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Grey prediction model has good performance in solving small data problem, and has been widely used in various research �elds. 
However, when the data show oscillation characteristic, the e�ect of grey prediction model performs poor. To this end, a new 
method was proposed to solve the problem of modelling small data oscillation sequence with grey prediction model. Based on the 
idea of information decomposition, the new method employed grey prediction model to capture the trend characteristic of complex 
system, and ARMA model was applied to describe the random oscillation characteristic of the system. Crops disaster area in China 
was selected as a case study and the relevant historical eight-year data published by government department were substituted to the 
proposed model. �e modelling results of the new model were compared with those of other traditional mainstream prediction 
models. �e results showed that the new model had evidently superior performance. It indicated that the proposed model will 
contribute to solve small oscillation problems and have positive signi�cance for improving the applicability of grey prediction model.

1. Introduction

Big data technology is a computational strategy and method 
for processing large data sets. It is based on large data and has 
gradually become a research hotspot in recent years. However, 
sometimes it is di�cult to obtain large data. Due to techno-
logical capabilities or historical reasons, there are still many 
small data, such as unconventional energy production, short-
term tra�c �ow, sulfur dioxide emissions, crops disaster area, 
and so on [1–4]. �e above problems show that there are many 
grey systems in the real world, and the data of these grey sys-
tems are limited. Big data technology can not e�ectively 
describe the grey system from the small data.

Grey prediction model is a useful method to study uncer-
tain systems with partly known information and partly 
unknown information [5,  6]. At present, there are mainly two 
kinds of sequences suitable for grey prediction model, one is 
monotone sequence [7–10], the other is a sequence with sat-
urated “�” shape [11–13]. For other sequences, such as oscil-
lation sequence or �uctuation sequence, the performance of 
grey prediction model is poor. However, the real world is 
complex. �e monotonic sequence and the saturated �-shaped 

sequence are only two special cases, and more sequences show 
oscillation characteristic [14–16]. �erefore, how to reasona-
bly construct a grey prediction model to model with oscillation 
sequence has become a research trend.

Currently, grey prediction model has made some achieve-
ments in modelling with oscillation sequence. �ese studies 
are mainly manifested in the following three aspects: (a) 
increasing smoothness of oscillating sequences: the poor 
smoothness of the oscillation sequence is the main reason for 
the poor modelling accuracy of the oscillation sequence, so 
smoothing the oscillation sequence becomes a way to improve 
the modelling accuracy. At present, sequence smoothness is 
mainly improved by sequence transformation, such as smooth-
ness operator and amplitude compression [17–20]; (b) mod-
elling oscillation interval by envelope: from the perspective of 
scope, the oscillation sequence envelope is modelled. �e 
envelope is modelled by grey prediction model, and the sim-
ulation and prediction of the oscillation sequence variation 
range are realized [21–23]; (c) improving the structure of grey 
prediction model by periodic operator: in order to adapt to 
periodic sequence, scholars have introduced periodic factor 
of triangular function and have established periodic grey 
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prediction model to match the periodic �uctuation of sequence 
and reduce modelling error [24, 25].

�e above methods can improve the modelling ability of 
grey prediction model for oscillation sequence to a certain 
extent, but they still have some shortcomings. �e sequence 
transformation method destroys the characteristics of the orig-
inal sequence and can not make full use of the information 
transmitted by the sequence. �e randomness of envelope 
design is too large and its generalization is weak. Grey periodic 
prediction model not only increases the complexity of the model 
structure, but also only works for periodic and regular �uctua-
tion sequences. When the sequence has oscillation characteris-
tic, the performance of grey periodic prediction model is poor.

�e oscillation sequence is composed of di�erent scales 
information, such as trend, randomness, periodicity, etc. It 
re�ects the �nal result of the system under the in�uence of 
various uncertainties [26–28]. A single prediction method is 
suitable for modelling with a single time scale sequence. It can 
not simultaneously simulate and predict two or more time 
scale information of the oscillation sequence, which ultimately 
can not get intended e�ect.

However, preprocessing complex sequence into simpler 
mode, has o¤en led to satisfactory predicting results. Empirical 
mode decomposition (EMD) algorithm is a multi-scale analysis 
method. It decomposes complex oscillation sequences into a set 
of sub-sequences, which contain the information of the original 
sequence in di�erent time scales [29]. According to the charac-
teristics of sub-sequences, appropriate models are selected to 
simulate and predict the corresponding sub-sequences. Integrating 
the simulated and predicted values of sub-sequences will obtain 
the simulated and predicted value of the original sequence.

Decomposed by EMD algorithm, the small sample oscil-
lation sequence is usually decomposed into two sub-sequences. 
One part is short-time trend sub-sequence. �e other is one 
or more random �uctuation sub-sequences. GM(1,1) model 
is the most classical model in grey prediction model, needs 
only a little data (not less than 4). It excavates the trend of 
system through grey generation processing, and then achieves 
the e�ect of simulating and prediction. �erefore, GM(1,1) 
has superior performance in modelling with small trend 
sub-sequence. Random �uctuation subsequence is usually 
modelled by ARMA model. Based on the above facts, we use 
GM(1,1) model and ARMA model to simulate and predict 
sub-sequences, respectively. According to the result of decom-
position, there may be other kinds of sub-sequences, but trend 
and �uctuation subsequences are the most common cases. 
�erefore, we mainly study the general situation and speci�-
cally analyse the other situations.

In this paper, a hybrid grey model for predicting small 
oscillation sequence is proposed based on information decom-
position. In order to verify the validity of the proposed model, 
we select the crops disaster area in China as the modelling 
object, which has small oscillation characteristics. Comparing 
the simulation accuracy of the new model with that of the 
traditional ARIMA and GM(1,1) models, the result shows that 
the new model is obviously superior to the traditional model, 
which proves the validity of the new model.

�e remainder of this paper is organized as follows. In sec-
tion 2, the principle of empirical mode decomposition is intro-
duced. In Section 3, the EMD-ARMA-GM(1,1) prediction 

model is proposed. In Section 4, modelling condition and test-
ing method of model errors are studied. �is is followed by 
comparisons of the proposed model with ARIMA and GM(1,1) 
model, and the proposed model is used to predict crops disaster 
area in China. �en, conclusions are drawn in Section 6.

A chart showing the structure of this paper is given as 
Figure 1.

2. Empirical Mode Decomposition Principle

Empirical mode decomposition (EMD) is a method of signal 
decomposition, which does not depend on prior data and 
completely relies on the intrinsic characteristic of the data 
itself. A¤er EMD adaptively decomposed the original data 
according to its intrinsic characteristic, the obtained Intrinsic 
Mode Functions (IMFs) re�ect the inherent characteristic of 
the data [30]. IMF satis�es the following two conditions at the 
same time: (i) in the whole data set, the number of extrema 
and the number of zero-crossings must either equal or di�er 
at most by one; (ii) at any point, the mean value of the envelope 
de�ned by local maxima and the envelop de�ned by the local 
minima is zero [31]. �e operation steps of the EMD algorithm 
for oscillation sequence �(�) are as follows [32]:

Step 1. Recognize all the maximum points and minimum 
points in sequence �(�), and use cubic spline interpolation 
function to �t all the maximum points to form the upper 
envelope, and then �t all the minimum points to form the lower 
envelope, which are marked as ���(�) and ���w(�), respectively.

Step 2. In each time period �, the average of upper and 
lower envelopes of sequence �(�) is denoted as �1(�), and 
is calculated as

Step 3. Minus the average envelope of sequence �(�):

If sequence �1(�) has negative local maxima and positive local 
minima, then �1(�) is regarded as a new original sequence 
�(�). Repeat the above process until �1(�) satis�es the two 
conditions of IMF. It is denoted as �1(�), where �1(�) = �1(�), 
which is called the �rst IMF component a¤er decomposition 
of the original sequence �(�).

Step 4. Sequence �1(�) is separated from the original 
sequence �(�) and the residual component is obtained, 
which is denoted as �1(�), that is

Step 5. �e residual component �1(�) is regarded as a new 
original sequence, and the “�ltering” process of Step 1 is 
repeated until the new IMF component can not be separated. 
At this time, the original sequence �(�) is “�ltered” by EMD 
algorithm to get � IMFs and one residual component, where

(1)�1(�) =
���(�) + ���w(�)
2 .

(2)�1(�) = �(�) − �1(�).

(3)�1(�) = �(�) − �1(�).

(4)�(�) =
�
∑
�=1
��(�) + ��(�).
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An example of the empirical mode decomposition of an 
oscillating sequence is shown in Figure 2.

3. A Hybrid Grey Prediction Model of  
EMD-ARMA-GM(1,1)

De�nition 1. Assume sequence � = (�(1), �(2), . . . , �(�)),  
∀� ∈ {2, 3, . . . , �}, ∃�� ∈ {2, 3, . . . , �}, �(�) − �(� − 1) > 0, 
�(��) − �(�� − 1) > 0, � is called oscillation sequence.

De�nition 2.  Assume � = (�(1), �(2), . . . , �(�)) is an 
oscillation sequence and satis�es the following condition,

(a)  ∀ � ∈ �, �(�2) <∞;
(b)  ∀ � ∈ �, �(�) = �, � is a constant;
(c)  ∀ �, � ∈ �, ��v(c(�),c(�)) = ��−�, ��−� is independence 

with �,

then � is a stationary oscillation sequence.

De�nition 3. Assume � = (�(1), �(2), . . . , �(�)) is an 
oscillation sequence, 

are IMFs and residual components of � decomposed by EMD 
algorithm, respectively. �en

is called ARMA (�, �) model. When � = 2, 3, . . . , �, ̂�(0)� (�) is 
called the simulated data. When � = � + 1, � + 2, . . ., ̂�(0)� (�) is 
called the predicted data.

In Equation (7), �� is a stationary oscillation sequence; �
is the ACF tail order of sequence �� and � is the PACF tail order 
of ��; ��(1), . . . , ��(�), ��(1), . . . , ��(�) are real parameters and 
be estimated by identi�cation function ARMAX.

De�nition 4. Assume sequence ��is stated as 
De�nition 3. �(1)� = (�(1)� (1), �

(1)
�
(2), . . . , �(1)

�
(�)) is 

accumulating generation sequence with one order of  

(5)�� = (��(1), ��(2), . . . , ��(�)), � = 1, 2, . . . , �,

(6)�� = (�(0)� (1), �(0)� (2), . . . , �(0)� (�))

(7)

̂��(�) =
�
∑
�=1
��(�)��(� − �) + �� −

�
∑
�=1
��(�)��(� − �), � ∼ �(0, �2)

(1) Research signi�cance
(2) Research status
(3) Comments of literature
(4) Articale frame work

Section 1. (Introduction)

(1) Decomposition conditions of EMD algorithm
(2) Operation steps of the EMD algorithm for oscillation sequence
(3) e e�ectiveness of EMD algorithm

Section 2. (Empirical mode decomposition principle)

(1) Modelling condition of the EMD-ARMA-GM(1,1) model
(2) Error test method of the EMD-ARMA-GM(1,1) model

Section 4. (Modelling condition and error test method of the EMD-ARMA-GM(1,1) model)

Section 6. (Conclusions)

(1) e present sitiuation of crops disaster area in China
(2) Collecting data
(3) Simulation and comparison for the crops disaster area in China
(4) Analysis of model performance
(5) Predicting the crops disaster area in China

Section 5. (Application)

(1) e di�nition of EMD-ARMA-GM(1,1) model
(2) Parameter estimation of EMD-ARMA-GM(1,1) model
(3) e �owchart of EMD-ARMA-GM(1,1) model

Section 3. (A hybrid grey prediction model of EMD-ARMA-GM (1,1))

Simulating and predictting

Modelling condition and error test method

ModelingDecomposition algorithm

Figure 1: Structure of this paper.
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Matrix form of GM(1,1) model is as follows,

that is

Among the above equations, � and � are known and � is 
sequence of undetermined parameters. �e number of known 
equations is one, and the variables are two. Moreover, when 
the equations are incompatible, there is no solution, but the 
least square solution can be obtained by the least square 
method (LSM).

Assume � is error sequence as follows,

Let

that is

According to LSM, � can be minimised with respect to param-
eters �, � to obtain

Parameters �, � can be obtained, as follows,

(13)
[[[[
[

�(0)� (2)
�(0)� (3)

...

�(0)� (�)

]]]]
]

=
[[[[
[

−�(1)� (2) 1
−�(1)� (3) 1

...
...

−�(1)� (�) 1

]]]]
]

[ �� ],

(14)� = ��.

(15)� = � − ��.

(16)� = min ‖� − ��‖ 2 = min (� − ��)�(� − ��),

(17)

� = min

�
∑
�=2
(�(0)� (�) − (� − ��(1)� (�)))

2

= min(
�
∑
�=2
�(0)� (�)2 + (� − 1)�2 + �2

�
∑
�=2
�(1)� (�)2 − 2�

�
∑
�=2
�(0)� (�)

+2�
�
∑
�=2
�(1)� (�)�(0)� (�) − 2��

�
∑
�=2
�(1)� (�)).

(18)

��
�� = 2�

�
∑
�=2
�(1)� (�)2 + 2

�
∑
�=2
�(1)� (�)�(0)� (�) − 2�

�
∑
�=2
�(1)� (�) = 0,

(19)
��
�� = 2(� − 1)� − 2

�
∑
�=2
�(0)� (�) − 2�

�
∑
�=2
�(1)� (�) = 0.

��, �(1) = (�(1)� (1), �(1)� (2), . . . , �(1)� (�)) is mean sequence by 
consecutive neighbours of �(1)� , where

De�nition 5. Assume ��, �(1)� , �(1) are stated as De�nition 3 
and De�nition 4. �en the following equation

is called GM (1,1) model, where �, � are real parameters.

Theorem 6. Assume that � = [�, �]� is parameter vector of 
Equation (10), where

then the parameters of GM(1,1) model are identi�ed as 
�̂ = (���)−1���.

Proof. GM(1,1) model is rewritten as follows,

(8)�(1)� (�) =
�
∑
�=1
�(0)� (�), � = 1, 2, . . . , �,

(9)�(1)� (�) = 0.5 × (�(1)� (�) + �(1)� (� − 1)), � = 1, 2, . . . , �.

(10)�(0)� (�) + ��(1)� (�) = �

(11)

� =
[[[[
[

�(0)� (2)
�(0)� (3)

.

.

.

�(0)� (�)

]]]]
]

,

� =
[[[[
[

−�(1)� (2) 1
−�(1)� (3) 1

.

.

.
.
.
.

−�(1)� (�) 1

]]]]
]

,

(12)

�(0)� (2) + ��(1)� (2) = �,
�(0)� (3) + ��(1)� (3) = �,

...

�(0)� (�) + ��(1)� (�) = �.

Raw data
1700

1600

1500
5 10 15 20 25

Month (total of 29 months)

EMD

Raw data = ∑IMFi+RN (t)
N

i = 1

50

–50
0

50

–50
0

20

–20
0

1650
1600
1550

IM
F1

IM
F2

IM
F3

R N
(t)

5 10 15 20 25
Month (total of 29 months)

Figure 2: �e e�ectiveness of EMD Algorithm.
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De�nition 7. Assume sequence ��, �(1)� , �(1) and �̂ = [�, �]�
are stated as De�nition 4 and �eorem 1, then the following 
equation

is named the whitenization equation of GM(1,1) model.
�e solution of the di�erential Equation (22) is as follows,

(22)��(1)
�� + ��

(1) = �

(23)̂�(0)� (�) = (1 − ��)(�(0)� (1) −
�
�)�
−�(�−1), � = 1, 2, . . . , �.Equations (20) and (21) are the expanded displays of param-

eter identi�cation matrix. �e proof is over. ☐

(20)
� = ∑

�
�=2�(0)� (�)∑

�
�=2�(1)� (�) − (� − 1)∑

�
�=2�(0)� (�)�(1)� (�)

(� − 1)∑��=2(�(1)� (�))
2 − (∑��=2�(1)� (�))

2 ,

(21)

� =
∑��=2�(0)� (�)∑

�
�=2(�(1)� (�))

2 − ∑��=2�(1)� (�)∑
�
�=2�(1)� (�)�(0)� (�)

(� − 1)∑��=2(�(1)� (�))
2 − (∑��=2�(1)� (�))

2 .

Decomposition

Small sample oscillation sequence
X = (x(1),x(2),…,x(n))

Form the upper and lower envelopes
Eup(t),Elow(t)

M1(t) = 
Eup(t)+Elow(t)

2

H1(t) = X(t)–M1(t)

Whether Hi satis�es
the conditions of IMF

Ci = Hiki = 1, 2,…,N, RN = X– Ci
N

i=1

C1 C2 CN RN…

C
1  = H

1

Simulation and prediction 

RN = rN (2),…,  rN (n)

RN
(1) ZN

(1) a, b

r̂N
(0) rN

(0)(1)–(t) = 1–ea b
a e–a(t–1)

Ci = (ci(1), ci(2),..., ci(n)), i = 1, 2, N

p, q

ci(t) = ∑p
k=1ϕi(k)ci(t – k)+at–∑q

 N=1�i(k)ai(t – k)

For other types of sequence generated by
EMD algorithm, circumstances alter cases 

Integration

RN = (r
N 

(1), rN  (2),...,rN  (n), rN  (n + 1), rN  (n + 2),..., rN   (n + t))(0) (0) (0) (0) (0)(0)ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

The simulated and predicted data by
GM(1,1) model

The simulated and predicted data by
ARMA model

The simulated and predicted data by
EMD-ARMA-GM(1,1) model

∑

Ci = (ci(1), ci(2),...,ci (n), ci(n + 1), ci(n + 2),..., ci(n + t)),
i = 1, 2, N 

x̂(t) = ∑ 
N p q
i=1 k=1 N=1(∑ ϕi(k)ci(t – k) + ai(k) –∑ �i(k)ai(t – k))

+(1 – ea) rN
(0)(1) – ba

e–a(t – 1)

∑

rN
(0)(1), (0) (0)

ϕi(k), �i(k), i = 1, 2, N

Figure 3: �e �ow chart of EMD-ARMA-GM(1,1) model.

Table 1: Data of crops disaster area in China from 2010 to 2017 (units: 1000 hectares).

Data sources: http://data.stats.gov.cn/easyquery.htm?cn=C01.

Year 2010 2011 2012 2013 2014 2015 2016 2017
Crops disaster area 37425.9 32470.5 24962 31349.8 24890.7 21769.8 26220.7 18478.1

6000

4000

2000

0

–2000

–4000

–6000
2010 2011 2012 2013 2014 2015 2016 2017

IM
F1

Year

Figure 4: �e curve of IMF1.

http://data.stats.gov.cn/easyquery.htm?cn=C01.
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De�nition 9. Assume that � = (�(1), �(2), . . . , �(�)), where 
t(�) ≥ 0 for � = 1, 2, . . . , �, then the following is referred to as 
the smoothness ratio of sequence �:

�e concept of smoothness ratio re�ects the smoothness 
of a sequence. Obviously, the smoother the change of sequence 
� is, the smaller the smoothness ratio is.

De�nition 10. If a sequence � = (�(1), �(2), . . . , �(�)), where 
�(�) ≥ 0 for � = 1, 2, . . . , � satis�es the following, then � is 
referred to as a quasi-smooth sequence:

(1)  �(� + 1)/�(�) < 1, � = 2, 3, . . . , � − 1,
(2)   �(�) = [0, �], � = 3, 4, . . . , �,
(3)  � < 0.5.

(25)�(�) = t(�)
∑�−1�=1 �(�)

, � = 2, 3, . . . , �.

Equation (23) is also called the time response function of 
the whitenization di�erential equation. When � = 2, 3, . . . , �, 
̂�(0)� (�) is called the simulated data; When � = � + 1, � + 2, . . ., 
̂�(0)� (�) is called the predicted data.

De�nition 8. Assume ̂��(�), ̂�(0)� (�) are stated as De�nitions 3 
and 7, then the following equation

is called EMD-ARMA-GM(1,1) model.
In the hybrid prediction model, EMD algorithm decom-

poses the original time series � into sequence �� and sequence 
�� to extract intrinsic characters of the complex system. 
sequence �� is inputted into the ARMA model to describe the 
random changes and sequence �� is substituted into GM(1,1) 
model to describe the trend. �e value �̂(�) obtained by super-
position ̂��(�) and ̂�(0)� (�) realizes the simulation or prediction 
of the original sequence. �e �ow of EMD-ARMA-GM(1,1) 
model is shown in Figure 3.

4. Modelling Condition and Error Checking 
Method for the EMD-ARMA-GM(1,1) Model

4.1. Modelling Condition of the EMD-ARMA-GM(1,1) 
Model. Each prediction model has a speci�c modelling 
condition and applicable rang. A model can be used for 
prediction only when the modelling condition is satis�ed.

(24)

�̂(�) = ∑��=1(∑
�
�=1��(�)��(� − �)�−� + ��(�) −∑

�
�=1��(�)��(� − �))

+ (1 − �)(
(0)� (1) −
	
�)
−�(�−1)

2010 2011 2012 2013 2014 2015 2016 2017
Year

2

2.2

2.4

2.6

2.8

3

3.2

3.4

R 
(t)

×104

Figure 5: �e curve of �(�).

Table 2: �e quasi-smooth condition of sequence �(�).

Smoothness 
ratio �(3) �(4) �(5) �(6) �(7) �(8)

Value 0.462 0.298 0.218 0.169 0.134 0.112

Table 3: Parameter estimation of ARMA model.

Parameter of the ARMA 
model � � �1 �2 �1
Estimated value 2 1 1.284 0.9363 0.9184
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For given threshold value � in which the threshold is set 
according to the speci�c situation of the system, when �� < �
holds true, the grey model is said to be error-satisfactory.

5. Application

China is a large agricultural country, but its special geograph-
ical location and climate environment lead to natural disasters 
frequently, which cause a large number of crops disasters every 
year. Large-scale crops disaster has seriously a�ected the 
national grain security, the basic status of agriculture and the 
sustainable development of rural economy. A scienti�c pre-
diction of crops disaster areas can provide reasonable reference 
for arranging agricultural production subsidy and disaster 
relief subsidy, which has positive signi�cance for promoting 
the sustainable development of agriculture and China’s 
economy.

�e crops disaster in China has a long history. To prevent 
and mitigate disasters, Chinese government proposes and 
implements many signi�cant policies since 2010. �ese poli-
cies have e�ectively improved the situation of crops disaster 
and profoundly in�uenced the crops disaster area in China. 
�e data of crops disaster area in China from 2010 to 2017 are 
a small oscillation sequence.

�e data of crops disaster area in China from 2010 to 2017 
are shown in Table 1.

(32)�� =
1
�
�
∑
�=1
��(�).

�e quasi-smooth condition of residual component is used 
to act as the criteria to test whether an oscillation sequence 
can be used to establish EMD-ARMA-GM(1,1) model.

4.2. Error Checking Method for the EMD-ARMA-GM(1,1) 
Model. A model’s performance can be judged by testing, and 
only the model that pass test can be meaningfully employed 
to make predictions.

De�nition 11. Assume that a raw sequence �(0) is

EMD-ARMA-GM(1,1) model is employed to simulate 
sequence �(0), and its corresponding simulation sequence is as 
follows,

�e residual sequence of �̂(0) is ��, as follows,

where

�e relative simulation percentage error (RSPE) of the 
simulation sequence is

where

�e mean relative simulation percentage error (MRSPE) 
of simulation sequence �� is as follows:

(26)�(0) = (�(0)(1), �(0)(2), . . . , �(0)(�)).

(27)�̂(0) = ( ̂�(0)(1), ̂�(0)(2), . . . , ̂�(0)(�)).

(28)�� = (��(1), ��(2), . . . , ��(�)),

(29)��(�) =
������
(0)(�) − ̂�(0)(�)�����, � = 1, 2, . . . , �.

(30)�� = (��(1), ��(2), . . . , ��(�)),

(31)��(�) =
���������
��(�)
�(0)(�)
× 100%���������, � = 1, 2, . . . , �.
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Figure 6: �e simulated curve of IMF1.

Table 4: Parameter estimation of GM(1,1) model.

Parameter of the GM(1,1) model � �
Estimated value 0.058197 33854.68073
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5.2. Checking the Quasi-Smooth Condition before 
Modelling. According to De�nition 9, a sequence can 
be used to build the new model only when its residual 
component satis�es the quasi-smooth condition. �erefore, 
we check the quasi-smooth condition of sequence �(�) =
(32321.95, 31003.12, 29256.20, 27634.73, 26282.51, 24838.58,
23079.35, 21775.8) before building the new model to predict 
the crops disaster area.

From De�nition 9, we can obtain the smoothness ratio of 
sequence �(�) and the values of smoothness ratio are shown in 

5.1. Data Decomposing. EMD algorithm is applied to 
decompose the sequence of crops disaster area in China, and 
an IMF1 and a residual component �(�) are obtained. �e 
results are shown in Figures 4 and 5, respectively.

As can be seen from Figure 4, IMF1 is a curve of oscilla-
tions around the �-axis, showing linear and random charac-
teristic of original sequence.

In Figure 5, �(�) is a monotonic decreasing curve and 
shows the decreasing trend characteristic of the original 
sequence.
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×104
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Figure 7: �e simulated curve of �(�).
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Figure 8: �e simulated curve of crops disaster area in China.
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As provided in Table 4, We substitute the parameters into 
the whitening equation of GM(1,1) model, and get the simu-
lated value of �(�). �e simulated curve of �(�) is shown in 
Figure 7.

Finally, through integrating the simulated values of IMF1 
and �(�), we can get the simulated value of China’s crops dis-
aster area. �e simulated curves of crops disaster area in China 
is shown in Figure 8.

5.4. Result and Analysis. To verify the performance of EMD-
ARMA-GM(1,1) model, we compare the MRSPE of EMD-
ARMA-GM(1,1) to that of traditional mainstream prediction 
models, including ARIMA model and GM(1,1) model. �e 
simulated values �̂(�), � �(�) and MRSPE of the three models 
are presented in Table 5.

As shown in Table 5, the proposed EMD-ARMA-GM(1,1) 
model has the lowest MRSPE among the three models and the 
MRSPE is 4.0393%; the MRSPEs of the other two models are 

Table 2.  �(8)/�(7) ≈ 0.831513 < 1, �(6)/�(5) ≈ 0.775513 < 1,  
�(5)/�(4) ≈ 0.732441 < 1 and �(4)/�(3) ≈ 0.646085 < 1. �en, 
sequence of crops disaster area in China satis�es the qua-
si-smooth condition and can be used to build the new model. 
�e modelling process is detailed in the next subsection.

5.3. Modelling. Firstly, IMF1 is introduced into ARMA (�, �)
model. By increasing its order gradually, IMF1 is closer to the 
dependence of data. When �tting e�ect of the data is best, 
it stops and gets the value of � and �. Next, the parameter 
identi�cation function ARMAX is used to estimate �1, . . . , ��, 
�1, . . . , ��. �e optimal order and parameters are obtained as 
shown in Table 3.

As shown in Table 3, the proper value of � is 2 and � is 1. So 
we use ARMA(2, 1) model to simulate IMF1, and draw the sim-
ulated curve of this model based on IMF1, as shown in Figure 6.

Next, �(�) is introduced into GM(1,1) and the parameters 
are estimated by least square method as shown in Table 4.

Table 5: EMD-ARMA-GM(1,1) model, ARIMA model and GM(1,1) model simulated values (units:1000 hectares).

Year Raw data  �(�) EMD-GM(1,1)-ARMA Model ARIMA Model GM(1,1)
�̂(�) ��(�) �̂(�) ��(�) �̂(�) ��(�)

2010 37425.9 37425.9 — 38226.23 2.1384% 37425.9 —
2011 32470.5 30303.79 6.6729% 26364.23 18.8056% 31220.772 3.849%
2012 24962 24684.6 1.1113% 27976.36 12.0758% 29183.227 16.911%
2013 31349.8 32088.6 2.3566% 21655.3 30.9236% 27278.657 12.986%
2014 24890.7 24668.63 0.8922% 19212.75 22.8116% 25498.385 2.441%
2015 21769.8 22941.88 5.384% 18678.01 14.2022% 23834.297 9.483%
2016 26220.7 27177.18 3.6478% 20250.14 22.7704% 22278.812 15.033%
2017 18478.1 19995.16 8.21% 18478.1 — 20824.842 12.7%
MRSPE 4.0393% 17.6754% 10.4863%
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Figure 9: �e simulated curve of the EMD-ARMA-GM(1,1) model.
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illustrate the simulation e�ects of the three models for China’s 
crops disaster area, we draw the simulated curves and errors 
of the three models based on the data in Table 5 in MATLAB 
as shown in Figures 9–12.

According to Figures 9–12, the performance of lEMD-AR-
MA-GM(1,1) model is best among the above three models. 

more than 10%. Comparatively, the performance of the 
GM(1,1) model is second to that of EMD-ARMA-GM(1,1) 
model because it does not consider the e�ect of random oscil-
lation characteristic; the performance of the ARMA model is 
the worst among the three model because it does not consider 
the in�uence of trend characteristic. In order to clearly 

4

3.5

3

2.5

2

1.5
2010 2011 2012 2013 2014 2015 2016 2017

D
at

a

Year

×104

�e real data
�e simulation data

Figure 10: �e simulated curve of the ARIMA model.
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Figure 11: �e simulated curve of the GM(1,1) model.
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not effective in predicting oscillation sequence by analyz-
ing the intrinsic characteristics of oscillation sequence: the 
system of oscillation sequence is complex, and the trend 
and random oscillation are often combined. Therefore, 
based on information decomposition and aiming at extract-
ing the intrinsic characteristics of the sequence, a hybrid 
grey prediction model is established in this paper. The 
results of case analysis show that the proposed model con-
siders the complexity of system information, effectively 
describes the operation behavior and rules of the system, 
and the effect is higher than that of a single classical pre-
diction model.

�e new grey hybrid prediction model provides a new 
idea and method for small oscillation sequence. However, 
when the size of oscillation sequence is big, the big data meth-
ods can be used to simulate and predict the oscillation 
sequence, such as neural network and support vector 
machine. At this time, the performance of the new hybrid 
grey prediction model needs to be compared with that of the 
big data method, and the simulation and prediction errors 
can be used to determine the performance of those methods, 
and then the superior one is selected for study the oscillation 
sequence.

In the following work, we will further consider the other 
characteristics of the sub-sequence generated by EMD algo-
rithm, and establish suitable methods to study the oscillation 
sequence.

Data Availability

�e China’s crop disaster area data used to support the �ndings 
of this study are included within the article.

�us it is evident that the performance of EMD-
ARMA-GM(1,1) model is better than that of traditional main-
stream prediction models.

5.5. Prediction of Crops Disaster Area in China. �e EMD-
ARMA-GM(1,1) model is used to predict the crops disaster 
area in China from 2018 to 2021, and the results are shown 
in Table 6.

Table 6 shows that the overall trend of crops disaster 
area in China is decreasing in the next four years, but the 
crops disaster area is still very large. By 2021, it will reach 
19633390 hectares. �e large of crops disaster area may 
cause shortage of grain and inhibit rural economic. 
�erefore, in order to maintain the sustainable development 
of agriculture and national economy, the Chinese govern-
ment needs to develop policies for production subsidies and 
disaster relief subsidies, and set aside su�cient funds to 
deal with the problems of crops failures caused by future 
natural disasters.

6. Conclusion

In this paper, the shortcomings of grey prediction model 
in modelling small oscillation sequence are analysed, and 
then we find out the reason why grey prediction model is 
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Figure 12: �e simulated errors of EMD-ARMA-GM(1,1), ARIMA and GM(1,1).

Table 6:  Prediction results of crops disaster area in China by  
EMD-ARMA-GM(1,1) model (units: 1000 hectares).

Year 2018 2019 2020 2021
Crops disaster 
area 20857.76 22335.99 14606.27 19633.39
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