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In this paper, we are concerned with a linear thermoelastic laminated Timoshenko beam, where the heat conduction is given by
Cattaneo’s law. We firstly prove the global well posedness of the system. For stability results, we establish exponential and
polynomial stabilities by introducing a stability number χ.

1. Introduction

In this paper, we address the following thermoelastic lam-
inated Timoshenko beam in (0, 1) × (0,∞):

ρωtt + G ψ − ωx( x + δθx � 0,

Iρ(3s − ψ)tt − D(3s − ψ)xx − G ψ − ωx(  � 0,

Iρstt − Dsxx + G ψ − ωx(  +
4
3

cs +
4
3
βst � 0,

ρ3θt + qx + δωxt � 0,

τqt + αq + θx � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

which subject to the following boundary conditions:

ωx(0, t) � ψ(0, t) � s(0, t) � θ(0, t) � 0, t ∈ (0,∞),

ωx(1, t) � ψ(1, t) � s(1, t) � θ(1, t) � 0, t ∈ (0,∞),

⎧⎪⎨

⎪⎩

(2)

and initial conditions

ω(x, 0) � ω0(x),ψ(x, 0) � ψ0(x), s(x, 0) � s0(x), θ(x, 0) � θ0(x), x ∈ (0, 1),

q(x, 0) � q0(x),ωt(x, 0) � ω1(x),ψt(x, 0) � ψ1(x), st(x, 0) � s1(x), x ∈ (0, 1),
 (3)

where ρ, G, Iρ, D, c, β, ρ3, δ, τ, and α are positive constants.
θ(x, t) represents the difference temperature and q(x, t) is
the heat flux.

Laminated beam, which is a relevant research subject due
to the high applicability of such materials in the industry,
was firstly introduced by Hansen and Spies, see, for instance
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[1, 2]. (ey introduced a mathematical model for two-lay-
ered beams with structural damping due to the interfacial
slip which is given by

ρωtt + G ψ − ωx( x � 0,

Iρ 3stt − ψtt(  − G ψ − ωx(  − D 3sxx − ψxx(  � 0,

Iρstt + G ψ − ωx(  +
4
3

cs +
4
3
βst − Dsxx � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where the coefficients ρ, G, Iρ, D, c, and β are positive con-
stants and represent density, shear stiffness, mass moment of
inertia, flexural rigidity, adhesive stiffness, and adhesive
damping parameter, respectively. (e function ω(x, t) de-
notes the transversal displacement, ψ(x, t) represents the
rotational displacement, and s(x, t) is proportional to the
amount of slip along the interface at time t and longitudinal

spatial variable x. (e third equation describes the dynamics
of the slip.

Up till now, there are some results concerning laminated
beam equations, which are mainly concerned with global
existence and stability of the related system. By adding
suitable damping effects, such as internal damping,
(boundary) frictional damping, and viscoelastic damping, it
was shown that if the linear damping terms are added in two
of the three equations, system (4) is exponentially stable
under the “equal wave speeds” assumption (ρ/Iρ) � (G/D).
But if the damping terms are added in the three equations,
then the system decays exponentially without the equal wave
speeds assumption, see, for example, [3–17]. For thermo-
elastic laminated Timoshenko beam, there are few published
works, we can mention the results due to Liu and Zhao [18]
and Apalara [19]. In [18], the authors considered the fol-
lowing laminated beams with past history

ρφtt + G ψ − φx( x + θx � 0,

Iρ(3ω − ψ)tt − D(3ω − ψ)xx + 
∞

0
g(s)(3ω − ψ)xx(t − s)ds − G ψ − φx(  − θ � 0,

Iρωtt − Dωxx + G ψ − φx(  +
4
3

cω +
4
3
βωt � 0,

kθt − τθxx + φxt +(3ω − ψ)t � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

together with the following boundary conditions:
φx(0, t) � ψ(0, t) � ω(0, t) � θ(0, t) � 0, t ∈ (0,∞),

φ(1, t) � ψx(1, t) � ωx(1, t) � θx(1, t) � 0, t ∈ (0,∞).


(6)

(ey firstly proved the global well posedness of solutions
to the system.(emain results are the stability of the system.
If β≠ 0, they proved the exponential and polynomial sta-
bilities depending on the behavior of the kernel function g

only. If β � 0, they established exponential stability in case of
equal wave speeds assumption and lack of exponential
stability in case of nonequal wave speeds assumption.
Apalara [19] considered a laminated beam with second
sound of the form

ρωtt + G ψ − ωx( x � 0,

Iρ(3s − ψ)tt − D(3s − ψ)xx − G ψ − ωx(  + δθx � 0,

Iρstt − Dsxx + G ψ − ωx(  +
4
3

cs +
4
3
βst � 0,

ρ3θt + qx + δ(3s − ψ)xt � 0,

τqt + αq + θx � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

together with the following boundary conditions:
ωx(0, t) � ψ(0, t) � s(0, t) � q(0, t) � 0, t ∈ (0,∞),

ω(1, t) � ψx(1, t) � sx(1, t) � θ(1, t) � 0, t ∈ (0,∞),


(8)

and proved the global well posedness and established ex-
ponential and polynomial stabilities depending on the
parameter

χτ � 1 −
τρ3G
ρ

 
D

Iρ
−

G

ρ
  −

τGδ2

ρIρ
. (9)

One can also refer to two recent results of laminated
beams with thermal damping in [20, 21], and a result of a
coupled hyperbolic equations with a heat equation of second
sound in [22].

When s � 0, system (4) reduces to the well-known
Timoshenko system, which have been widely studied. (ere
are so many papers on the Timoshenko system in the lit-
erature, most of those results recover the global well pos-
edness, stability, and long-time dynamics by adding some
kinds of damping. Here, we recall some works on the
thermoelastic Timoshenko system. Muñoz Rivera and Racke
[23] considered a Timoshenko system with thermoelastic
dissipation and established exponential stability in case of
equal wave speed assumption and polynomial stability if
wave speeds are nonequal. Almeida Júnior et al. [24] studied
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a thermoelastic Timoshenko beam acting on shear force.
(ey obtained the same stability results as in [23]. In ad-
dition, they proved that the polynomial decay is optimal.
Fernández Sare and Racke [25] considered a Timoshenko
system with second sound. (ey proved that the system is
not exponentially stable even if the propagation speeds are
equal. (e results were generalized by Guesmia et al. [26].
Recently, Santos et al. [27] introduced a stability number χr

for the system in [25] and established the exponential decay
result for χr � 0 and polynomial decay for χr ≠ 0 by using the
semigroupmethod. One can also find a stability result for the
Timoshenko system with second sound in Apalara et al. [28].
Feng [29] considered a Timoshenko-Coleman-Gurtin sys-
tem and studied the long-time dynamics of the system.We at
last mention the contribution of Hamadouche and Mes-
saoudi [30] and Aouadi and Boulehmi [31], where the au-
thors considered two classes of nonuniform thermoelastic
Timoshenko systems and proved global well posedness and
established some stability results.

Our goals in the present work are to study the global well
posedness and stability of systems (1)–(3). (e main points
are summarized as follows:

(i) We prove the global well posedness of systems
(1)–(3) by using Lumer–Philips theorem. (e main
result is presented in (eorem 1.

(ii) We introduce a new stability number denoted by

χ � τδ2D − Dρ − GIρ 
τρ3D

Iρ
− 1 , (10)

and we show that the system is exponential stable
when χ � 0 and polynomial stable when χ ≠ 0. (e
main results are presented in (eorems 1 and 2.

(iii) (e proof of stability results is based on the mul-
tiplier method. Since the boundary conditions here
we considered are different from those in Apalara
[19], so the multipliers we will define are greatly
different from the multipliers in Apalara [19].

It follows, from (1), that

d2

dt2

1

0
ω(x, t)dx � 0,

τ
d
dt


1

0
q(x, t)dx + α

1

0
q(x, t)dx � 0.

(11)

If we denote

ω(x, t) � ω(x, t) − 
1

0
ω0(x) − t 

1

0
ω1(x)dx,

q(x, t) � q(x, t) − e
− (α/τ)t


1

0
q0(x)dx,

(12)

we easily verify that (ω,ψ, s, θ, q) satisfies (1) and in addition,


1

0
ω(x, t)dx � 0,


1

0
q(x, t)dx � 0,

∀t≥ 0.

(13)

Hence, Poincaré’s inequality holds for ω. In the fol-
lowing, we work with ω and q but write ω and q for
convenience.

(e remaining paper is planned as follows. In Section 2,
we study the well posedness of the system. In Section 3, we
establish the stability results.(roughout this paper, c> 0 is a
generic constant that changes from one inequality to
another.

2. Well Posedness

We start by denoting the vector-valued function by U:

U � (ω,Φ, 3s − ψ, 3Λ − Ψ, s,Λ, θ, q)
T
,

withΦ � ωt,

Ψ � ψt, andΛ � st.

(14)

(en, systems (1)–(3) can be written as
d
dt

U(t) � AU, t> 0,

U(0) � U0 � ω0,ω1, 3s0 − ψ0, 3s1 − ψ1, s0, s1, θ0, q0( 
T
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

where the operator A is defined by

AU �

Φ

−
G

ρ
ψ − ωx( x −

δ
ρ
θx

3Λ − Ψ

D

Iρ
(3s − ψ)xx +

G

Iρ
ψ − ωx( 

Λ

D

Iρ
sxx −

G

Iρ
ψ − ωx(  −

4c

3Iρ
s −

4β
3Iρ
Λ

−
1
ρ3

qx −
δ
ρ3
Φx

−
α
τ

q −
1
τ
θx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

We consider the following spaces:
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L
2
∗ (0, 1) � v ∈ L

2
(0, 1): 

1

0
v(x)dx � 0 ,

H
1
∗ (0, 1) � H

1
(0, 1)∩ L

2
∗ (0, 1),

H
2
∗ (0, 1) � v ∈ H

2
(0, 1): vx(0) � vx(1) � 0 .

(17)

Let

H � H
1
∗ (0, 1) × L

2
∗ (0, 1) × H

1
0(0, 1) × L

2
(0, 1) × H

1
0(0, 1)

× L
2
(0, 1) × L

2
(0, 1) × L

2
∗ (0, 1)

(18)

be the Hilbert space equipped with the inner product

(U, U)H � ρ
1

0
ΦΦdx + Iρ 

1

0
(3Λ − Ψ)(3Λ − Ψ)dx + 3Iρ 

1

0
ΛΛdx

+ ρ3 
1

0
θθdx + τ 

1

0
qqdx + 4c 

1

0
ssdx + D 

1

0
(3s − ψ)x(3s − ψ)xdx

+ G 
1

0
ψ − ωx(  ψ − ωx( dx + 3D 

1

0
sxsxdx.

(19)

(e domain of A is given by

DA � U ∈H



ω ∈ H2
∗0, 1∩H1

∗0, 1, 3s − ψ, s ∈ H20, 1∩H1
00, 1,

Φ, q ∈ H1
∗0, 1, 3Λ − Ψ,Λ, θ ∈ H1

00, 1

⎧⎨

⎩

⎫⎬

⎭. (20)

(e well posedness result can be stated in the following
theorem.

Theorem 1. Let U0 ∈H, then problems (1)–(3) admit a
unique weak solution U ∈ C(R+,H). In addition, if
U0 ∈ D(A), then U ∈ C(R+, D(A))∩C1(R+,H).

Proof. It is easy to obtain that, for any U � (ω,Φ, 3s − ψ,

3Λ − Ψ, s,Λ, θ, q)T ∈ D(A),

(AU, U)H � − 4β
1

0
Λ2dx − α

1

0
q
2dx≤ 0, (21)

which implies the operator A is a dissipative operator.
In what follows, we shall show the operator Id − A is

surjective. In other words, given F � (f1, f2, f3, f4,

f5, f6, f7, f8) ∈H, we will seek a solution V � (v1, v2, v3,

v4, v5, v6, v7, v8) ∈ D(A) of

(Id − A)V � F. (22)

We rewrite (21) as

v1 − v2 � f1,

ρv2 − Gv1xx − Gv3x + 3Gv5x + δv7x � ρf2,

v3 − v4 � f3,

Iρv4 − Dv3xx − 3Gv5 + Gv3 + Gv1x � Iρf4,

v5 − v6 � f5,

Iρ +
4
3
β v6 − Dv5xx − Gv3 − Gv1x + 3G +

4
3

c v5 � Iρf6,

ρ3v7 + v8x + δv2x � ρ3f7,

(τ + α)v8 + v7x � τf8,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)
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which implies that

v2 � v1 − f1, (24)

v4 � v3 − f3, (25)

v6 � v5 − f5, (26)

v7x � − (τ + α)v8 + τf8. (27)

We infer from (27) that

v7 � − (τ + α) 
x

0
v8(y)dy + τ 

x

0
f8(y)dy. (28)

Replacing (24)–(26) and (28) in (23), we see that

ρv1 − Gv1xx − Gv3x + 3Gv5x − δ(τ + α)v8 � ρ f1 + f2(  − τf8,

Iρv3 − Dv3xx − 3Gv5 + Gv3 + Gv1x � Iρ f3 + f4( ,

Iρ + 3G +
4
3
β +

4
3

c v5 − Dv5xx − Gv3 − Gv1x � Iρ f5 + f6(  +
4
3
βf5,

− ρ3(τ + α) 
x

0
v8(y)dy + v8x + δv1x � ρ3f7 − ρ3τ 

x

0
f8(y)dy + δf1x.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

We multiply (29) by v1, v3, v5, and (τ + α) 
x

0 v8(y)dy,
respectively, and integrate their sum over (0, 1) to get the
following variational formulation:

B v1, v3, v5, v8( , v1, v3, v5, v8( (  � L v1, v3, v5, v8( , (30)

where the bilinear form B: [H1
∗(0, 1) × H1

0(0, 1) ×

H1
0(0, 1) × L2

∗(0, 1)]2⟶ R is given by

B v1, v3, v5, v8( , v1, v3, v5, v8( ( 

� G 
1

0
− v1x − v3 + 3v5(  − v1x − v3 + 3v5( dx + ρ

1

0
v1v1dx + Iρ 

1

0
v3v3dx

+ 3Iρ + 4β + 4c  
1

0
v5v5dx +(τ + α) 

1

0
v8v8dx + D 

1

0
v3xv3xdx

+ 3D 
1

0
v5xv5xdx + ρ3(τ + α)

2

1

0


x

0
v8(y)dy  

x

0
v8(y)dy dx,

(31)

and the linear form L: [H1
∗ (0, 1) × H1

0(0, 1) × H1
0(0, 1) ×

L2
∗ (0, 1)]⟶ R is defined by

L v1, v3, v5, v8(  � 
1

0
ρf1 + ρf2 − τδf8( v1dx + Iρ 

1

0
f3 + f4( v3dx

+ 
1

0
3Iρ + 4β f5 + 3Iρf6 v5dx

+ δ(τ + α) 
1

0
f1v8dx

+ 
1

0
ρ3τ(τ + α) 

x

0
f8(y)dy − ρ3(τ + α)f7 

· 
x

0
v8(y)dy dx.

(32)

We denote the Hilbert space V by

V � H
1
∗ (0, 1) × H

1
0(0, 1) × H

1
0(0, 1) × L

2
∗ (0, 1), (33)

equipped with the norm

v1, v3, v5, v8( 
����

����
2
V

� − v1x − v3 + 3v5
����

����
2
2 + v1

����
����
2
2

+ v8
����

����
2
2 + v3x

����
����
2
2 + v5x

����
����
2
2.

(34)

It is easy to get that B(·, ·) and L(·) are bounded.
Moreover there exists a positive constant m such that
B v1, v3, v5, v8( , v1, v3, v5, v8( ( 

� G 
1

0
− v1x − v3 + 3v5( 

2dx + ρ
1

0
v
2
1dx + Iρ 

1

0
v
2
3dx

+ 3Iρ + 4β + 4c  
1

0
v
2
5dx +(τ + α) 

1

0
v
2
8dx + D 

1

0
v
2
3xdx

+ 3D 
1

0
v
2
5xdx + ρ3(τ + α)

2

1

0


x

0
v8(y)dy 

2
dx

≥G 
1

0
− v1x − v3 + 3v5( 

2dx + ρ
1

0
v
2
1dx

+(τ + α) 
1

0
v
2
8dx + D 

1

0
v
2
3xdx + 3D 

1

0
v
2
5xdx

≥m v1, v3, v5, v8( 
����

����
2
V

.

(35)
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(us, B is coercive on V × V. Consequently, using
Lax–Milgram theorem, we conclude that (30) has a unique
solution:

v1 ∈ H
1
∗(0, 1),

v3, v5 ∈ H
1
0(0, 1),

v8 ∈ L
2
∗(0, 1).

(36)

Substituting v1, v3, v5, and v8 into (24)–(26) and (28),
respectively, we have

v2 ∈ H
1
∗(0, 1),

v4, v6 ∈ H
1
0(0, 1),

v7 ∈ H
1
0(0, 1).

(37)

Let v1 ∈ H1
0(0, 1) and denote

v1(x) � v1(x) − 
1

0
v1(s)ds, (38)

which gives us v1 ∈ H1
∗(0, 1). Now we replace (v1, v3, v5, v8)

by (v1, 0, 0, 0) in (30) to obtain

G 
1

0
− v1x − v3 + 3v5(  − v1x dx + ρ

1

0
v1

v1dx

� 
1

0
ρf1 + ρf2 − τδf8( v1dx,

(39)

i.e.,

G 
1

0
v1xx

v1dx � ρ
1

0
v1

v1dx − G 
1

0
v3x

v1dx + 3G 
1

0
v5x

v1dx

− 
1

0
ρf1 + ρf2 − τδf8( v1dx, ∀v1 ∈ H

1
0(0, 1),

(40)

which yields

Gv1xx � ρv1 − Gv3x + 3Gv5x

− ρf1 + ρf2 − τδf8(  ∈ L
2
(0, 1).

(41)

(us,

v1 ∈ H
2
(0, 1). (42)

Moreover, (39) also holds for any ϕ ∈ C1([0, 1]). (en,
by using integration by parts, we obtain

Gv1x(1)ϕ(1) − Gv1x(0)ϕ(0) − G 
1

0
v1xxϕ dx

+ ρ
1

0
v1ϕdx − G 

1

0
v3xϕdx

+ 3G 
1

0
v5xϕdx − 

1

0
ρf1 + ρf2 − τδf8( ϕ dx � 0.

(43)

(en, we get for any ϕ ∈ C1([0, 1]),
Gv1x(1)ϕ(1) − Gv1x(0)ϕ(0) � 0. (44)

From (28), we obtain

v7(0) � v7(1) � 0. (45)

Since ϕ is arbitrary, we get that v1x(0) � v1x(1) � 0.

Hence, v1 ∈ H2
∗(0, 1). Using similar arguments as above, we

can obtain

v3, v5 ∈ H
2
(0, 1)∩H

1
0(0, 1),

v7 ∈ H
1
0(0, 1),

v8 ∈ H
1
∗(0, 1).

(46)

(us, V � (v1, v2, v3, v4, v5, v6, v7, v8) ∈ D(A) and A is
maximal. By using Lumer–Philips theorem, see, for example,
Liu and Zheng [32] and Pazy [33], we end the proof of the
theorem. □

3. Stability

In this section, we study the stability of systems (1)–(3).
More precisely, we establish exponential and polynomial
decay results depending on χ defined by

χ � τδ2D − Dρ − GIρ 
τρ3D

Iρ
− 1 . (47)

(e energy functional of systems (1)–(3) is defined by

E(t) � E(ω,ψ, s, θ, q)

�
1
2


1

0
ρω2

t + Iρ (3s − ψ)t 
2

+ 3Iρs
2
t + ρ3θ

2

+ τq
2

+ 4cs
2
+ D (3s − ψ)x 

2
+ G ψ − ωx( 

2
+ 3Ds

2
xdx.

(48)

Now we give our stability results.

Theorem 2 (exponential decay). Suppose that χ � 0. For any
initial data U0 ∈H, there exist two positive constants μ and η
such that the energy functional (48) satisfies

E(t)≤ μe
− ηt

, ∀t≥ 0. (49)

Theorem 3 (polynomial decay). Suppose that χ ≠ 0. For any
initial data U0 ∈ D(A), there exists positive constant μ0 such
that the energy functional (48) satisfies

E(t)≤
μ0
t

, ∀t> 0. (50)

To prove ?eorems 1 and 2, we need the following
technical lemmas.

3.1. Technical Lemmas

Lemma 1. It holds that the energy functional E(t) is non-
increasing and satisfies

E′(t) � − 4β
1

0
s
2
tdx − α

1

0
q
2dx≤ 0. (51)
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Proof. Multiplying (1) by ωt, (3s − ψ)t, st, θ, and q, re-
spectively, integrating the results by parts and using
boundary condition (1), we easily get (51). □

Lemma 2. Define the functional F1(t) by

F1(t) � Iρ 
1

0
(3s − ψ)t(3s − ψ)dx

− ρ
1

0
ωt 

x

0
(3s − ψ)(y)dy dx.

(52)

(en, we have for any ε1 > 0,

F1′(t)≤ −
D

2

1

0
(3s − ψ)x 

2dx

+ ε1 
1

0
ω2

tdx + c 1 +
1
ε1

  
1

0
(3s − ψ)t 

2dx

+
δ2c2∗
2D


1

0
θ2dx,

(53)

where c∗ > 0 is the Poincaré constant.

Proof. It follows from (1) that

F1′(t) � D 
1

0
(3s − ψ)xx(3s − ψ)dx

+ G 
1

0
ψ − ωx( (3s − ψ)dx + Iρ 

1

0
(3s − ψ)t 

2dx

+ G 
1

0
ψ − ωx(  

x

0
(3s − ψ)(y)dy dx

+ δ
1

0
θx 

x

0
(3s − ψ)(y)dy dx

− ρ
1

0
ωt 

x

0
(3s − ψ)t(y)dy dx.

(54)

Using integration by parts and boundary condition (1),
we arrive at

F1′(t) � − D 
1

0
(3s − ψ)x 

2dx + Iρ 
1

0
(3s − ψ)t 

2dx

− δ
1

0
θ(3s − ψ)dx

− ρ
1

0
ωt 

x

0
(3s − ψ)t(y)dy dx.

(55)

(en, by using Hölder’s, Young’s, and Poincaré’s in-
equalities, we can get (53) from (57). □

Lemma 3. ?e functional F2(t) defined by

F2(t) � ρ
1

0
ψ − ωx(  

x

0
ωt(y)dy dx, (56)

satisfies for any ε2 > 0,

F2′(t)≤ −
G

2

1

0
ψ − ωx( 

2dx + ε2 
1

0
ψ2

tdx + c 1 +
1
ε2

  
1

0
ω2

tdx

+
δ2

2G

1

0
θ2dx.

(57)

Proof. Differentiating F2(t) with respect to t and using (1),
we see that

F2′(t) � ρ
1

0
ψt 

x

0
ωt(y)dy dx − ρ

1

0
ωxt 

x

0
ωt(y)dy dx

− G 
1

0
ψ − ωx(  

x

0
ψ − ωy 

y
dy dx

− δ
1

0
ψ − ωx(  

x

0
θydy dx.

(58)

Using integration by parts, we obtain

F2′(t) � ρ
1

0
ψt 

x

0
ωt(y)dy dx + ρ

1

0
ω2

tdx

− G 
1

0
ψ − ωx( 

2dx − δ
1

0
θ ψ − ωx( dx.

(59)

(en, by using Young’s inequality and Hölder’s in-
equality, we can get (57). □

Lemma 4. Define the functional F3(t) by

F3(t) � τρ3 
1

0
θ

x

0
q(y)dy dx. (60)

(en, we can get for any ε3 > 0,

F3′(t)≤ −
ρ3
2


1

0
θ2dx + ε3 

1

0
ω2

tdx + c 1 +
1
ε3

  
1

0
q
2dx.

(61)

Proof. Differentiating F3 with respect to t and using (1), we
obtain

F3′(t) � − τ 
1

0
qx 

x

0
q(y)dy dx − τδ

1

0
ωxt 

x

0
q(y)dy dx

− ρ3α
1

0
θ

x

0
q dy dx − ρ3 

1

0
θ

x

0
θydy dx.

(62)

Integration by parts gives us

F3′(t) � τ 
1

0
q
2dy + τδ

1

0
ωtqdx − ρ3α

1

0
θ

x

0
qdy dx

− ρ3 
1

0
θ2dx.

(63)

By using Young’s inequality and Hölder’s inequality, we
can get (61). □
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Lemma 5. ?e functional F4(t) defined by

F4(t) � − ρρ3 
1

0
θ

x

0
ωt(y)dy dx, (64)

satisfies for any ε4 > 0,

F4′(t)≤ −
ρδ
2


1

0
ω2

tdx + ε4 
1

0
ψ − ωx( 

2dx + c 1 +
1
ε4

  
1

0
θ2dx

+
ρ
2δ


1

0
q
2dx.

(65)

Proof. We take the derivative of F4 and use (1) and integrate
by parts to obtain

F4′(t) � ρ
1

0
qx 

x

0
ωt(y)dy dx + ρδ

1

0
ωxt 

x

0
ωt(y)dy dx

+ ρ3G 
1

0
θ

x

0
ψ − ωy 

y
(y)dy dx

+ ρ3δ
1

0
θ

x

0
θy(y)

� − ρ
1

0
qωtdx − ρδ

1

0
ω2

tdx

+ ρ3G 
1

0
θ ψ − ωx( dx + ρ3δ

1

0
θ2dx.

(66)

(en, using Young’s inequality, we can get (65). □

Lemma 6. Define the functional F5(t) by

F5(t) � τGδIρ 
1

0
(3s − ψ)t ψ − ωx( dx

− τδDρ
1

0
ωt(3s − ψ)xdx

+ τρ3 Dρ − GIρ  
1

0
θ(3s − ψ)tdx

− τ Dρ − GIρ  
1

0
q(3s − ψ)xdx.

(67)

(en, we have for any ε5 > 0,

F5′(t)≤ −
τGδIρ

2

1

0
(3s − ψ)t 

2dx + c1 
1

0
s
2
tdx

+ c2 
1

0
θ2dx + c3 

1

0
ψ − ωx( 

2dx

+ ε5 
1

0
(3s − ψ)x 

2dx + Cε5 
1

0
q
2dx

+ χ 
1

0
θx(3s − ψ)xdx,

(68)

where ci (i � 1, 2, 3) are positive constants.

Proof. By differentiating F5 with respect to t, we have

F5′(t) � τGδIρ 
1

0
(3s − ψ)tt ψ − ωx( dx

√√√√√√√√√√√√√√√√√√√√√√√√√√
:�I1

+ τGδIρ 
1

0
(3s − ψ)t ψ − ωx( tdx

− τδDρ
1

0
ωtt(3s − ψ)xdx

√√√√√√√√√√√√√√√√√√√√√√
:�I2

− τδDρ
1

0
ωt(3s − ψ)xtdx

+τρ3 Dρ − GIρ  
1

0
θt(3s − ψ)tdx

√√√√√√√√√√√√√√√√√√√√√√√√√√√√
:�I3

+ τρ3 Dρ − GIρ  
1

0
θ(3s − ψ)ttdx

√√√√√√√√√√√√√√√√√√√√√√√√√√√√
:�I4

− τ Dρ − GIρ  
1

0
qt(3s − ψ)xdx

√√√√√√√√√√√√√√√√√√√√√√√√√√√√
:�I5

− τ Dρ − GIρ  
1

0
q(3s − ψ)xtdx

√√√√√√√√√√√√√√√√√√√√√√√√√√√√
:�I6

.

(69)

Using equation (1) and integrating by parts, we see that

I1 � − τGδD 
1

0
(3s − ψ)x ψ − ωx( xdx

+ τG
2δ

1

0
ψ − ωx( 

2dx,

(70)

I2 � τδDG 
1

0
ψ − ωx( x(3s − ψ)xdx

+ τδ2D 
1

0
θx(3s − ψ)xdx,

(71)

I3 � − τ Dρ − GIρ  
1

0
qx(3s − ψ)tdx

− τδ Dρ − GIρ  
1

0
ωxt(3s − ψ)tdx,

(72)

I4 � −
τρ3D

Iρ
Dρ − GIρ  

1

0
θx(3s − ψ)xdx

+
τρ3G

Iρ
Dρ − GIρ  

1

0
θ ψ − ωx( dx,

(73)
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I5 � α Dρ − GIρ  
1

0
q(3s − ψ)xdx

+ Dρ − GIρ  
1

0
θx(3s − ψ)xdx,

(74)

I6 � τ Dρ − GIρ  
1

0
qx(3s − ψ)tdx. (75)

Inserting (70)–(75) into (69), we can obtain

F5′(t) � τG
2δ

1

0
ψ − ωx( 

2dx + τGδIρ 
1

0
ψt(3s − ψ)tdx

+
τρ3G

Iρ
Dρ − GIρ  

1

0
θ ψ − ωx( dx

+ α Dρ − GIρ  
1

0
q(3s − ψ)xdx

+ χ 
1

0
θx(3s − ψ)xdx.

(76)

Recalling ψ � (ψ − 3s) + 3s and using Young’s in-
equality, we conclude that

τGδIρ 
1

0
ψt(3s − ψ)tdx

� − τGδIρ 
1

0
(3s − ψ)t 

2dx + 3τGδIρ 
1

0
st(3s − ψ)tdx

≤ −
τGδIρ

2

1

0
(3s − ψ)t 

2dx + c1 
1

0
s
2
tdx,

(77)

τρ3G
Iρ

Dρ − GIρ  
1

0
θ ψ − ωx( dx

≤ c2 
1

0
θ2dx + c3 

1

0
ψ − ωx( 

2dx,

(78)

and for any ε5 > 0,

α Dρ − GIρ  
1

0
q(3s − ψ)xdx≤ ε5 

1

0
(3s − ψ)x 

2dx

+ Cε5 
1

0
q
2dx,

(79)

which, together with (76)–(78), gives us (68). □

Lemma 7. ?e functional F6(t) defined by

F6(t) � 3Iρ 
1

0
sts dx + 2β

1

0
s
2dx, (80)

satisfies

F6′(t)≤ − 3c 
1

0
s
2dx − 3D 

1

0
s
2
xdx

+ c4 
1

0
ψ − ωx( 

2dx + 3Iρ 
1

0
s
2
tdx,

(81)

where c4 is a positive constant.

Proof. follows from (1) that

F6′(t) � − 3D 
1

0
s
2
xdx − 3G 

1

0
s ψ − ωx( dx

− 4c 
1

0
s
2dx + 3Iρ 

1

0
s
2
tdx.

(82)

Young’s inequality gives us (82). □

3.2. Exponential Stability: Proof of ?eorem 1

Proof. We define the functional L(t) by

L(t) � NE(t) + F1(t) + N2F2(t) + N3F3(t)

+ N4F4(t) + N5F5(t) + F6(t),
(83)

whereN and Ni (i � 2, 3, 4, 5) are positive constants that will
be chosen later.

Note that


1

0
ψ2

tdx � 
1

0
[(3s − ψ) − 3s]

2
tdx

≤ 2
1

0
(3s − ψ)t 

2dx + 18
1

0
s
2
tdx.

(84)

Replacing (84) in (57) and then combining (51)–(53),
(57)–(68), and (82), we obtain

L′(t)≤ − 4βN − c1N5 − 18ε2N2 − 3Iρ  
1

0
s
2
tdx

−
D

2
− ε5N5  

1

0
(3s − ψ)x 

2dx

− αN − cN3 1 +
1
ε3

  −
ρ
2δ

N4 − Cε5N5  
1

0
q
2dx

−
ρδ
2

N4 − ε1 − ε3N3 − cN2 1 +
1
ε2

   
1

0
ω2

tdx

−
τGδIρ

2
N5 − 2ε2N2 − c 1 +

1
ε1

   
1

0
(3s − ψ)t 

2dx

−
G

2
N2 − ε4N4 − c3N5 − c4  

1

0
ψ − ωx( 

2dx

−
ρ3
2

N3 −
δ2c2∗
2D

−
δ2

2G
N2 − cN4 1 +

1
ε4

  − c2N5  
1

0
θ2dx

− 3D 
1

0
s
2
xdx − 3c 

1

0
s
2dx.

(85)
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Taking

ε1 � 1,

ε2 �
τGδIρ

8N2
N5,

ε3 �
1

N3
,

ε4 �
G

4N4
N2,

ε5 �
D

4N5
,

(86)

we obtain

L′(t)≤ − 4βN − c1N5 −
9
4
τGδIρN5 − 3Iρ  

1

0
s
2
tdx

−
D

4

1

0
(3s − ψ)x 

2dx

− αN − cN3 1 + N3(  −
ρ
2δ

N4 − Cε5N5  
1

0
q
2dx

−
ρδ
2

N4 − 2 − cN2 1 +
8N2

N5τGδIρ
   

1

0
ω2

tdx

−
τGδIρ

4
N5 − 2c  

1

0
(3s − ψ)t 

2dx

−
G

4
N2 − c3N5 − c4  

1

0
ψ − ωx( 

2dx

−
ρ3
2

N3 −
δ2c2∗
2D

−
δ2

2G
N2

− cN4 1 +
4N4

GN2
  − c2N5 

1

0
θ2dx

− 3D 
1

0
s
2
xdx − 3c 

1

0
s
2dx.

(87)

At this point, we first choose N5 > 0 large enough such
that

τGδIρ

4
N5 − 2c> 0. (88)

For fixed N5, we take N2 > 0 so large that
G

4
N2 − c3N5 − c4 > 0. (89)

(en, we pick N4 > 0 large so that
ρδ
2

N4 − 2 − cN2 1 +
8N2

N5τGδIρ
 > 0. (90)

And then we choose N3 so large that

ρ3
2

N3 −
δ2c2∗
2D

−
δ2

2G
N2 − cN4 1 +

4N4

GN2
  − c2N5 > 0. (91)

At last, we take N> 0 large enough so that the functional
L(t) is equivalent to the energy functional E(t), i.e., there
exist two positive constants:

β1E(t)≤ L(t)≤ β2E(t), (92)

and further so that

αN − cN3 1 + N3(  −
ρ
2δ

N4 − Cε5N5 > 0.

4βN − c1N5 −
9
4
τGδIρN5 − 3Iρ > 0,

(93)

Recalling (48), we infer that there exists a positive
constant β3 such that, for any t> 0,

L′(t)≤ − β3E(t), (94)

which, along with (92), implies

L′(t)≤ −
β3
β2

L(t). (95)

Integrating (95) over (0, t), we have, for any t> 0,

L(t)≤L(0)e
− β3/β2)�t,( (96)

which, using (95) again, gives us (49). (e proof of
(eorem 1 is done. □

3.3. Polynomial Stability: Proof of?eorem 2. In this section,
we consider the case χ ≠ 0 to prove (eorem 2.

Differentiating system (1) with respect to time, we obtain
the following system:

ρωttt + G ψ − ωx( xt + δθxt � 0,

Iρ(3s − ψ)ttt − D(3s − ψ)xxt − G ψ − ωx( t � 0,

Iρsttt − Dsxxt + G ψ − ωx( t +
4
3

cst +
4
3
βstt � 0,

ρ3θtt + qxt + δωxtt � 0,

τqtt + αqt + θxt � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(97)

which subject to the following boundary conditions:

ωxt(0, t) � ψt(0, t) � st(0, t) � θt(0, t) � 0, t ∈ (0,∞),

ωxt(1, t) � ψt(1, t) � st(1, t) � θt(1, t) � 0, t ∈ (0,∞).


(98)

For any initial data U0 ∈ D(A), system (97) is well
posed. Next, we introduce second-order energy functional
E(t) by
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E(t) � E ωt,ψt, st, θt, qt( 

�
1
2


1

0
ρω2

tt + Iρ (3s − ψ)tt 
2

+ 3Iρs
2
tt + ρ3θ

2
t + τq

2
t + 4cs

2
t

+ D (3s − ψ)xt 
2

+ G ψ − ωx( t 
2

+ 3Ds
2
xtdx.

(99)

By using the same arguments as in Lemma 3, we can get
the second-order energy E(t) defined by (99) is nonin-
creasing and satisfies

E′(t) � − 4β
1

0
s
2
ttdx − α

1

0
q
2
tdx≤ 0. (100)

In Lemma 6, we have proved that, for any ε5 > 0,

F5′(t)≤ −
τGδIρ

2

1

0
3s − ψt( 

2dx  + c1 
1

0
s
2
tdx

+ c2 
1

0
θ2dx + c3 

1

0
ψ − ωx( 

2dx

+ ε5 
1

0
(3s − ψ)x 

2dx + Cε5 
1

0
q
2dx

+ χ 
1

0
θx(3s − ψ)xdx.

(101)

(anks to (1) and Young’s inequality, we derive that


1

0
θ2xdx≤ c 

1

0
q
2dx + c 

1

0
q
2
tdx. (102)

(en, for any ε5 > 0,

χ 
1

0
θx(3s − ψ)xdx≤ ε5 

1

0
(3s − ψ)x 

2dx + Cε5 
1

0
θ2xdx

≤ ε5 
1

0
(3s − ψ)x 

2dx + Cε5 
1

0
q
2dx

+ Cε5 
1

0
q
2
tdx.

(103)

(erefore, the derivative of F5 satisfies

F5′(t)≤ −
τGδIρ

2

1

0
(3s − ψ)t 

2dx + c1 
1

0
s
2
tdx

+ c2 
1

0
θ2dx + c3 

1

0
ψ − ωx( 

2dx

+ 2ε5 
1

0
(3s − ψ)x 

2dx + Cε5 
1

0
q
2dx + Cε5 

1

0
q
2
tdx.

(104)

Proof. We define the functional L(t) by
L(t) � N(E(t) + E(t)) + F1(t) + N2F2(t)

+ N3F3(t) + N4F4(t) + N5F5(t) + F6(t).
(105)

It follows from (51)–(53), (57)–(65), and (100)–(104) that

L′(t)≤ − 4βN − c1N5 − 18ε2N2 − 3Iρ  
1

0
s
2
tdx −

D

2
− 2ε5N5  

1

0
(3s − ψ)x 

2dx

− αN − cN3 1 +
1
ε3

  −
ρ
2δ

N4 − Cε5N5  
1

0
q
2dx

−
ρδ
2

N4 − ε1 − ε3N3 − cN2 1 +
1
ε2

   
1

0
ω2

tdx

−
τGδIρ

2
N5 − 2ε2N2 − c 1 +

1
ε1

   
1

0
(3s − ψ)t 

2dx

−
G

2
N2 − ε4N4 − c3N5 − c4  

1

0
ψ − ωx( 

2dx

−
ρ3
2

N3 −
δ2c2∗
2D

−
δ2

2G
N2 − cN4 1 +

1
ε4

  − c2N5  
1

0
θ2dx

− 3D 
1

0
s
2
xdx − 3c 

1

0
s
2dx − αN − Cε5  

1

0
q
2
tdx.

(106)
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With the same choice of constants as in Section 3.2, we
further take N> 0 so large that

αN − Cε5 > 0. (107)

Noting that (48), we know that there exists a positive
constant μ1 such that, for any t> 0,

L′(t)≤ − μ1E(t). (108)

Since the energy functional E(t) is positive and non-
increasing, we infer (108) that, for any t> 0,

tE(t)≤
t

0
E(s)ds≤

1
μ1

( L(0)t − n Lq(t))≤
L(0)

μ1
,

(109)

which gives us

E(t)≤
μ0
t

, ∀t> 0. (110)

Here, μ0 � ( L(0)t/μ1) � (E(0) + E(0)/μ1). (e proof is
complete. □

Remark 1. We point out that the functional L(t) is ineq-
uivalent to the energy functional E(t). (at is to say, (92)
does not hold true.
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