 in a finite time, si+1(t) − βsi(t) � 0.
)en, we can obtain that

β _ei(t) + α1ei(t) + α2 􏽚
t

0
ei(τ)dτ􏼠 􏼡 � _ei+1(t) + α1ei+1(t) + α2 􏽚

t

0
ei+1(τ)dτ. (24)
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Since _ei(0) � 0, ei(0) � 0, and e− 1
i ≜ 􏽒

0
− ∞ ei(t)dt � 0,

take the Laplace transform of (24) and obtain that

β s + α1 +
α2
s

􏼒 􏼓Ei(s) � s + α1 +
α2
s

􏼒 􏼓Ei+1(s). (25)

According to the condition 0< β≤ 1, we obtain that

Gi(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
Ei+1(s)

Ei(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� |β|≤ 1. (26)

From (26), the string stability of the vehicle platoon can
be achieved. □

Remark 3. Since we have employed the signum function
sgn(Si(t)) in (16), it may cause chattering in practical ap-
plications. In this case, a sigmoid-like function
( Si(t)/( |Si(t)| + σ ) ) is employed to eliminate this chat-
tering. In addition, the σ in this sigmoid-like function should
be small enough. It is because when a large σ is chosen, it
would lead to a less accurate control result. )us, we should
trade-off the relationship between the value of σ and the
control accuracy in practical applications.

Invoking the sigmoid-like function ( Si(t)/( |Si(t)| + σ ) ),
ui(t) can be rewritten as

ui(t) � −
1

βϕi(t)
− βζ i ai− 1(t) − ai(t)􏼂 􏼃 + ζ iDi(t) + 2βp0a

2
i (t)ζ i􏽮 􏽯 +

ζ ic

βϕi(t)

Si(t)

Si(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + σ
+ ai(t), i � 1, 2, . . . , N. (27)

Based on the above theorems and analyses, the following
algorithm is provided to illustrate the proposed vehicle
platoon scheme.

In Algorithm 1, it is worth noting that the initial spacing
errors and the initial velocity errors of all vehicles are re-
quired to be zero, simultaneously. Furthermore, to facilitate
the adjustment of parameters p0 and p1, it is better to choose
some small initial velocities for all the vehicles. Since the
variable range, the time headway is limited [20], the pa-
rameters p0 and p1 are also limited by 0<p0, p1 ≤ 1.)en, in
order to guarantee the string stability, the βmust satisfy that
0< β≤ 1.

4. Numerical Simulation

In this section, the numerical simulations are provided for a
platoon with 4 followers and one leader to verify the pro-
posed approaches.

)e initial states of the leader are set as r0 � 0m and
v0 � 2m/s, and the evolution of leader’s velocity is shown as

v0( t ) �

2m/s, 0 s< t≤ 3 s,

2 + 2(t − 3)m/s, 3 s< t≤ 5 s,

6m/s, 5 s< t≤ 10 s,

6 − 2(t − 10)m/s, 10 s< t≤ 12 s,

2m/s, 12 s< t≤ 18 s,

2 +(t − 18)m/s, 18s< t≤ 20s,

4m/s, 20 s< t≤ 25 s,

4 − (t − 25)m/s, 25 s< t≤ 27 s,

2m/s, 27 s< t≤ 60 s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

)e initial positions and initial velocities of the followers
are set as x(0) � [− 24.76, − 49.52, − 74.28, − 99.04] and
v(0) � [2, 2, 2, 2], respectively. All controller’s parameters
are set as c � 1.5, β � 0.6, α1 � 2, α2 � 1, p0 � 0.155,
p1 � 0.07, σ � 0.02, and ζ � 0.3. )en, the standstill distance
is given as x � 18m, and the length of each vehicle is l � 6m.

)e external disturbance of the ith vehicle is given by
wi(t) � 0.003 sin(2πt).

On this basis, the simulation results of proposed vehicle
platoon control scheme are shown as follows.

Figure 1 illustrates the positions and velocities of all
vehicles. As shown in Figure 1, there is no collision between
any two adjacent vehicles during the steady-state condition
and the initial transient. )en, followers track the velocity of
lead vehicle, in which the velocities of followers converge to
the velocity of leader (2m/s). )e convergence time of the
velocities is about 35 s.

)e distances and spacing errors of the platoon with QSP
are illustrated in Figure 2. As shown in this figure, the
distances of all adjacent vehicles converge a constant value
(18.5m). Meanwhile, the spacing errors converge to zero in a
finite time, and the string stability of the vehicle platoon is
guaranteed. From Figures 1 and 2, it can be obtained that all
vehicles satisfy the control objective in (8). )e proposed
vehicle platoon system is stable and reaches the desired
formation under the DISM control scheme with QSP.

)e sliding mode surface is shown in Figure 3. From
Figure 3, it can be observed that the Si(t) reaches the sliding
mode surface Si(t) � 0 in a finite time and there is no
chattering.

)e distances and spacing errors of the platoon with
CTHP are presented in Figure 4. From Figure 4, it can be
seen that the distance between any two adjacent vehicles
converges to a constant value (20m) and the spacing errors
converge to zero in a finite time. )en, in order to show the
advantage of the vehicle platoon control with QSP, we
compared our proposed approaches in Figure 3 with the
vehicle platoon with CTHP in Figure 4; the platoon with
QSP has smaller intervehicle distance than the platoon with
CTHP. Apparently, the platoon with QSP can provide
greater traffic capacity. Hence, the platoon with QSP is
superior to the platoon with CTHP. )e simulation results
validate the proposed approaches.

According to the vehicle platoon performance index in
[29], Table 1 shows the simulation results of different spacing
policies in tracking performance, fuel economy, and ride
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comfort. As shown in Table 1, the fuel economy and ride
comfort of the platoon with the QSP are better, and the
platoon with the CTHP has better tracking performance. In
detail, the energy consumption and comfort ride of the
vehicle platoon is mainly caused by unnecessary braking or

acceleration. Comparing with the CTHP, the QSP can be
regarded as the variable time headway spacing policy; thus,
the energy consumption value of the vehicle platoon with
QSP is smaller. )erefore, the QSP can reduce the fuel
consumption and enhance ride comfort.

0 10 20 30 40 50 60
–100

0

100

200

Po
sit

io
ns

 (m
)

Time (s)

p0
p1
p2

p3
p4

(a)

1

2

3

4

5

6

Ve
lo

ci
tie

s (
m

/s
)

0 10 20 30 40 50 60
Time (s)

u0
u1
u2

u3
u4

(b)

Figure 1: Positions and velocities of vehicles.
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Figure 2: Spacing errors and distances of the platoon.

Input: the initial position, velocity, acceleration of each vehicle;
)e controller parameters;

Output: the spacing error of the any two adjacent vehicles converges to zero;
(1) Initialization: the initial positions, velocities, accelerations of one lead vehicle and 4 followers: ri(0), vi(0), ai(0); Controller

parameters: p0, p1, x, l, β, α1, α2, ζ i, c;
(2) for t � t0: Δt: tf do
(3) calculate ei(t), _ei(t), €ei(t) by using (6);
(4) construct integrated sliding surface si(t) by employing (9);
(5) calculate Si(t) and Di based on (10), (13), (14);
(6) according to (16), calculate ui(t);
(7) update the acceleration, velocity, and position information of the ith vehicle respectively by using (4);
(8) end for

ALGORITHM 1: )e DISM-based platoon control algorithm with QSP.
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5. Conclusion

In this paper, we study the nonlinear vehicle platoon
problems with external disturbances, in which the QSP is
applied into the platoon control. )e desired intervehicle
distance in the QSP is a quadratic function in terms of the
vehicle’s velocities. Comparing with CTHP, the QSP can be
regarded as the VTHP to improve traffic capacity and reduce
energy consumption. )en, a novel platoon control scheme
based on the DISM with QSP and nonlinear dynamics is
proposed. Moreover, the finite-time stability of each vehicle
is shown by using the Lyapunov theory, and a coupled
sliding mode surface is adopted to guarantee the string
stability of the vehicle platoon system. In final, the numerical
simulations are provided to verify the proposed approaches.
In the future, we will continue to investigate the vehicle

platoon with VSP where the unknown external disturbances
and mixed traffic situations will be considered.
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