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In this paper, we introduce finite-time Lyapunov functions for impulsive systems.,e relaxed sufficient conditions for asymptotic
stability of an equilibrium of an impulsive system are given via finite-time Lyapunov functions. A converse finite-time Lyapunov
theorem for controlling the impulsive system is proposed.,ree examples are presented to show how to analyze the stability of an
equilibrium of the considered impulsive system via finite-time Lyapunov functions. Furthermore, according to the results, we
design an impulsive controller for a chaotic system modified from the Lorenz system.

1. Introduction

Impulsive systems have been investigated by researchers,
since impulsive systems can describe many practical prob-
lems from fields such as engineering, finance, chemistry, and
biology (see [1, 2]). In references [1, 3–8], the authors studied
the stability of equilibria of impulsive systems. Lyapunov
functions are widely used to analyze stability problems of
dynamical systems because it is not necessary to compute an
analytic solution of the considered system. Many researchers
try to relax the conditions imposed on Lyapunov functions.
In [1, 2, 9], Lyapunov functions are allowed to be nonin-
creasing at the impulses. In [10], the conditions imposed on
Lyapunov functions are more relaxed. Lyapunov functions
could be nonincreasing at some of resetting times. ,e
authors in [6] investigated the stability of hybrid systems by
nonmonotonic Lyapunov functions which are not mono-
tonically decreasing along the considered system trajecto-
ries. In [11, 12], Lyapunov functions for the considered
impulsive systemmay increase during the continuous part of
the trajectory of the state. In [5], Lyapunov functions are
monotonically decreasing along the continuous part of the
trajectory of the considered system and could increase at the
resetting times. Based on the attained results, the authors
designed a H∞ controller for the considered problem. In
[13], utilizing results from [2], the author got some sufficient

conditions for impulsive control for a class of systems. In
[14, 15], the authors studied chaotic communication sys-
tems. ,en, they designed impulsive control for the con-
sidered systems. In [7], stochastic switched systems with
impulses and time delay were investigated. Based on vector
Lyapunov functions, input-to-state stability of the consid-
ered system was discussed. In [16], the authors investigated
switched systems with time delay. Lyapunov functions can
be nonincreasing at the switching times. According to the
results, adaptive control was designed for the considered
system. In [17], the authors presented an overview of the
research investigations on impulsive control systems. Using
Lyapunov functions with relaxed constraints, the authors in
[18] discussed sufficient and necessary conditions for as-
ymptotic stability of an equilibrium of a discrete-time ho-
mogeneous dynamical system. ,e results were extended to
discrete-time systems in [19, 20]. A converse Lyapunov
theorem was proposed for continuous-time systems via
Lyapunov functions with relaxed conditions in [21]. In [22],
two ways were designed for the computation of Lyapunov
functions with relaxed conditions for continuous-time
systems. In [23], the authors discussed input-to-state sta-
bility for continuous-time systems via input-to-state stable
(ISS) Lyapunov functions with relaxed conditions. In [24],
the authors proposed relaxed sufficient conditions for as-
ymptotic stability of an equilibrium of time varying
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impulsive systems via indefinite Lyapunov functions and
designed an impulsive controller for a chaotic system.

In this paper, we will analyze the stability of equilibria of
time invariant impulsive systems by Lyapunov functions
with relaxed constraints, later named finite-time Lyapunov
functions, and then design impulsive control for a chaotic
system adapted from the Lorenz system. ,e ideas of the
paper are inspired by the results discussed above. We ob-
tained some novel results. Finite-time Lyapunov functions
can increase during some continuous part of the trajectory of
the considered system and have positive jumps at some
impulses (see ,eorem 1, example). It is worthy to point out
that a converse finite-time Lyapunov theorem (see ,eorem
2) is proposed. Based on ,eorem 2, a finite-time Lyapunov
function can be constructed for the considered impulsive
system. Moreover, we design an impulse controller to get a
chaotic system stabilized based on ,eorem 1 and Corollary
1.

,is paper is organized as follows. In Section 2, we
introduce notations and basic definitions. Finite-time
Lyapunov functions for impulsive systems are introduced.
,e main problem studied in this paper is described. In
Section 3, the main results are discussed.We first study how
to prove the origin of system (1) is asymptotic stable by
finite-time Lyapunov functions. ,en, a converse finite-
time Lyapunov theorem for impulsive systems is obtained,
that is, if the origin of system (1) is asymptotically stable
and Condition 1 holds, then there exists a finite-time
Lyapunov function for system (1). In Section 4, we show the
efficiency of our main results via three examples. Especially,
Example 3 shows that finite-time Lyapunov functions can
increase along some continuous portion of the trajectory of
system (31) and increase at some resetting times. Fur-
thermore, according to our main results, we design im-
pulsive control for a chaotic system in Section 5. We
present simulation results of the chaotic system with the
designed controller. Some concluding remarks are dis-
cussed in Section 6.

2. Notations and Preliminaries

,e real numbers, the nonnegative real numbers, and the
nonnegative integers are denoted by R, R+, and Z+, re-
spectively. ,e Euclidean norm of the real vector x ∈ Rn is
denoted by |x|. For x � (x1, . . . , xn)T ∈ Rn, we denote 1 −

norm for x by |x|1 � 􏽐i�1,...,n|xi|. ,e open ball of radius r

around z in the norm of | · | is defined by
B(z, r) � x ∈ Rn||x − z|< r{ }. For a set Ω ⊂ Rn, the
boundary and the interior ofΩ are denoted by zΩ and intΩ,
respectively.

It is well known that comparison functions are widely
used in stability analysis. Comparison functions are de-
scribed as follows. If a continuous function α: R+⟼R+

satisfies α(0) � 0 and α(s)> 0 for all s> 0, then we say it is
positive definite. A positive definite function is of classK if it
is strictly increasing and of classK∞ if it belongs to the class
K and unbounded. We say a continuous function
c: R+⟼R+ belongs to class L if c(r) is strictly decreasing
to 0 as r⟶∞. A continuous function β: R+ × R+⟼R+ is

said to be of class KL if it is of class K∞ in the first ar-
gument and of class L in the second argument.

In this paper, we are going to study the stability property
of the following system with impulses described by

_x(t) � f(x(t)), t≠ tk, k ∈ 1, 2, 3, . . . ,{ },

x tk( 􏼁 � g x t
−
k( 􏼁( 􏼁, t � tk, k ∈ 1, 2, 3, . . . ,{ },

􏼨 (1)

where 0< t1 < t2 < · · · < tk < · · · are resetting times in (0,∞)

and limk⟶∞tk �∞. ,e functions f, g: Rn⟼Rn are lo-
cally Lipschitz continuous and satisfy the conditions
f(0) � 0, g(0) � 0. It is evident that the origin is an
equilibrium of system (1). Suppose that a sequence of im-
pulse times tk􏼈 􏼉 is given; the solution of system (1) corre-
sponding to an initial condition x0 � x(0) is denoted by
x(t, x0). ,e limits of x(t) from left and right are denoted by
x(t− ) and x(t+), respectively. It is easy to see that the so-
lution x(t) of system (1) is right continuous, that is, it is
continuous in (0, t1), (tk, tk+1), and the following conditions
hold.

x t
−
k( 􏼁 � lim

ε⟶0+
x tk − ε( 􏼁,

x tk( 􏼁 � x t
+
k( 􏼁 � lim

ε⟶0+
x tk + ε( 􏼁.

(2)

For a constant T> 0 and a sequence of impulse times
tk􏼈 􏼉, we define a positively T − invariant set for system (1).

Definition 1. Given a constant T> 0 and a sequence of
impulse times tk􏼈 􏼉, a compact set Ω ⊂ Rn is called a posi-
tively T − invariant set for system (1) if for all x(t, x0) ∈ Ω, it
satisfies x(t + T, x0) ∈ Ω for t ∈ R+.

Remark 1. In Definition 1, if T � 0 holds, then we call the set
Ω a positively invariant set for system (1).

,e following definition describes asymptotic stability of
system (1) we are interested in.

Definition 2. For system (1), we suppose that a sequence of
impulse times tk􏼈 􏼉 is given. ,e origin of system (1) is as-
ymptotically stable in a compact set Ω ⊂ Rn if there exists a
function β ∈KL such that for every initial condition
x0 ∈ Ω, it holds that

x t, x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, t􏼐 􏼑, t≥ 0. (3)

In the literature, sufficient conditions for asymptotic
stability of system (1) were obtained via Lyapunov functions
described by the following definition.

Definition 3. Given a sequence of impulse times tk􏼈 􏼉 for
system (1). A continuous function V: Rn⟼R+ is said to be
a Lyapunov function for system (1) on a compact setΩ ⊂ Rn,
if there exist functions α1, α2 ∈K∞, a positive definite
function α: R+⟼R+, and a continuous function
θ: R+⟼[0, 1) ⊂ R+ such that

(i) (C1)

α1(|x|)≤V(x)≤ α2(|x|), ∀x ∈ Rn
. (4)
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(ii) (C2)

∇V x t, x0( 􏼁( 􏼁f(x(t)) ≤ − α V x t, x0( 􏼁( 􏼁( 􏼁,

for , x0 ∈ Ωt≠ tk, k ∈ 1, 2, 3, . . . ,{ }.
(5)

(ii) (C3)

V g x t, x0( 􏼁( 􏼁( 􏼁≤ θ V x t
−

, x0( 􏼁( 􏼁( 􏼁,

forx0 ∈ Ω, t � tk, k ∈ 1, 2, 3, . . . ,{ }.
(6)

We are going to relax the conditions imposed on Lya-
punov functions in Definition 3 and then demonstrate how
to prove asymptotic stability of system (1) via finite-time
Lyapunov functions defined by the following definition.

Definition 4. Consider system (1) with a given impulsive
time sequence tk􏼈 􏼉. A continuous function V: Rn⟼R+ is
said to be a finite-time Lyapunov function for system (1) on a
compact set Ω ⊂ Rn, if there exist a positive constant T,
functions α1, α2 ∈K∞, and a function ρ ∈K with ρ< id
such that

α1(|x|)≤V(x)≤ α2(|x|), ∀x ∈ Rn
, (7)

V x T + t, x0( 􏼁( 􏼁≤ ρ V x t, x0( 􏼁( 􏼁( 􏼁, for t≥ 0, x0 ∈ Ω.

(8)

Remark 2

(i) From constraint (8), we have that the function V

defined in Definition 4 may increase during some
continuous portion of the trajectory and at some
impulses. It is clear that the conditions imposed on
finite-time Lyapunov functions are more relaxed
than those on Lyapunov functions defined by Def-
inition 3.

(ii) In order to verify condition (8), we have to construct
finite-time Lyapunov functions. However, it is not
easy to give a formulation of a finite-time Lyapunov
function. Under certain conditions, ,eorem 2 will
explain how to construct a finite-time Lyapunov
function. When we check if the condition (8) holds,
it is necessary to calculate the solution x(T + t, x0).
For easy computation, the Euler method will be used
to calculate the solution x(T + t, x0) for examples
considered in Section 4.

,e following impulsive integral inequality of Gronwall
type will be used in deducing inequalities in the proofs of our
main results.

Lemma 1. Let t1, t2, . . . , tk, . . . , be a strictly increasing se-
quence of impulse times in (0,∞) and limk⟶∞ tk �∞, the
function m: R+⟼R a continuous function for t≠ tk and
right continuous at t � tk(k � 1, 2, . . . , ), and the function

p: R+⟼R+ be a continuous function. Moreover, we assume
that

m(t)≤A + 􏽚
t

0
p(s)m(s)ds + 􏽘

0<tk≤t
λkm tk( 􏼁,

t≥ 0, k> 0, k ∈ Z+,

(9)

where λk ≥ 0 and A are constants. 3en it holds that

m(t)≤A 􏽙
0<tk≤t

1 + λk( 􏼁e
􏽒

t

0 p(s)ds
, t≥ 0. (10)

Proof. ,e proof is similar to the proof of ,eorem 16.1 in
[25]. □

3. Main Results

In this section, we first demonstrate how to prove asymptotic
stability of system (1) via finite-time Lyapunov functions
defined by Definition 4. ,en, we propose a converse finite-
time Lyapunov theorem for system (1).

Theorem 1. Consider system (1) with a given impulsive time
sequence tk􏼈 􏼉. Let T be a positive constant, and a compact set
Ω ⊂ Rn with 0 ∈ intΩ be a positively T − invariant set for
system (1). If there exists a finite-time Lyapunov function
V: Rn⟼R with T for system (1) on Ω, then the origin of
system (1) is asymptotically stable inΩ over the given impulse
sequence. Furthermore, an estimate of the domain of at-
traction of the origin of system (1) is given by Da � x ∈ Ω{

|V(x)≤minx∈zΩV(x)}.

Proof. According to the conditions, there exist functions
α1, α2 ∈K∞ and a function ρ ∈K with ρ< id such that
inequalities (7) and (8) from Definition 4 hold. For any t> 0,
t ∈ R+, there exists a integer N> 0 such that t �

NT + j, j ∈ [0, T). Utilizing (8) recursively, we obtain that

V x t, x0( 􏼁( 􏼁 � V x NT + j, x0( 􏼁( 􏼁 � V x (N − 1)T + T + j, x0( 􏼁( 􏼁

≤ ρ V x (N − 1)T + j, x0( 􏼁( 􏼁( 􏼁

· · ·

≤ ρN
V x j, x0( 􏼁( 􏼁( 􏼁

≤ ρN α2 x j, x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑,

(11)

where ρN represents the N−times composition of ρ and α2
comes from (7). Let k ∈ Z+ denote the number of impulsive
time ti ∈ [0, j](i ∈ Z+, i> 0), and

σ �
0, k � 0,

1, k≥ 1.
􏼨 (12)

,e solution x(t, x0) at time t � j is given by
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x j, x0( 􏼁 � x0 + 􏽘
k

d�1
g x t

−
d( 􏼁( 􏼁 + 􏽚

j

0
f(x(s))ds, for k≥ 1, x0 + 􏽚

j

0
f(x(s))ds, for k � 0.

⎧⎨

⎩ (13)

Using (12), x(j, x(0)) is rewritten as

x j, x0( 􏼁 � x0 + σ 􏽘
k

d�1
g x t

−
d( 􏼁( 􏼁 + 􏽚

j

0
f(x(s))ds,

for any j≥ 0.

(14)

,en, we have

x j, x0( 􏼁 − x(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ σ 􏽘
k

d�1
g x t

−
d( 􏼁( 􏼁 − g x0( 􏼁 + g x0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ 􏽚
j

0
f(x(s))−f x0( 􏼁 + f x0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

≤ σ 􏽘
k

d�1
g x t

−
d( 􏼁( 􏼁 − g x0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌+σ 􏽘

k

d�1
g x0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ 􏽚
j

0
f(x(s)) − f x0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds+ 􏽚

j

0
f x0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds.

(15)
Using the Lipschitz conditions for f, g, and Lemma 1,

we get that

x j, x0( 􏼁 − x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ σ 􏽘
k

d�1
Lg x t

−
d( 􏼁 − x0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + σk g x0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ 􏽚
j

0
Lf x(s) − x0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds + 􏽚

j

0
f x0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds≤C 1 + σLg􏼐 􏼑

k
e

Lfj
,

(16)
where Lf, Lg are Lipschitz constants for the functions f, g,
respectively, and C � σk 􏽐

k
d�1 |g(x0)| + 􏽒

j

0 |f(x0)|ds.
,erefore, it holds that

x j, x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C 1 + σLg􏼐 􏼑
k
e

Lfj
+ x0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤C 1 + σLg􏼐 􏼑

k
e

LfT
+ x0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≔ HT x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑.

(17)
Based on the assumptions on the functions f, g, it is

obtained that HT(|x(0)|) is continuous with respect to |x0|.
Moreover, it is clear that HT(0) � 0, and HT(s)> 0 for s> 0.
,us, HT(|x(0)|) is a positive definite function with respect
to |x0|. It is easy to see that there exists a function c ∈K∞
such that HT(|x0|)≤ c(|x0|). ,en, it is satisfied that
|x(j, x0)|≤ c(|x(0)|) for all 0≤ j<T.

,e idea of the proof of the existence of the function ρ1 is
inspired by ,eorem 2.1 in [21] and Lemma 12 in [22].
Because ρ is positive definite, without loss of generality, we
can assume that ρ is invertible, that is, ρ is a one-to-one and
onto function. According to ,eorem 3.16 in [26] and the
above discussion, it holds that ρ− 1 is continuous and
ρ−1(0) � ρ−1(ρ(0)) � 0. ,us, for t � NT + j, we obtain that

V x t, x0( 􏼁( 􏼁≤ ρ(t/T) ∘ ρ− 1 ∘ α2 ∘ c x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑. (18)
From the above analysis, the function ρ− 1 is positive

definite. ,en, there exists a function ρ1 ∈K∞ satisfying
ρ1(s)≥ ρ− 1(s) for s≥ 0. ,us, it holds that

V x t, x0( 􏼁( 􏼁≤ ρ(t/T) ∘ ρ1 ∘ α2 ∘ c x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑. (19)

Since the condition α1 ∈K∞ is satisfied, then the
function α1 is a one-to-one and onto function.,erefore, the
function α−1

1 exists and α−1
1 ∈K∞ holds. Furthermore,

utilizing (7), we have that

x t, x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ α−1
1 ∘ ρ

(t/T) ∘ ρ1 ∘ α2 ∘ c x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑. (20)

Let β(|x0|, t) � α−1
1 ∘ ρ(t/T) ∘ ρ1 ∘ α2 ∘ c(|x0|). Since α−1

1 , ρ1,
α2, c are K∞ functions, for fixed t, the function β increases
as the argument |x0| increases. Because ρ< id holds, for fixed
|x0|, the function β decreases as the argument t increases.
,erefore, we obtain that β ∈KL is a K∞ function in the
argument |x0| and a L function in the argument t. ,en, it
holds that

x t, x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, t􏼐 􏼑. (21)

,erefore, the origin of system (1) is asymptotically
stable in Ω over the given impulse sequence. Moreover, an
estimate of the domain of attraction of the origin of system
(1) is obtained by Da � x ∈ Ω|V(x) ≤minx∈zΩV(x)􏼈 􏼉. □

Remark 3. To make sure x(T, x0) ∈ Ω for all x0 ∈ Ω, we
have to ensure that the set Ω is a positively T−invariant set
for system (1).

In the following, a converse finite-time Lyapunov the-
orem is investigated. To obtain the desired result, it is
necessary to require the following condition.

Condition 1. Consider system (1) with a given impulsive
time sequence tk􏼈 􏼉. ,ere exists a KL function β which
satisfies (2) for system (1) and the inequality

β(s, T)< s, (22)

for some T> 0 and s> 0.

Theorem 2. Consider system (1) with a given impulsive time
sequence tk􏼈 􏼉. If the origin of system (1) is asymptotically
stable in an invariant set Ω ⊂ Rn over the given impulse
sequence and Condition 1 holds, then for any function
η ∈K∞, the function V: Rn⟼R+ with

V(x) � η(|x|), forx ∈ Rn
(23)

satisfies inequalities (7) and (8) with T from Condition 1.

Proof. Because η ∈K∞, it is evident that there exist
functions α1, α2 ∈K∞ such that inequality (7) holds.
Since Condition 1 is satisfied, then there exists a positive
constant T such that inequality (22) holds. ,us, we have
that
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V x t + T, x0( 􏼁( 􏼁 � η x t + T, x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 � η x T, x t, x0( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑

≤ η β x t, x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, T􏼐 􏼑􏼐 􏼑 � η°β η− 1
V x t, x0( 􏼁( 􏼁( 􏼁, T􏼐 􏼑.

(24)

Let ρ � η°β(η− 1(V(x(t, x0))), T). It is obvious that ρ
is a positive definite function of the variable V(x(t, x0))).
Based on Condition 1, it is obtained that ρ(s)< η ∘ η− 1

(s) � s holds. ,us, V satisfies inequality (8) with T from
Condition 1. □

Remark 4. ,eorem 2 provides a way to construct finite-
time Lyapunov functions for systems. However, for the
considered system, it is not easy to check if V(x) � η(|x|)

satisfies inequality (8).

4. Examples

In this section, three examples are presented to illustrate how
to analyze stability of impulsive systems with finite-time
Lyapunov functions. Based on the definition of finite-time
Lyapunov function (see Definition 4), in order to check if a
continuous function V: Rn⟼R+ is a finite-time Lyapunov
function for system (1), it is necessary to calculate
V(x(T, x0)) in (8) from Definition 4. For a constant
0<T< +∞, we compute the value of x(T, x0) of system (1)
with respect to an initial condition x0 by the Euler method
with the time step denoted by ht. In order to simplify the
computation, for the following examples, 1-norm | · |1 is
utilized.

4.1. Example 1. Consider the following one-dimensional
system described by

_x(t) � −x(t), t≠ tk,

x(t) � 2x t
−
k( 􏼁, t � tk �

3k

4
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

where x ∈ R, k> 0, k ∈ Z+.
Let V1(x) � |x| be a finite-time Lyapunov function

candidate for system (25). To show there exists a constant
T> 0 such thatV1 satisfies (8) fromDefinition 4, we calculate
V(x(T, x0)) with T � (3/4), ht � (1/4).

x
1
4
, x0􏼒 􏼓 �

3
4x0

, x
1
2
, x0􏼒 􏼓 �

9
16x0

,

x t
−
1 , x0( 􏼁 � x

3
4

􏼒 􏼓
−

, x0􏼒 􏼓 �
27
64x0

, x
3
4
, x0􏼒 􏼓 �

27
32x0

,

x 1, x0( 􏼁≤
81

128x0
, x

5
4
, x0􏼒 􏼓≤

243
512x0

,

x t
−
2 , x0( 􏼁 � x

3
2

􏼒 􏼓
−

, x0􏼒 􏼓 �
729

2048x0
, x

3
2
, x0􏼒 􏼓 �

729
1024x0

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

From the above calculation, the following inequalities
hold.

V x
3
4
, x0􏼒 􏼓􏼒 􏼓≤

27
32

􏼒 􏼓V x0( 􏼁, x0 ∈ R,

V x
3
2

􏼒 􏼓 + t, x t, x0( 􏼁􏼒 􏼓􏼒 􏼓≤
27
32V

􏼒 􏼓 x t, x0( 􏼁( 􏼁, t ∈ R+, x0 ∈ R.

(27)

,en, it is obvious that V1 is a finite-time Lyapunov
function for system (25) in R. Based on ,eorem 1, we have
that the origin of system (25) is asymptotically stable in R

over the given impulse sequence (see Figure 1). Figure 1
clearly shows that V1(x) � |x| is not a Lyapunov function
for system (25).

4.2. Example 2. In this section, we consider the following
one-dimensional system described by

_x(t) � x(t), t≠ tk,

x(t) �
1
2

􏼒 􏼓x t
−
k( 􏼁, t � tk �

k

2
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(28)

where x ∈ R, k> 0, k ∈ Z+.
Let V2(x) � |x| be a finite-time Lyapunov function

candidate for system (28). To check if V2 satisfies condition
(8) from Definition 4 with T � (1/2), we have to calculate
with ht � (1/4).

x
1
4

􏼒 􏼓, x0􏼒 􏼓 �
5
4x0

􏼠 􏼡,

x t
−
1 , x0( 􏼁 � x

1
2

􏼒 􏼓
−

, x0􏼒 􏼓 �
25
16x0

􏼠 􏼡, x
1
2
, x0􏼒 􏼓 �

25
32x0

􏼠 􏼡,

x
3
4

􏼒 􏼓, x0􏼒 􏼓 �
125
128x0

􏼠 􏼡,

x t
−
2 , x0( 􏼁 � x (1)

−
, x0( 􏼁 �

625
512x0

􏼠 􏼡, x 1, x0( 􏼁 �
625

1024x0
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

It is evident that the following inequality is satisfied.

V2 x
1
2

􏼒 􏼓 + t, x0􏼒 􏼓􏼒 􏼓≤V2 x t, x0( 􏼁( 􏼁, t ∈ R+, x0 ∈ R.

(30)

According to the above analysis, we conclude that V2 is a
finite-time Lyapunov function for system (28) in R.
Moreover, utilizing ,eorem 1, it is attained that the origin
of system (28) is asymptotically stable in R over the given
impulse sequence. Figure 2 demonstrates that V2 is not a
Lyapunov function for system (28).
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4.3. Example 3. We consider the following two-dimensional
system described by

_x1(t) � −0.2x2(t), t≠ tk,

_x2(t) � x1(t) − x2(t), t≠ tk,

x1(t) � x1 t
−
k( 􏼁 +

1
8

􏼒 􏼓sin x1 t
−
k( 􏼁 + x2 t

−
k( 􏼁( 􏼁x2 t

−
k( 􏼁, t � tk � 5k,

x2(t) � x2 t
−
k( 􏼁 +

1
8

􏼒 􏼓cos x1 t
−
k( 􏼁 + x2 t

−
k( 􏼁( 􏼁x1 t

−
k( 􏼁, t � tk � 5k,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

where x � (x1, x2)
T ∈ R2, k> 0, k ∈ Z+.

For system (31), we choose V3(x) � |x|1 as a finite-time
Lyapunov function candidate. Now, we show there exists a
constant T such that inequality (8) from Definition 4 is
satisfied. ,e following calculation is done with T � 5,
ht � 1. For the calculation, we utilize the following notations:
x10 � x1(0), x20 � x2(0), x11 � x1 (ht, x0), x21 � x2(ht, x0),

x12 � x1(2ht, x0), x22 � x2(2ht, x0), . . . , x1k � x1(kht, x0),

x2k � x2(kht, x0).

x11 � x10 − 0.2x20,

x21 � x10,

. . . ,

x14 � 0.44x10 − 0.12x20,

x24 � 0.6x10 − 0.16x20,

x1 5−
, x0( 􏼁 � 0.32x10 − 0.088x20,

x2 5−
, x0( 􏼁 � 0.44x10 − 0.12x20,

x15
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + x25
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
9
8

· 0.76 x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌1 � 0.855 x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

,us, we have that

V3 x 5, x0( 􏼁( 􏼁≤ 0.855V3 x0( 􏼁,

V3 x 5 + t, x0( 􏼁( 􏼁≤ 0.855V3 x t, x0( 􏼁( 􏼁, t ∈ R+, x0 ∈ R
2
.

(33)

From the above calculation, it is obvious that V3 is a
finite-time Lyapunov function for system (31) in R2. Based
on ,eorem 1, it is obtained that the origin of system (31) is
asymptotically stable in R2 over the given impulse sequence
(see Figures 3 and 4). Figure 5 demonstrates that the
function V3 is not a Lyapunov function for system (31).

5. Impulsive Control of a Chaotic System

In this section, based on ,eorem 1, impulsive control is
designed for a chaotic system described by

_x � Ax + c(x), (34)

where x � (x1, x2, x3)
T ∈ R3, and

A �

−a a 0

c −1 0

0 0 −b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

c(x) �

x2x3

−x1x3

x1x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(35)

in which a, b, c ∈ R are positive constants. ,e constants a

and b are called the Prandtl number and Rayleigh number,
respectively. In [27], the authors studied system (34) adapted
from the Lorenz system.

In order to ensure the origin is an asymptotic stable
equilibrium, we design an impulsive controller for system
(34) described by

0 5 10 15 20 25 30 35 40 45 50
t

70
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40
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0

x

Figure 1: ,e trajectory of the state of system (25) corresponding
to the initial condition x(0) � 64 and the resetting time
tk � 0.75k, k � 1, 2, . . . ,.
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x

0 5 10 15 20 25 30 35 40 45 50
t

Figure 2: ,e trajectory of the state of system (28) corresponding
to the initial condition x(0) � 64 and the resetting time
tk � 0.5k, k � 1, 2, . . . ,.
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_x(t) � Ax(t) + c(x(t)), for t≠ tk,

x(t) � x t
+
k( 􏼁 � D x t

−
k( 􏼁( 􏼁, for t � tk,

􏼨 (36)

where tk(k � 1, 2, . . . , ), 0< t1 < t2 < · · · < tk < tk+1 < · · ·

(tk⟶∞ as k⟶∞) are impulses, h � t1 � tk+1−

tk(k � 1, 2, . . . , ), and

D(x) �

d11 x1( 􏼁 d12 x2( 􏼁 d13 x3( 􏼁

d21 x1( 􏼁 d22 x2( 􏼁 d23 x3( 􏼁

d31 x1( 􏼁 d32 x2( 􏼁 d33 x3( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (37)

in which dij: R⟼R are continuous. We assume that there
exist constants dij ∈ R+(i, j � 1, 2, 3) satisfying |dij(s)|≤
dij|s| for s ∈ R.

For convenience, the following notations are introduced:

d1 � d11(1 − ah)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d12ch
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d12hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d13hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ d22ch
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d21(1 − ah)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d22hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d23hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ d31(1 − ah)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d32ch
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d32hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d33hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

d2 � d11ah
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d11hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d12(1 − h)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d13hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ d22(1 − h)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d21hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d21ah
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d23hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ d31ah
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d31hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d32(1 − h)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d33hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

d3 � d11Rh
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d12hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d13(1 − bh)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ d22Rh
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d21hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d23(1 − bh)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ d31Rh
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d32hR
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + d33(1 − bh)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(38)

where R from Corollary 1 is a positive constant. It is clear
that di(i � 1, 2, 3) are positive constants.

Corollary 1. Let R> 0 be a constant. Consider system (36) on
a bounded set D ⊂ B(0, R) ⊂ R3. Let M � maxi�1,2,3ci. If
M< 1 is satisfied, then the function V: R3⟼R defined by
V(x) � |x|1 is a finite-time Lyapunov function for system (36)
with T � h. 3erefore, the origin of system (36) is asymp-
totically stable in D over the given impulse sequence.

Proof. Under the conditions, we prove V(x) � |x|1 is a fi-
nite-time Lyapunov function for system (36). It is obvious
that there exist functions α1, α2 ∈K∞ such that

α1(|x|)≤V(x)≤ α2(|x|). (39)

Now, we have to calculate V(x(h, x0)) for system (36)
with x0 ∈ D by the Euler method with the step size h. Let
x0 � (x10, x20, x30)

T.

x1 h
−

, x0( 􏼁 � x10 + a x20 − x10( 􏼁 + x20x30􏼂 􏼃h,

x2 h
−

, x0( 􏼁 � x20 + cx10 − x20 − x10x30􏼂 􏼃h,

x3 h
−

, x0( 􏼁 � x30 + x10x20 − bx30􏼂 􏼃h,

x h, x0( 􏼁 � D x h
−

( )( ).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(40)

By calculation, it is obtained that V(x(h, x0))≤
M|x0|1 � MV(x0). ,us, the function V satisfies inequality
(8) from Definition 4. By ,eorem 1, we obtain that the
origin of system (36) is asymptotically stable in Ω over the
given impulse sequence. □

Remark 5. In the proof, we calculate x(h, x0) by the Euler
method with the step size h. ,e reason for letting the step
size being h is that it is easy to estimate the value of
|x(h− , x0)|1.
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0

V3

0 5 10 15 20 25 30 35 40 45 50
t

Figure 5: ,e trajectory of the finite-time Lyapunov function V3
for system (31) with the initial condition x(0) � (−6, 2)T and the
resetting time tk � 5k, k � 1, 2, . . . ,.
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Figure 3: ,e trajectory of the state x1 of system (31) corre-
sponding to the initial condition x(0) � (−6, , 2)T and the resetting
time tk � 5k, k � 1, 2, . . . ,.
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Figure 4:,e trajectory of the state x2 of system (31) corresponding
to the initial condition x(0) � (−6, , 2)T and the resetting time
tk � 5k, k � 1, 2, . . . ,.
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5.1. Simulation Results. In this section, system (34) is con-
sidered as an example with the coefficients a � 35, b � (8/3),
c � 25, and x0 � (3, 4, 5)T. Figure 6 shows that a chaotic
attractor exists for system (34) with the given conditions and
is similar to that for the Lorenz system.

An impulsive controller is designed as follows:
tk � 0.01k(k � 1, 2, . . . , ), dij � 0(i, j � 1, 2, 3, i≠ j), dii �

0.6(i � 1, 2, 3). We consider system (36) with the given
coefficients on D � B(0, 20) ⊂ R3. ,e constraints of Cor-
ollary 1 are satisfied with R � 20, h � 0.01, M � 0.84. ,en,
V(x) � |x|1 is a finite-time Lyapunov function for system
(36) with the given coefficients. Hence, the origin of system
(36) with the given coefficients is asymptotic stable onD (see
Figures 7–9). Figure 10 clearly shows that V is not a Lya-
punov function for system (36).

Remark 6. From Figures 7–9, we obtain that the simulation
results are similar to that of [24], since the designed im-
pulsive control is similar to each other. However, from
examples of Section 4 and this chaotic system, we can
conclude that construction of finite-time Lyapunov func-
tions or design of impulsive control based on ,eorem 1 is
easier than the method proposed in [24]. ,e reason for this
point is that we do not have to calculate the derivative of
Lyapunov function along the continuous part of the tra-
jectory of the considered system.

6. Conclusion

In this paper, we introduced the definition of finite-time
Lyapunov function for impulsive systems. It was proved that if
there exists a finite-time Lyapunov function for system (1),
then the origin of system (1) is asymptotically stable (,eorem
1). It is worthy to point out that the conditions imposed on
finite-time Lyapunov functions for system (1) aremore relaxed

60

40

20

0

x3

40
20

–20
–40

0
x2 x1–40 –20 0 20 40

Figure 6: ,e trajectory of the states of system (34) with the
coefficients a � 35, b � (8/3), and c � 25 and the initial condition
x(0) � (3, 4, 5)T.
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Figure 7: ,e trajectory of the state x1 of system (36) with the
coefficients a � 35, b � (8/3), c � 25, tk � 0.01k(k � 1, 2, . . . , ),
dij � 0(i, j � 1, 2, 3, i≠ j), and dii � 0.6(i � 1, 2, 3) and the initial
condition x(0) � (3, 4, 5)T.

x2
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Figure 8: ,e trajectory of the state x2 of system (36) with the
coefficients a � 35, b � (8/3), c � 25, tk � 0.01k(k � 1, 2, . . . , ),
dij � 0(i, j � 1, 2, 3, i≠ j), and dii � 0.6(i − 1, 2, 3) and the initial
condition x(0) � (3, 4, 5)T.
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Figure 9: ,e trajectory of the state x3 of system (36) with the
coefficients a � 35, b � (8/3), c � 25, tk � 0.01k(k � 1, 2, . . . , ),
dij � 0(i, j � 1, 2, 3, i≠ j), and dii � 0.6(i � 1, 2, 3) and the initial
condition x(0) � (3, 4, 5)T.
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Figure 10:,e trajectory of the finite-time Lyapunov function V of
system (36) with the coefficients a � 35, b � (8/3), c � 25,
tk � 0.01k(k � 1, 2, . . . , ), dij � 0(i, j � 1, 2, 3, i≠ j), and dii � 0.6
(i � 1, 2, 3) and the initial condition x(0) � (3, 4, 5)T.
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than those on Lyapunov function which decrease along the
continuous part of the trajectory or have negative jumps at all
impulses. Finite-time Lyapunov functions can increase during
some continuous part of the trajectory of the considered
system and have positive jumps at some resetting times. ,is
point was demonstrated by example. A converse finite-time
Lyapunov theorem (,eorem 2) was proposed. ,ree ex-
amples were presented to illustrate how to analyze stability of
the origin of an impulsive system via finite-time Lyapunov
functions. According to our main results, impulsive control
was designed to ensure the origin of the considered chaotic
system is asymptotically stable. Some simulation results of the
chaotic system with impulsive control were presented to show
how to design an impulsive controller for the chaotic system
by finite-time Lyapunov functions.
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Birkhäuser Basel, Switzerland, 2015.

[7] W. Ren and J. Xiong, “Vector Lyapunov function based input-
to-state stability of stochastic impulsive switched time-delay
systems,” IEEE Transactions on Automatic Control, vol. 64,
no. 2, pp. 654–669, 2018.

[8] W. Ren and J. Xiong, “Stability analysis of impulsive switched
time-delay systems with state-dependent impulses,” IEEE
Transactions on Automatic Control, vol. 64, no. 9, pp. 3928–
3935, 2019.

[9] V. Lakshmikantham and X. Liu, Stability Analysis in Terms of
Two Measures, World Scientific, New York, NY, USA, 1993.

[10] A. I. Panas, T. Yang, and L. O. Chua, “Experimental results of
impulsive synchronization between two Chua’s circuits,”
International Journal of Bifurcation and Chaos, vol. 8, no. 3,
pp. 639–644, 1998.

[11] V. Lakshmikantham and X. Liu, “Stability criteria for im-
pulsive differential equations in terms of two measures,”
Journal of Mathematical Analysis and Applications, vol. 137,
no. 2, pp. 591–604, 1989.

[12] X. Liu, “Stability results for impulsive differential systems with
applications to population growth models,” Dynamics and
Stability of Systems, vol. 9, no. 2, pp. 163–174, 1994.

[13] T. Yang, “Impulsive control,” IEEE Transactions on Automatic
Control, vol. 44, no. 5, pp. 1081–1083, 1999.

[14] T. Yang and L. O. Chua, “Impulsive stabilization for control
and synchronization of chaotic systems: ,eory and appli-
cation to secure communication,” IEEE Transactions on
Circuits and Systems I: Fundamental 3eory and Applications,
vol. 44, no. 10, pp. 976–988, 1997.

[15] T. Yang, L.-B. Yang, and C.-M. Yang, “Impulsive control of
Lorenz system,” Physica D: Nonlinear Phenomena, vol. 110,
no. 1, pp. 18–24, 1997.

[16] S. Yuan, L. Zhang, and S. Baldi, “Adaptive stabilization of
impulsive switched linear time-delay systems: a piecewise dy-
namic gain approach,” Automatica, vol. 103, pp. 322–329, 2019.

[17] X. Yang, D. Peng, X. Lv, and X. Li, “Recent progress in
impulsive control systems,” Mathematics and Computers in
Simulation, vol. 155, pp. 244–268, 2019.

[18] M. Lazar, A. I. Doban, and N. Athanasopoulos, “On stability
analysis of discrete-time homogeneous dynamics,” in Pro-
ceedings of the System 3eory, Control and Computing
(ICSTCC), pp. 297–305, Sinaia, Romania, 2013.

[19] R. Geiselhart, Advances in the stability analysis of large-scale
discrete-time systems, Ph.D. thesis, Universität Würzburg,
Würzburg, Germany, 2015.

[20] R. Geiselhart and F. Wirth, “Solving iterative functional
equations for a class of piecewise linear K∞-functions,”
Journal of Mathematical Analysis and Applications, vol. 411,
no. 2, pp. 652–664, 2014.

[21] A. Doban andM. Lazar, “Computation of Lyapunov functions
for nonlinear differential equations via a Yoshizawa—type
construction,” in Proceedings of the 10th IFAC Symposium on
Nonlinear Control Systems NOLCOS, pp. 29–34, Monterey,
CA, USA, 2016.

[22] H. Li and A. Liu, “Computation of non-monotonic Lyapunov
functions for continuous-time systems,” Communications in
Nonlinear Science and Numerical Simulation, vol. 50,
pp. 35–50, 2017.

[23] H. Li and J. Wang, “Input-to-state stability of continuous-time
systems via finite-time Lyapunov functions,” Discrete & Con-
tinuous Dynamical Systems - B, vol. 25, no. 3, pp. 841–857, 2020.

[24] H. Li and A. Liu, “Asymptotic stability analysis via indefinite
Lyapunov functions and design of nonlinear impulsive
control systems,” Nonlinear Analysis: Hybrid Systems, vol. 38,
Article ID 100936, 2020.

[25] D. Bainov and P. Simeonov, Integral Inequalities and Ap-
plications, Kluwer Academic Publishers, Dordrecht, Nether-
lands, 1992.

[26] A. Browder, Mathematical Analysis. An Introduction,
Springer, 1996.

[27] G. Qi, G. Chen, S. Du, Z. Chen, and Z. Yuan, “Analysis of a
new chaotic system,” Physica A: Statistical Mechanics and its
Applications, vol. 352, no. 2–4, pp. 295–308, 2005.

Complexity 9


