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In this paper, we are concerned with a linear thermoelastic laminated Timoshenko beam, where the heat conduction is given by
Cattaneo’s law. We firstly prove the global well posedness of the system. For stability results, we establish exponential and
polynomial stabilities by introducing a stability number y.

1. Introduction which subject to the following boundary conditions:

In this paper, we address the following thermoelastic lam- ©: (0.5 =y(0,8) =5(0.6) = 0(0,1) =0, ¢ € (0,00),

inated Timoshenko beam in (0, 1) x (0, 00): w (L =y(L6)=s(L,H)=0(L1) =0, te (0,00),
( pwtt+G(W_wx)x+60x =0’ (2)

I,(3s~ )y ~DBs — ¥)y ~ Gy~ w,) = 0, and initial conditions

4 4
1 Ips”—szx+G(w—wx)+§ys+gﬁst=0, (1)

P39t + 9x + 8th = 0’

| 7q; +aq+0,=0,

{ CU(X, 0) = w() (x)’ I//(x’ 0) = 1//0 (x),S(X, 0) = S() (x)> e(x) 0) = 60 (X)’ X € (0) 1)> (3)
Q(x> 0) = qO (x)$ w[ (X> 0) = w] (x)> Wt (x) O) = 1!/1 ('x)) St (x’ 0) = 51 (X), X € (O) 1))
where p,G,1,,D,,p,p;,0,7, and a are positive constants. Laminated beam, which is a relevant research subject due

0(x,t) represents the difference temperature and q(x,t) is  to the high applicability of such materials in the industry,
the heat flux. was firstly introduced by Hansen and Spies, see, for instance
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[1, 2]. They introduced a mathematical model for two-lay-
ered beams with structural damping due to the interfacial
slip which is given by

[ pwy + G(‘/’ - wx)x =0,

p Ip(3stt_l//tt)_G(I//_wx)_D(?’sxx_Wxx) =0, (4)

4 4
Lsy +G(y - w,) +§ys+§ﬁst -Ds,. =0,

where the coefficients p, G, 1,, D,y, and  are positive con-
stants and represent density, shear stiffness, mass moment of
inertia, flexural rigidity, adhesive stiffness, and adhesive
damping parameter, respectively. The function w(x,t) de-
notes the transversal displacement, ¥ (x,t) represents the
rotational displacement, and s(x,t) is proportional to the
amount of slip along the interface at time ¢ and longitudinal

i PP +G(I//_(Px)x+9x =0,

k0, — 10, + ¢, + Bw—y), =0,

together with the following boundary conditions:

0. (0,6) = (0,) = w(0,£) = 6(0,) = 0, t € (0,00),
{go(l,t):1//x(1,t)=wx(1,t)=9x(1,t)=0, t € (0,00).
(6)

They firstly proved the global well posedness of solutions
to the system. The main results are the stability of the system.
If B#0, they proved the exponential and polynomial sta-
bilities depending on the behavior of the kernel function g
only. If 8 = 0, they established exponential stability in case of
equal wave speeds assumption and lack of exponential
stability in case of nonequal wave speeds assumption.
Apalara [19] considered a laminated beam with second
sound of the form

Py + G(W - wx)x =0,

Ip(3s—1//)”—D(3s—w)xx—G(y/—wx)+69x =0,
4 4
1 LS = Dse + G (¥~ w,) +§ys+§/3st =0,

P30, +q, +8(B3s—y),, =0,

| 7, +aq + 0, =0,
(7)

Complexity

spatial variable x. The third equation describes the dynamics
of the slip.

Up till now, there are some results concerning laminated
beam equations, which are mainly concerned with global
existence and stability of the related system. By adding
suitable damping effects, such as internal damping,
(boundary) frictional damping, and viscoelastic damping, it
was shown that if the linear damping terms are added in two
of the three equations, system (4) is exponentially stable
under the “equal wave speeds” assumption (p/I,) = (G/D).
But if the damping terms are added in the three equations,
then the system decays exponentially without the equal wave
speeds assumption, see, for example, [3-17]. For thermo-
elastic laminated Timoshenko beam, there are few published
works, we can mention the results due to Liu and Zhao [18]
and Apalara [19]. In [18], the authors considered the fol-
lowing laminated beams with past history

1,Go-y)y - DGw—y),, + JO 9(5)Bw— ), (= s)ds - G(y - 9.) — 0= 0,

4 4
Ipwtt_Dwxx+G(1//_¢x)+§yw+gﬁwt =0,

(5)

together with the following boundary conditions:
<[a)x(o,t)=1//(O,t)=s(0,1‘)=q(0,t)=0, t € (0,00),
w(1,t) =y, (1,1) =s,(1,1) =60(1,£) =0,  t € (0,00),
(8)

and proved the global well posedness and established ex-
ponential and polynomial stabilities depending on the

parameter
,G\(D G\ 1G&
x1=<1—’3—3)<———>— . ©)
p J\I, p) Pl

One can also refer to two recent results of laminated
beams with thermal damping in [20, 21], and a result of a
coupled hyperbolic equations with a heat equation of second
sound in [22].

When s =0, system (4) reduces to the well-known
Timoshenko system, which have been widely studied. There
are so many papers on the Timoshenko system in the lit-
erature, most of those results recover the global well pos-
edness, stability, and long-time dynamics by adding some
kinds of damping. Here, we recall some works on the
thermoelastic Timoshenko system. Munoz Rivera and Racke
[23] considered a Timoshenko system with thermoelastic
dissipation and established exponential stability in case of
equal wave speed assumption and polynomial stability if
wave speeds are nonequal. Almeida Janior et al. [24] studied
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a thermoelastic Timoshenko beam acting on shear force.
They obtained the same stability results as in [23]. In ad-
dition, they proved that the polynomial decay is optimal.
Fernandez Sare and Racke [25] considered a Timoshenko
system with second sound. They proved that the system is
not exponentially stable even if the propagation speeds are
equal. The results were generalized by Guesmia et al. [26].
Recently, Santos et al. [27] introduced a stability number y,
for the system in [25] and established the exponential decay
result for y, = 0 and polynomial decay for y, # 0 by using the
semigroup method. One can also find a stability result for the
Timoshenko system with second sound in Apalara et al. [28].
Feng [29] considered a Timoshenko-Coleman-Gurtin sys-
tem and studied the long-time dynamics of the system. We at
last mention the contribution of Hamadouche and Mes-
saoudi [30] and Aouadi and Boulehmi [31], where the au-
thors considered two classes of nonuniform thermoelastic
Timoshenko systems and proved global well posedness and
established some stability results.

Our goals in the present work are to study the global well
posedness and stability of systems (1)-(3). The main points
are summarized as follows:

(i) We prove the global well posedness of systems
(1)-(3) by using Lumer—Philips theorem. The main
result is presented in Theorem 1.

(ii) We introduce a new stability number denoted by

D
X = TazD—(Dp—GIP)(%— 1), (10)
p

and we show that the system is exponential stable
when y = 0 and polynomial stable when y # 0. The
main results are presented in Theorems 1 and 2.

(iii) The proof of stability results is based on the mul-
tiplier method. Since the boundary conditions here
we considered are different from those in Apalara
[19], so the multipliers we will define are greatly
different from the multipliers in Apalara [19].

It follows, from (1), that

d* !
@J' w(x,t)dx =0,
0

(11)
1 1
T% Jo q(x,t)dx + « Jo q(x,t)dx = 0.
If we denote
D(x1) = w(xb) - jl w0, () —tJl o, (x)dx,
0 0 (12)

1
q(x,t) =q(x,t) - e (Wt .[o qp (x)dx,

we easily verify that (@, y, s, 0, q) satisfies (1) and in addition,

1
J @ (x, )dx = 0,
0

J.lq(x, t)dx =0, (13)
0

vt >0.

Hence, Poincaré’s inequality holds for w. In the fol-
lowing, we work with @ and g but write w and g for
convenience.

The remaining paper is planned as follows. In Section 2,
we study the well posedness of the system. In Section 3, we
establish the stability results. Throughout this paper,c>0isa
generic constant that changes from one inequality to
another.

2. Well Posedness
We start by denoting the vector-valued function by U:
U = (w0, ®,3s - y,3A - ¥, 5,A, 0,9)",
with® = w,, (14)
Y=y, andA =s,.

Then, systems (1)-(3) can be written as

d
QU@ =au, tso
av® g

T
U (0) = Uq = (wg> 3,35 = Y0» 351 = Y150, $15 00, 40) ">
(15)

where the operator ¢ is defined by
)

G é

- _wxx_fex

P(w ) )
3A-VY

D G
E(?’S - l/])xx +E (V’ - wx)

AU = A . (16)

We consider the following spaces:



L?(0,1) = {v e L*(0,1): Jl v(x)dx = 0},
0
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# =H! (0,1)x L2 (0,1) x H} (0,1) x L*(0,1) x H} (0,1)
x L*(0,1) x L*(0,1) x L (0,1)

H! (0,1) = H'(0,1)n 2 (0, 1), (17) (18)
2 2
H, (0,1) = {v € H™(0,1): v, (0) = v, (1) = 0}' be the Hilbert space equipped with the inner product
Let
B 1 1 o 1
V.0 =p [ ®Bdx+1, | 3A-WGR-Ddx 31, | ARdx
0 0 0
1 1 1 1
+ s J 06dx + TJ qgdx + 4y J ssdx+D J (3s—-v), (35 - ¥),dx (19)
0 0 0 0
1 1
+G J (v -w,)(¥-@,)dx+3D J 5,5,dx.
0 0
The domain of &/ is given by
w € H?0,1nH!0,1,3s - y,s € H?0,1n H}0, 1,
Dd = Uex . (20)
®,q € HL0,1,3A -V, A, 0 € H0,1

The well posedness result can be stated in the following
theorem.

Theorem 1. Let U, € Z, then problems (1)-(3) admit a
unique weak solution U e C(R*,%). In addition, if
U, € D(dA), then U € C(R*,D())NnC" (R, Z).

Proof. It is easy to obtain that, for any U = (w, ®,3s - v,
3A-V¥,5,A,0,9)" € D(),

1 1
(AU, U)yy = —48 J Aldx - ocJ Fdx<o, (1)
0 0

'VI_V2=f1’
V3=V = f3

Vs — Vs = fs»

p3Vs + Vg + O0vy = p3 7,

| (T+a)vg + vy, = Tfy,

which implies the operator & is a dissipative operator.

In what follows, we shall show the operator Id — & is
surjective. In other words, given F = (fy,f, f3 fa
fs fer f7 fs) € #, we will seek a solution V = (v, v,, s,
Vs Vs, Vg, V5, ¥g) € D () of

(Id - )V =F. (22)

We rewrite (21) as

pvy = Gy = GV3, + 3GVs, + 6V = pfs

I,vy = Dvsy = 3Gvs + Gy + Gy = I f 4,

(23)

4 4
<Ip +§ﬁ)V6 - DVSxx - GVS - lex +<3G + 5)})‘/5 = IPfG’
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which implies that

v,=v;— f1» (24)
Vy=v3— f3 (25)
Ve = Vs = fs (26)

p

X

We multiply (29) by ¥,, 75, ¥5, and (7 + «) _[g Vg (y)dy,
respectively, and integrate their sum over (0, 1) to get the
following variational formulation:

B ((vy, V3, V5, vg), (V1,7V3, V5, 7))

4 4 4
<1p+3G+§ﬁ+EY)V5_DVSxx_Gv3_Gv1x :Ip(f5+f6)+§ﬁf5’

PY1 _lexx - Gv3x + 3Gv5x - 6(T+ “)VS = P(fl +f2) - Tf8’

I,v3 = Dvyy = 3Gvs + Gy + Gy, = L, (f5 + f4),

5
Voo = —(T+a)vg + Tfg. (27)
We infer from (27) that
vy =—(1+a) .[0 vs(y)dy+TJO fs(y)dy. (28)
Replacing (24)-(26) and (28) in (23), we see that
(29)

—p5(1+a) JO Ve (P)dy + v + 0V = p3f; — ps3T JO fsdy +6f.

‘%((V1>V3’V5’V8)’ (71’73’75)“78)) = 3(71)73>75>78)> (30)

where the bilinear form %: [H' (0,1) x H}(0,1) x
H}(0,1) x L2 (0,1)]* — R is given by

1

1 1
=G J (—Vie = V3 +3v5) (V1 — V3 + 3V5)dx + p J vidx + 1, J v3v;dx
0 0

0
1

+(3IP+4ﬁ+4y)j

0

1 1 (31)
vsVedx + (7 + «) J vgVgdx + D j V3, V3,dx
0 0
1 1 X X
+3D J- Vs, Vs, dx + ps (T + )’ J <J Vg (y)dy)(J Vg (y)dy)dx,
0 o\Jo 0
[ v vs vl ==vie = vs + 3w + [l
34)

and the linear form &: [H! (0,1) x H}(0,1) x H} (0,1) x
L? (0,1)] — R is defined by

ZL (91,73, 75, V5) = Jo (pfi+pfr—10fg)vidx + I, Jo (fs+ fa)vsdx
+ JO (31, +4B) f5 + 31, f]sdx

1

+5(T+0¢)J f1vgdx

0

[ oo [ fiay-parar]

(I 7, (y)dy)dx.
0

(32)
We denote the Hilbert space V' by

V =H! (0,1) x Hy(0,1) x H} (0,1) x L2 (0,1),  (33)

equipped with the norm

vl sl + el
It is easy to get that JB(-,-) and Z(-) are bounded.

Moreover there exists a positive constant m such that

B ((v1>v3:v5:v8)s (V1,3 V5, v3))

1 1 1
= GJ (=vix = V3 +3v5) dx +p J vidx + I, J vadx
0 0 0

1 1 1
+(3IP+4ﬂ+4y)J védx+(T+rx)J védx+DJ va dx
0 0 0
1 1, rx 2
+3DJ vgxdx+p3('r+<x)2j <J vs(y)dy> dx
0 o\Jo

1

1
> GJ (—vy, = v; +3v5) dx + pj Vvidx
0 0
1 1 1
+(T+a) J vadx + D J va dx +3D J vz, dx
0 0 0
2
>m|(vy, v, vs, vs) |-
(35)



Thus, % is coercive on V xV. Consequently, using
Lax-Milgram theorem, we conclude that (30) has a unique
solution:

v, € H' (0,1),
V3, Vs € H(l) (0) 1)) (36)
vg € L2 (0, 1).

Substituting v,,v5,vs, and vy into (24)-(26) and (28),
respectively, we have
v, € H'. (0,1),

vy v € Hy (0, 1), (37)
v, € Hy (0, 1).

Let 7, € H}(0,1) and denote

1
% (%) = 7, (x) - jovl (s)ds, (38)

which gives us ¥, € H' (0,1). Now we replace (v,,73, Vs, )
by (¥,,0,0,0) in (30) to obtain

1 1

G J (Ve —v3 + 3v5)(—§1x)dx +p J v v, dx
0 0

. (39)

= Jo (pf1+pfr—10fs)0dx,

ie.,
1

1 1 1
G J Vi dx = p J vrdx -G J vy, 0 dx + 3G j Vs, v dx
0 0 0 0

1
- [ f oo rof R v e Hy 0.1,

(40)
which yields
GV = pv; — Gz, +3Gvs,
) (41)
—(pfi+pfr—710f) € L7(0,1).
Thus,
v, € H*(0,1). (42)

Moreover, (39) also holds for any ¢ € C' ([0, 1]). Then,
by using integration by parts, we obtain

1
Gri(19(1) = G (004(0) =G [ vipdx
1 1
+p Jo vi¢dx — G Jo V3, pdx

1 1
+3G [ vegde | (of, 4 pfo - T0f,)pdx =0
0 0
(43)
Then, we get for any ¢ € C ([0, 1]),
Gy, (D@ (1) = Gy, (0)$(0) = 0. (44)

From (28), we obtain
v,(0) = v, (1) =0. (45)

Complexity

Since ¢ is arbitrary, we get that v, (0) = v, (1) =0.
Hence, v, € Hz* (0,1). Using similar arguments as above, we
can obtain

vy, vs € H>(0,1) N Hy (0, 1),
v, € Hy(0,1), (46)
vg € H' (0,1).

Thus, V = (vy, vy, V3, Vs Vs, Vs, V5, V) € D () and o is
maximal. By using Lumer—Philips theorem, see, for example,
Liu and Zheng [32] and Pazy [33], we end the proof of the
theorem. O

3. Stability

In this section, we study the stability of systems (1)-(3).
More precisely, we establish exponential and polynomial
decay results depending on x defined by

_ 52 3D
x =10 D—(Dp—GIp)<T— 1). (47)

The energy functional of systems (1)-(3) is defined by
E(t) = E(w,v,s,0,9)
1 ! 2. 2 1§ 0
=3 ,[0 [Pwt + p[(35_‘//)t] +31ps; +p3
+1¢" +4ys°+D[(Bs - ), ' +G(y - w, )’ + 3Dsi]dx.
(48)
Now we give our stability results.
Theorem 2 (exponential decay). Suppose that y = 0. For any

initial data U, € J, there exist two positive constants y and y
such that the energy functional (48) satisfies
E(t)<ue™, Vt=0. (49)

Theorem 3 (polynomial decay). Suppose that y + 0. For any
initial data U, € D (), there exists positive constant y, such
that the energy functional (48) satisfies

E(t) s%, VE>0. (50)

To prove Theorems 1 and 2, we need the following
technical lemmas.

3.1. Technical Lemmas

Lemma 1. It holds that the energy functional E(t) is non-
increasing and satisfies

1 1
E'(t) = -4p JO sfdx—ocjo g’ dx<0. (51)
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Proof. Multiplying (1) by w,, (3s—vy),, s,, 0, and g, re-
spectively, integrating the results by parts and using
boundary condition (1), we easily get (51). O

Lemma 2. Define the functional F, (t) by
1

F () =1, Jo (3s— ), (3s — y)dx .

- jo o[ Gs-ndyax

Then, we have for any ¢, >0,

' D !
Fi(h< - IO [(3s— )] dx
+& J: w’dx + c(l + 5) J [(3s - )] dx

1
1 0
82 1
2
N *Jedx,

(53)

where ¢, >0 is the Poincaré constant.

Proof. It follows from (1) that

1
Fl(t) = DI (3s = ¥),., (3s - ¥)dx

(y-w,)Gs—y)dx+1, J [(3s - y),]2dx

1
0 0
(v-w) [ Gs-p )y ds

1 X
0. [ Gs- w0y ax

0
w, r (3s—v), (y)dydx.
0
(54)

Using integration by parts and boundary condition (1),
we arrive at
1

1
Fl(t) = —DJ [Gs—y)Jdx+1, J [(3s - y),]2dx

0 0
1

-aj 0(3s - y)dx
0
1 X

p jo o, jo (3s— ), (y)dy dx.

(55)

Then, by using Holder’s, Young’s, and Poincaré’s in-
equalities, we can get (53) from (57). O

Lemma 3. The functional F, (t) defined by

1 X
Fy(t)=p IO (v -w,) JO w, (y)dy dx, (56)

satisfies for any €, >0,

i G ! 2 ! 2 1 ! 2
Fz(t)s——J (v - w,) dx+£2j yidx+c[ 1+— J w;dx
2 Jo 0 &

0

2

+ E J‘O 0°dx.
(57)

Proof. Differentiating F, (¢) with respect to ¢ and using (1),
we see that

1 X 1 X
Bw=p| v | oodrde-p| o, | oGdrds
1 X
-G jo (v - w,) Jo (w - a)y)ydy dx

1 x
- (S‘J (v - w,) J 6,dy dx.
0 0

(58)
Using integration by parts, we obtain

1 X 1
Fi(t)=p J-o v, JO w, (y)dydx +p JO w’dx
(59)

1 1
- GJ (v -w,)dx -0 J O(y - w,)dx.
0 0

Then, by using Young’s inequality and Hoélder’s in-
equality, we can get (57). O

Lemma 4. Define the functional F(t) by

1 X
F5(t) = 1p; J 6 JO q(y)dy dx. (60)

0

Then, we can get for any &, >0,

1 1 1\ (!
Fi(t) < —%J szx+s3j wfdx+c(1+—)] q’dx.
0 0

0 &3
(61)

Proof. Differentiating F; with respect to t and using (1), we
obtain

1 X 1 X
FI(t) = —r JO 4 JO q(»)dy dx - 78 JO o, JO q(»)dy dx

1 X 1 X
—p3(xJ OJ qdydx—p3j GJ 0,dy dx.
o Jo 0

0

(62)
Integration by parts gives us
1 1 1 x
Fi(t) = TJ qdy + T@J w,qdx — psa J HJ qdy dx
0 0 o Jo
1
- ps J 6°dx.
0
(63)

By using Young’s inequality and Hélder’s inequality, we
can get (61).



Lemma 5. The functional F,(t) defined by

1 X
F,(£) = —pp, J 0 JO o, (y)dy dx, (64)

0

satisfies for any ¢, >0,

! pa 1 2 1 2 1 1 N
F4(t)$—7J wtdx+54J (y-w)dx+c[ 1+=— J 0*dx
0 0

&) Jo
LA
+28qux.

(65)

Proof. We take the derivative of F, and use (1) and integrate
by parts to obtain

1 X 1 X
F,(t) = p Jo s ,[o w, (y)dy dx +pSJO Wy .[0 w, (y)dy dx

1 x
+p,G J 0 Jo (1// - wy)y(y)dy dx

0
1 X
+p3ajoejo 0,()

1 1
=—le qwtdx—péj w’dx
0 0
1 1
+p3GJ 0(y - w,)dx +p38J 6°dx.
0 0
(66)

Then, using Young’s inequality, we can get (65). O

Complexity
Lemma 6. Define the functional Fs(t) by

1
F(t) = 1GdI, Jo (Bs—v), (v — w,)dx

1
0

- 16Dp J w, (3s — v),dx

1 (67)
+ Tp3(Dp - GIP) Jo 0(3s —y),dx
1
-1(Dp-GI 3s —y),dx.
(Dp p)JOq( s — ), dx
Then, we have for any & >0,
, TG6IP 1 5 1,
Fi(t)<- J [(3s—v),] dx+c1J s;dx
2 0 0
1 1 R
+c2J szx+c3j (v — w,) dx
0 0
(68)

1 1
+£5J [(3s—w)x]2dx+C€5J g dx
0 0

1
ry JO 0. (35 — v),dx,

where ¢; (i =1,2,3) are positive constants.

Proof. By differentiating F5 with respect to ¢, we have

1 1
FL(t) = 7GSl, jo (35— W)y (¥ — 0, )dx +1Gol, JO (3s— ), (v - w,),dx

=1,
1

1
—-18Dp J wy (3s — ), dx —16Dp J w, (3s — ¥),,dx
0 0

=1,

1 1
+Tp3(Dp - GIP) 0, (3s —y),dx + Tp3(Dp - GIP) 0(3s — y), dx
0 0

(69)

=13

=1,

1 1
_T(DP - GIP) «[0 q; (35— y),dx — T(DP - GIP) .[0 q(3s — y)dx .

=I5

Using equation (1) and integrating by parts, we see that

1
I, = -1GSD J GBs—v), (v - w,),dx
0

) (70)

+ TG26J (v - w,) dx,

0

I, = 16DG J; (v-w,),(3s—y),dx
(71)

1
+16°D JO 6. (35 — v),dx,

=l

1
Iy = _T(DP - GIP) JO 9. (3s - y),dx 72)

1
- T6(Dp - GIP) J wy, (3s — ), dx,
0

Tp5D !
I, == (Dp~GI,) JO O (3s —y)dx

T:G 1 (73)
+ f (Dp - GIP) JO 0(y — w,)dx,



Complexity

1
I = oc(Dp - GIP) Jo q(3s—y),dx on

1
+ (Dp - GIP) Jo 0. (3s —y),dx,
1
I¢ = T(Dp - GIP) J q. (3s — ), dx. (75)
0
Inserting (70)-(75) into (69), we can obtain
1 1
FL(t) = TGZ(SJ- (v - w,)dx + 1Gol, j v, (3s — y),dx
0 0

7p,G !
+ 7 (Dp-al,) JO 0(y - w,)dx

1

+ oc(Dp - GIP) J. q(3s—y),dx
0

+X J:) 0, (3s — v),dx.
(76)

Recalling y = (y—3s)+3s and using Young’s in-
equality, we conclude that

1
TGOl Jo v, (3s —y),dx

1 1
= 1G4l Jo [(3s — y),] dx + 31GOI, Io s (3s—y),dx
GdI, (! 1
S—T £ I [(3s—y),]?dx + ¢, J stdx,
2 0 0
(77)
1
T'[;—z'(;(Dp - GIP) J 0(y — w,)dx
’ 1 0 1 (78)
<c, JO @ dx +c, JO (v - w,) dx,

and for any & >0,

(x(Dp - GIP) J; q(3s—y) dx<e; J; [(3s —y), ] dx
+C, J; q’dx,
(79)
which, together with (76)-(78), gives us (68). O
Lemma 7. The functional F,(t) defined by
Fg(t) =3I, J.; s;sdx + 2 j; s*dux, (80)

9
satisfies
1 1
Fe(t)< -3y J s’dx - 3D J s2dx
ST e
+e, J (v -w,) dx + 31, J sidx,
0 0
where ¢, is a positive constant.
Proof. follows from (1) that
1 1
F¢(t) = -3D J sodx - 3G J s(y — w,)dx
A )
-4y J s*dx + 31, J stdx.
0 0
Young’s inequality gives us (82). O
3.2. Exponential Stability: Proof of Theorem 1
Proof. We define the functional & (t) by
Z(t) = NE(t) + F, (t) + N,F, (t) + N;F;(t) (83)

+ N,F,(t) + N5F5(t) + F¢ (1),

where Nand N; (i = 2, 3,4, 5) are positive constants that will
be chosen later.
Note that

1 1
J yidx = I [(3s - y) - 3s]2dx
0 0

: (84)

1
<2 J [(3s - y),]"dx + 18 J sdux.
0 0
Replacing (84) in (57) and then combining (51)-(53),
(57)-(68), and (82), we obtain
1

Z' ()< -(4BN - ¢;N; - 18¢,N, - 31,) jo sidx

D 1
_<3—£5N5)J [(3s— ), ]*dx
0
Nanv- ey (142 PN, —c.N Jl 24
_0‘ CIN3 & o5 4 eAVs oq X

[po 1 !
- P—N4—sl—£3N3—cN2<l+—>j|_[ w’dx
| 2 & 0

[7GoT i
! ”NS—282N2—C<1+1>” [(3s — y),]2dx
2 £ 0

G 1
—(5N2—54N4_C3N5_C4)J (w—wx)zdx
0
2 8 1 1
1PN, -0 O N, Ny (14— ) - 6N I@de
2 2D 2G €, 0

1 1
-3D J s2dx -3y _[ s*dx.
0 0
(85)
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Taking
g =1,
TG(SIP
278N, 7
1
83 ﬁ,
3
G
& =—N,,
4N,
D
€ a7 0
> 4N,
we obtain
L (1)< (4ﬁN—Cl TG(SIN 31P)J

1
_g JO [(3s - y), | dx

(86)

1
2
s dx
0

1
—cN, (1+N3) - 2‘0—61\14 - CSSNS] JO fdx

|
[p6N4—2—cN2<1 +ﬂ>]

N,7Gdl,

—3DJ sodx — 3))J s*dx.

1
2
J w; dx
0

(87)

At this point, we first choose N > 0 large enough such

that

TG(SIP
N5 —2c>0.

For fixed N, we take N, >0 so large that
G
ZNZ —c3N5 —¢,>0.

Then, we pick N, >0 large so that

8 8N
% 4—2—cN2(1+7Z>>O.

N51GéI,

(88)

(89)

(90)

Complexity

And then we choose N; so large that

2 2 2
P3 6c, 6 4N,
Pin, 0% 9 N —eny(1
237D 22 ¢ 4( "GN

) -,Ns>0. (91)
2

At last, we take N > 0 large enough so that the functional
&Z (t) is equivalent to the energy functional E(t), i.e., there
exist two positive constants:

BE(t)< L (t) < BLE(2), (92)
and further so that
aN - cN5 (1+N;) - 2%N4 ~C,N5>0.
(93)
9
4BN - ¢\N5 = 1GOI,N; = 31,>0,

Recalling (48), we infer that there exists a positive
constant 85 such that, for any ¢ >0,

Z'(t)<-B5E®), (94)
which, along with (92), implies

Z'()<- §—3£Z(t). (95)

2
Integrating (95) over (0,t), we have, for any ¢ >0,
L (1)< Z (0)e Blh) (96)

which, using (95) again, gives us (49). The proof of
Theorem 1 is done. O

3.3. Polynomial Stability: Proof of Theorem 2. In this section,
we consider the case y #0 to prove Theorem 2.

Differentiating system (1) with respect to time, we obtain
the following system:

pwy + G(Y —w,),, +00,, =

I, (Bs =Y ~DBs =Yy -Gy - ), =0,
4 4 (97)
1 LSt = Dy + Gy -w,) + gyst + gﬁstt =0,

P30s + Gy + 6wy = 0,

| 79 + ag, + 0, =
which subject to the following boundary conditions:
w (0,1) =y, (0,t) =5,(0,) = 6,(0,£) =0, t € (0,00),
<[a)x[(l,l‘) =y, (1,t) =s,(1,t) =0,(1,t) =0, ¢t € (0,00).
(98)

For any initial data U, € D(&/), system (97) is well
posed. Next, we introduce second-order energy functional
E(t) by



Complexity
E(t) = E(0p ¥ 51> 0, G)

2

+D[(3s- I//)xt]z +G[(y- wx)t]2 + 3Dsit]dx.
(99)
By using the same arguments as in Lemma 3, we can get

the second-order energy E(t) defined by (99) is nonin-
creasing and satisfies

1 1
E'(t) = -4p J shdx —a J grdx<0. (100)
0 0
In Lemma 6, we have proved that, for any &; >0,
1GoI, (! 1
Fi(t)< - £ J' [(35 - wt)zdx] +¢ J. stdx
2 0 0
1 1 R
+c2J szx+c3J. (v — w,) dx
0 0
(101)

1 1
+ & J [(3s—y), ) dx + C,, J q’dx
0 0

1
. XJ 0. (3s - y),dx.
0
Thanks to (1) and Young’s inequality, we derive that

1 1 1
J HideCJ q’dx +cj g dx. (102)
0 0 0

1 (! 2
=3 J-o [P“’ft +1, [Bs—y),] + 3Ip5ft + P39z2 + T‘I? + 4V5t2

11

Then, for any & >0,

1 1 1
p JO 6, (3s - y),dx <¢5 JO [Gs—y),JPdx +C,, JO 62dx
1

1
<é& J [(3s—y), ] Pdx + C., J g dx
0 sJo

1
+Cys J qtzdx.
0
(103)

Therefore, the derivative of F satisfies

1
0

, 1’G51,J ) r,
Fi()<-— J [(3s— )] dx+61J. sdx
0

1 1
+czj szx+c3j (v - w,) dx
0 0
1 , 1 1
+ 25 J [(Bs—y),]"dx + C,, J g dx + C., j q;dx.
0 0 0

(104)

Proof. We define the functional Z (t) by
Z(t)=N(E(t) + E(t)) + F, (t) + N,F, (t)

(105)
+ N3F,(t) + NyF, (t) + NgF5 (t) + Fg (t).

It follows from (51)-(53), (57)—-(65), and (100)-(104) that

~ 1 1
Z'(t)< —(4ﬁN -¢,N5-18¢N, - 3IP) JO srdx —<§— 2£5N5> JO [(3s—y), ] dx

p

[TGOI P

[ 1
— _(XN—CN3<1 +g> —%N4—C55N5] Joqzdx

5o
- 7N4—£1—€3N3—CN2 1+s_

! )] j: Wdx
1)] J; [(3s - y), ] dx

N5 —2¢,N, —c<1 +—
€

1

(106)

1
_<§N2 - &N, —c3N5 - C4> J (v - wx)zdx
0

Ps 8¢t &

2G

1

- [—N3 -5 5N N

1 1
(1 +—) —CZNS] J 6°dx
£ 0

1 1
—3DJ sidx—3yj szdx—(ocN—Csv)J' g dx.
0 0 > Jo
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With the same choice of constants as in Section 3.2, we
further take N >0 so large that

aN -C, >0. (107)
Noting that (48), we know that there exists a positive
constant y; such that, for any ¢ >0,

Z'(t)< ~w E(2). (108)

Since the energy functional E(t) is positive and non-
increasing, we infer (108) that, for any t >0,

t 1 - ~ Z(0

tE(t)SJ E(9ds< - (7 (0) ~nZq(t) < u( )

0 1

1

(109)
which gives us

E(t)s%, Vi > 0. (110)
Here, p, = (Q(O)t/yl) = (E(0) + E(O)/yl). The proof is
complete. O

Remark 1. We point out that the functional Z (t) is ineq-
uivalent to the energy functional E (¢). That is to say, (92)
does not hold true.
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