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,is work investigates the finite-time control problem for a nonlinear four-tank cross-coupled liquid level system by the port-
controlled Hamiltonian (PCH) model. A fixed-free methodology is exhibited which can be used to simplify the controller design
procedure. To get an adjustable convergent gain of the finite-time control, a feasible technique named damping normalization is
proposed. A novel parameter autotuning algorithm is given to clarify the principle of choosing parameters of the PCH method.
Furthermore, a finite-time controller is designed by a state-error desired Hamiltonian function, and the relationship between the
settling time and a parameter is given, which can be applied in practical engineering easily to adjust the settling time according to
the industrial need. Finally, simulation and experimental results verify the effectiveness of the proposed algorithm.

1. Introduction

,e control of a coupled four-tank liquid level system
(CFTLLS) has been studied extensively, which has typical
nonlinearity, strong coupling, great inertia, and large time
delay, and play an important role in many practical appli-
cations such as food processing, petrochemical industry,
alcohol distillation processing, and water treatment facilities.
Many conventional control methods have been applied to
the liquid level control system, for instance, sliding mode
control strategy [1], backstepping method [2], predictive
control [3], fuzzy control [4], and fractional order method
[5]. In engineering practice, one not only wants to reach the
target level and maintain the state but also to control the
reach time as soon as possible or within a range of scope due
to safety or economic concerns.,is inspires us to research a
method to resolve this problem.

Different from the asymptotical stabilization in view of
Lyapunov stability, the finite-time stabilization (FTS) can
guarantee a system to achieve control objectives in finite
time, which is important in practical applications such as
traffic accident emergency assistance system, process con-
trol, and pursuit problem. ,e study of FTS can be traced
back to 1963 [6]. ,e finite-time control technique has

exhibited good performances such as fast convergence,
disturbance rejection, and high accuracy. Many algorithms
have been proposed to realize FTS, including adding a power
integrator control [7, 8], homogeneous control [9], com-
mand-filtered backstepping control [10–13], and terminal
sliding mode control [14]. Recently, Yu et al. [10] proposed a
finite-time command-filtered backstepping approach. Xue
et al. [15] put forward a sufficient condition on the finite-
time interval. Meanwhile, Ben Njima et al. [16] presented a
finite-time stabilization approach of CFTLLS by solving
some linear matrix inequalities. Cheng et al. [17] designed a
robust finite-time controller and applied it to CFTLLS. To
get a simpler finite-time control with adjustable settling
time, the port-controlled Hamiltonian (PCH) theory
absorbed our attentions.

For many nonlinear systems, PCH theory has been
studied extensively, presented early in [18, 19]. Its well
structure and the energy-based principle supply a nice tool
to stabilize a class of system, and the computational com-
plexity can be reduced effectively. Recently, a method named
interconnection and damping assignment passivity-based
control (IDA-PBC) has been presented and extended widely
[20–29]. ,is method has been applied to process control
[30–32]. To obtain FTS of the PCH system, Wang and Feng
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[33] investigated the global finite-time stability and stabi-
lization of nonlinear PCH systems. Yang and Wang [34]
obtained the finite-time H∞ control design procedure for a
class of nonlinear time-delay Hamiltonian systems. Fu et al.
[35] investigated a composite finite-time disturbance ob-
server controller. ,e theories about FTS based on the PCH
method put forward in these papers are impeccable, but they
are rarely used in CFTLLS, whose inherent complex non-
linearity leads to the confusion of solving the problem of
FTS.

,e motivations of this paper are twofold. Firstly, some
finite-time controllers of CFTLLS display good performance,
but the settling time cannot be adjusted arbitrarily, and the
controller is complicated. A simpler method to solve this
problem will be widely used in engineering practice. Es-
pecially, for many multinode and multitask process control
systems with logical order, if a large number of nodes
logically require longer control time, it will take a longer
time to achieve the control target on subsequent nodes. So,
solving this problem has more practical meaning. Secondly,
few papers illustrated the choice principle about parameters
such as interconnection matrix or damping matrix of a
desired PCH system, although good effectiveness is shown. It
is necessary to find a vivid and distinct way to give a di-
rection to select or determine these parameters. Motivated
by the above discussions, the attention of this paper is mainly
focused on solving the problem of the finite-time control of
CFTLLS via the PCH method, in which the settling time can
be adjusted easily.

,e main merits of this paper are as follows: (1) the PCH
model of CFTLLS is established. (2) A fixed-free method-
ology is proposed to satisfy the constraint conditions at
equilibrium points of CFTLLS and to adjust parameters
adaptively to meet different practical control targets which
can be applied to practical engineering expediently. (3) A
finite-time control law of CFTLLS is presented which can
reduce or eliminate the effect of lumped disturbances. (4) A
method named damping normalization is proposed to ob-
tain the relationship between the settling time and the
minimum eigenvalue of a matrix, which can be used to
adjust the settling time easily.

,e rest of this paper is organized as follows. In Section
2, we give the problem formulation and briefly review some
preliminaries of the PCH theory. ,e main results of this
paper are developed in Section 3, where the stabilization and
finite-time control of CFTLLS based on the PCHmethod are
studied. Section 4 presents the simulation results and ex-
perimental results, which is followed by the conclusion in
Section 5.

Notations: throughout this article, for a matrix
P ∈ Rn×m, PT denotes its transpose, and P> 0(≥ 0) indicates
that P is a positive definite (positive semidefinite) matrix.
For a real symmetric matrix Q, λQ denotes the eigenvalues of
it.

2. Problem Formulation and Preliminaries

Consider the CFTLLS which is shown in Figure 1. ,e
process model can be expressed as
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(1)

where the state variable xi, i � 1, 2, 3, 4, denotes the liquid
level of tanki, that is, hi in Figure 1; uj, j � 1, 2, denotes the
desired output flow rate of electric control pump j produced
by the control law which will be designed in the following
section; and ak, k � 1, 2, . . . , 8, and Ai are the cross-sectional
area of flow control valve mvk and the cross-sectional area of
tanki, respectively.

,e control objective of this article is to establish a finite-
time control law ujFTC, j � 1, 2, such that the liquid level of
every tank can reach the target level from initial states in
finite time and the settling time can be adjusted arbitrarily.

Next, some preliminaries on the PCH theory are briefly
reviewed.

Consider the following nonlinear PCH system:
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Figure 1: CFTLLS schematic diagram.
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_x � [J(x) − R(x)]
zH

zx
(x) + g(x)u, (2)

where the state variable x ∈ Rn, the control input u ∈ Rm,
H(x): Rn⟶ R is the Hamiltonian function, skew-sym-
metric matrix J(x) � − JT(x), and R(x) � RT(x)≥ 0. As
mentioned in [20], assume there are matrices,

Jd(x) ≔ J(x) + Ja(x) � − J
T
d (x), (3)

Rd(x) ≔ R(x) + Ra(x) � R
T
d (x)≥ 0, (4)

and a desired Hamiltonian function Hd(x): Rn⟶ R that
verifies the so-called match condition

g
⊥

(x)[J(x) − R(x)]
zH(x)

zx
� g
⊥

(x) Jd(x) − Rd(x)􏼂 􏼃
zHd(x)

zx
,

(5)

where g⊥(x) is a full-rank left annihilator of g(x), that is,
g⊥(x)g(x) � 0, and Hd(x) can get theminimum at x∗, with
x∗ ∈ Rn, the equilibrium point to be stabilized. ,en, the
closed-loop system with the controller

u � α(x) � g
+
(x) Jd(x) − Rd(x)􏼂 􏼃

zHd(x)

zx
− [J(x) − R(x)]

zH(x)

zx
􏼨 􏼩, (6)

where g+(x) ≔ [gT(x)g(x)]− 1gT(x) is the Moore–Penrose
pseudo-inverse of matrix g(x), takes the desired PCH form

_x � Jd(x) − Rd(x)􏼂 􏼃
zHd

zx
(x), (7)

with x∗ being a (locally) stable equilibrium point. It will be
asymptotically stable if, in addition, x∗ is isolated minimum
of Hd(x) and the largest invariant set under the closed-loop
dynamics (7) contained in

x ∈ Rn
|
z

T
Hd

zx
Rd(x)

zHd

zx
� 0􏼨 􏼩 (8)

equals x∗{ }.
Meanwhile, a lemma about local finite-time stabilization

and an inequality are reappeared as follows, which are
important to obtain the main results of this paper.

Lemma 1. (see [8, 36]). Consider the dynamical system

_x � f(x),

f(0) � 0,

x t0( 􏼁 � x0, x ∈ Rn
.

(9)

Suppose there exists a continuously differentiable function
V(x): D⟶ R, real numbers p> 1 and k> 0, and a
neighborhood Uδ ⊂ D⊆Rn of the origin such that V(x) is
positive definite on Uδ and

_V< − kV
1/p

(x(t)) (10)

holds along the trajectories of system (9) starting from any
x0 ∈ Uδ ⊂ Rn; then, the origin is a locally finite-time stable
equilibrium point in Uδ. Furthermore, the settling time of
system (9) with respect to x0 satisfies

T x0( 􏼁≤ t0 +
p

k(p − 1)
V

(p− 1)/p
x0( 􏼁, ∀x0 ∈ Uδ. (11)

Lemma 2. (see [37]). Let xi be a real number for all 1≤ i≤ n

and 0<p≤ 1. 7en,

􏽘
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. (12)

3. PCH Model and Controller Design

3.1. PCH Model of CFTLLS. To utilize the passivity and
energy balance property of the PCH method, we transform
model (1) into the PCHmodel and propose a general routine
to get the equilibrium point.

For CFTLLS, H(x) is selected as

H(x) �
2
3

���
2g

􏽰
􏽘

4

i�1
aix

3/2
i . (13)

So,
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(14)

,en, the PCH model of CFTLLS can be obtained.
It is difficult to satisfy constraint condition (5) at the

equilibrium points of CFTLLS with those parameters. ,e
following fixed-free methodology can obtain them and can
be easily used in practical engineering with some degrees of
freedom. If the practical needs changed, some parameters
can also be adjusted adaptively based on this methodology.

Firstly, the equilibrium point x∗ � [x10, x20, x30, x40]
T

should be fixed according to the actual demand, and some
parameters can be determined reasonably. For CFTLLS, a set
a∗ � a1, a2, a5, a6, a7, a8􏼈 􏼉 should be assigned beforehand.

And then, from (1) at the equilibrium point ( _x∗ � 0), it is
obtained that
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So, u0 � [u10, u20]
T can be obtained as
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Furthermore, when the set a∗ is assigned, the uncertain
parameter set a\∗ � a3, a4􏼈 􏼉 can be calculated from (15) as
follows:

a3 �
a7/ a6 + a7( 􏼁u20 + a1

�����
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􏽰

�����
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􏽰 ,
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�����
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􏽰

�����
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􏽰 .

(17)

Remark 1. ,e selection of a∗ can be arbitrary provided
reasonably. ,e set a\∗ can be considered to be degrees of
freedom to match some equations or need some require-
ments. Obviously, a1 and a2 can also be used as a\∗, but some
parameters cannot be chosen as a\∗ such as Ai, i � 1, 2, 3, 4,
because they cannot be adjusted. Based on this routine, an
arbitrary equilibrium point can be obtained by adjusting a\∗

adaptively. It is very useful in practical engineering. ,is
routine can also be used for more sophisticated PCHmodels.

Remark 2. ,e meaning of “adjusting a\∗ adaptively” here
refers to that the set a\∗ can be solved from (17) when the
desired equilibrium point needs to be changed, which is
common in industrial applications.

3.2. 7e Finite-Time Control Law of CFTLLS. Inspired from
[33, 36], we select the desired Hamiltonian function Hd(x)

as

Hd(x) �
1
r

􏽘

4

i�1
xi − xi0( 􏼁

r
, (18)

where r � 2μ/(2μ − 1), μ> 1, is a real number.
For CFTLLS, once the Hamiltonian function H(x) and

desired Hamiltonian function Hd(x) are selected as (13) and
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(18), respectively, matrices J(x), R(x), and g(x) can also be
calculated as mentioned in Section 2. Furthermore,

g
⊥

(x) �

a8A1 0 0 − a5A4

0 a7A2 − a6A3 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (19)

g
+
(x) �

A1 0 0 A4

0 A2 A3 0
⎡⎢⎢⎣ ⎤⎥⎥⎦. (20)

From ,eorem 1 in [36], to get a finite-time control law
based on the PCH model, all parameters about Jd(x) and
Rd(x) should be predetermined or calculated such that
match condition (5). For system (2) with the n-dimensional
state variable, the number of parameters of Jd(x) is about
(1/2)n(n + 1) considering the symmetry of it. And the
parameters of Rd(x) are more complex because of the
positive semidefiniteness of it.

Deeply studied match condition (5), it is found that
Rd(x) (4) plays a key role in the stabilization in view of
damping energy. Once system (2) is considered as a dissi-
pation system, it is easy to get the point that when the energy
of a system is extracted to zero or the energy from the outside
is equal to the energy created inner, it will be stable at last. So,
we get a simple technique to determine parameters about Jd

and Rd to stabilize system (2) based on the PCH method as
follows.

Theorem 1. (damping normalization). Consider system (2).
Assume the desired damping matrix Rd(x):

Rd(x) � R(x) + Ra(x) � ra
�→

I � R
T
d ≥ 0, (21)

where I is the identity matrix, ra
�→

� [ra1, ra2, . . . , ran] is a
positive real row vector, and interconnection matrix Jd(x)

Jd(x) � J(x) + Ja(x) � − J
T
d (x), (22)

where Ja(x) � − JT
a , the desired Hamiltonian function Hd(x)

is selected as (18), and match condition (5) is satisfied. 7en,
the closed-loop system with u � α(x) (6) is global finite-time
stable, and the settling time T(x0) satisfies (11), and the
parameters of Ja(x) can be autotuned. Furthermore, if t0 � 0
and μ is predetermined, then T(x0) is proportional to
1/min λRd(x)

􏽮 􏽯.

Proof. From (21), (22), and match condition (5), according
to preliminaries about PCHmentioned in Section 2, one can
get the global asymptotically stability of system (2). To get
the finite-time stability of system (2), the desired Hamil-
tonian function Hd(x) is selected as (18). Now, choose
Hd(x) as a Lyapunov function candidate; then, as illustrated
in ,eorem 1 in [33], along x(t), it is obtained that

Hd

.

(x) �
zH

T
d (x)

zx
Jd(x) − Rd(x)􏼂 􏼃

zHd(x)

zx

� −
zH

T
d (x)

zx
Rd(x)􏼂 􏼃

zHd(x)

zx

≤ − ρ
zH

T
d (x)

zx

zHd(x)

zx

� − ρ􏽘

n

i�1
xi − xi0( 􏼁

2/(2μ− 1)

� − ρ􏽘
n

i�1
xi − xi0( 􏼁

2
􏼐 􏼑

1/(2μ− 1)
,

(23)

where ρ ≔ min λRd(x)
􏽮 􏽯> 0. Since μ> 1, from Lemma 2 and

(23), it follows that

Hd

.

(x)≤ − ρ􏽘
n

i�1
xi − xi0( 􏼁

2
􏼐 􏼑

1/(2μ− 1)

≤ − ρ 􏽘
n

i�1
xi − xi0( 􏼁

2
􏼐 􏼑

μ/(2μ− 1)
⎡⎣ ⎤⎦

1/μ

� − ρr
μ
H

1/μ
d (x).

(24)

Because ρrμ > 0 and from (18), μ> 1, according to
Lemma 1 and preliminaries on the PCH theory, it is obtained
that the control law (6) is the finite-time controller of system
(2) if Hd(x) is selected as (18) and Jd(x) and Rd(x) are such
as match condition (5).

Let us recall the proof procedure of ,eorem 1 in [36]
about k and the settling time function (11). From the form of
Rd(x) in (21), it can be obtained that
ρ � min ra1, ra2, . . . , ran􏼈 􏼉. In engineering practice, the
initial state and the control target can be assigned in advance
as the practical need, r or μ should be predetermined, so the
scalar k in (11) can be calculated. Now, the relationship
between the settling time T(x0) and the parameter ra

�→ is
obtained.

Next, the procedure of parameter autotuning is illus-
trated. Substituting (21) and (22) into (5), one can obtain

g
⊥

(x)[J(x) − R(x)]
zH(x)

zx
� g
⊥

(x) J(x) + Ja(x) − ra
�→

I􏽨 􏽩

·
zHd(x)

zx
.

(25)

Complexity 5



Note that g(x) is an m × n matrix, so g⊥(x) is an n × m

matrix. From (25), if ra
�→ is assigned, unknown parameters in

matrix Ja(x) can be calculated accurately. Now, ,eorem 1
can be obtained. □

Remark 3. ,eorem 1 is induced by the illustrative examples
in [36], where J(x), R(x), andg(x) are prefixed, and the
Hamiltonian function and desired Hamiltonian function are
changed; that is to say, these two functions are to be changed
at the same time which will lead to the system model to be
changed. ,e damping normalization method in this paper
can supply more optimized control laws for the fixed system
model; that is to say, J(x), R(x), andg(x) and the Ham-
iltonian function can all remain unchanged.

Remark 4. From ,eorem 1, the minimum value of each
element of the vector ra

�→ can be a convergent gain. It is an
important view in engineering practice because one can
predetermine the settling time by adjusting ra

�→ to meet the
practical demand.

Remark 5. ,emeaning of parameter autotuning here refers
to the accurate solution of these parameters such as Ja(x)

can be obtained from (5) and (22) other than estimated by
experience judgement. Once other elements are determined,
these parameters will be adjusted automatically.

To apply ,eorem 1, we define Ja(x) as the following
form,

Ja(x) � − J(x) + Jd(x) �

0 0
1

2A3
0

0 0 0
1

2A4

−
1

2A3
0 0 0

0 −
1

2A4
0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0 ja12 ja13 ja14

− ja12 0 ja23 ja24

− ja13 − ja23 0 ja34

− ja14 − ja24 − ja34 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

and Ra(x) as

Ra(x) � − R(x) + ra
�→

× I �

−
1

A1
0

1
2A3

0

0 −
1

A2
0

1
2A4

1
2A3

0 −
1

A3
0

0
1

2A4
0 −

1
A4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

ra1 0 0 0

0 ra2 0 0

0 0 ra3 0

0 0 0 ra4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)
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By substituting (19), (26), and (27) into (25), one can
obtain

− a1a8
����
2gx1

􏽰
− a2a5

����
2gx2

􏽰
+ a4a5

����
2gx4

􏽰
� a8A1 ja11 − ra1( 􏼁η1 + ja12η2􏼂

+ ja13 −
1

2A3
􏼠 􏼡η3 + ja14η4􏼣 − a5A4 − ja14η1 +

1
2A4

− ja24􏼠 􏼡η2 − ja34η3 + ja44 − ra4( 􏼁η4􏼢 􏼣,

(28)

− a2a7
����
2gx2

􏽰
− a1a6

����
2gx1

􏽰
+ a3a6

����
2gx3

􏽰
� a7A2 − ja12η1 + ja22 − ra2( 􏼁η2􏼂

+ ja23η3 + ja24 −
1

2A4
􏼠 􏼡η4􏼣 − a6A3

1
2A3

− ja13􏼠 􏼡η1 − ja23η2 + ja33 − ra3( 􏼁η3 + ja34η4􏼢 􏼣,
(29)

where

ηi � xi − xi0( 􏼁
r− 1

, i � 1, 2, 3, 4. (30)

It is obvious that (28) and (29) make up a system of six-
variable first-order equations for jaij, i, j � 1, 2, 3, 4, i< j.
,e number of equations in a system of equations depends
on the number of columns of the matrix g(x), i.e., the
number of controls. For CFTLLS, these two equations can
only obtain the exact solutions of two unknown parameters.

To solve those unknown parameters of Ja, let
ja12 � 0, ja14 � 0, ja23 � 0, and ja34 � 0. So,

ja1 ≔ ja13 �
s1s8 − s2s7 − s3s8 + s4s7

s5s8 − s6s7
,

ja2 ≔ ja24 �
s1s6 − s2s5 − s3s6 + s4s5

s6s7 − s5s8
,

(31)

where

s1 � − a1a8
����
2gx1

􏽰
− a2a5

����
2gx2

􏽰
+ a4a5

����
2gx4

􏽰
,

s2 � − a2a7
����
2gx2

􏽰
− a1a6

����
2gx1

􏽰
+ a3a6

����
2gx3

􏽰
,

s3 � − a8A1ra1η1 − a8
A1

2A3
η3 −

1
2
a5η2 + a5A4ra4η4,

s4 � − a7A2ra2η2 − a7
A2

2A4
η4 −

1
2
a6η1 + a6A3ra3η3,

s5 � a8A1η3,

s6 � a6A3η1,

s7 � a5A4η2,

s8 � a7A2η4.

(32)

According to ,eorem 1 and (6), the finite-time control
law of CFTLLS can be obtained as follows:

uFTC(x) �
α1(x)

α2(x)

⎡⎣ ⎤⎦ �
A1θ1 + A4θ4
A2θ2 + A3θ3

􏼢 􏼣, (33)

where

θ1 � − ra1η1 + ja1 −
1

2A3
􏼠 􏼡η3 +

a1

A1

����
2gx1

􏽰
,

θ2 � − ra2η2 + ja2 −
1

2A4
􏼠 􏼡η4 +

a2

A2

����
2gx2

􏽰
,

θ3 �
1

2A3
− ja1􏼠 􏼡η2 − ra3η3 −

a1

A3

����
2gx1

􏽰
+

a3

A3

����
2gx3

􏽰
,

θ4 �
1

2A4
− ja2􏼠 􏼡η1 − ra4η4 −

a2

A4

����
2gx2

􏽰
+

a4

A4

����
2gx4

􏽰
.

(34)

4. Simulation and Experimental Results

4.1. Simulation Results. ,e parameters we used here are
listed in Table 1, where a3 and a4 can be calculated from (17)
and rai � 10, i � 1, 2, 3, 4, can be changed according to
practical engineering. According to (11), T(x0) can be
calculated as T(x0)≤ 1.4708 s when the initial state x0 � 0.
Figure 2 shows that, within about 1.5 sec xi, i � 1, 2, 3, 4, can
reach to the value of the control target.

To verify the relationship between T(x0) and the pa-
rameter rai, i � 1, 2, 3, 4, proposed in ,eorem 1, the values
are changed as follows. When rd ≔ rai � 20, i �

1, 2, 3, 4, T(x0)≤ 0.7354 s; that is to say, when rd is greater
twice, the settling time T(x0) is less twice. And when
rd � 30, T(x0)≤ 0.4903 s. Figure 2 illustrates the corre-
sponding results.

To show the better performance of the proposed method
compared with the sliding mode control, the sliding surface
is given as follows:

s1 � c1 x1 − x10( 􏼁 + x4 − x40( 􏼁,

s2 � c2 x2 − x20( 􏼁 + x3 − x30( 􏼁,
(35)

and the reaching law is expressed as

s1
.

� − msgn s1( 􏼁 − ks1,

s2
.

� − msgn s2( 􏼁 − ks2,
(36)

where m> 0 and k> 0. From (35), (36), and (1), the sliding
mode control law can be obtained as
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Table 1: Parameters of the simulation.

Parameters Value Unit
a1 0.2 cm2

a3 0.4082 cm2

a5 0.4 cm2

a7 0.4 cm2

A1 196 cm2

A3 196 cm2

x10 8 cm
x30 12 cm
g 981 cm/s2
ra1 10
ra3 10
a2 0.2 cm2

a4 0.4082 cm2

a6 0.4 cm2

a8 0.4 cm2

A2 196 cm2

A4 196 cm2

x20 8 cm
x40 12 cm
μ 9/8
ra2 10
ra4 10
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Figure 2: Liquid levels under the finite-time control law with ra � 10, 20, 30.
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u1SMC(x) �
1

c1/A1( 􏼁 a5/ a5 + a8( 􏼁( 􏼁 + 1/A4( 􏼁 a8/ a5 + a8( 􏼁( 􏼁

a1c1
����
2gx1

􏽰

A1
−

a2
����
2gx2

􏽰

A4
+

a4
����
2gx4

􏽰

A4
− s1

.
􏼢 􏼣,

u2SMC(x) �
1

c2/A2( 􏼁 a6/ a6 + a7( 􏼁( 􏼁 + 1/A3( 􏼁 a7/ a6 + a7( 􏼁( 􏼁

a2c2
����
2gx2

􏽰

A2
−

a1
����
2gx1

􏽰

A3
+

a3
����
2gx3

􏽰

A3
− s2

.
􏼢 􏼣.

(37)

It is generally known that once the derivative of Lya-
punov function _V≤ − aV1/2, where a> 0 and V � 1/2s2,
then the system can be stable within a finite time
tr ≤ 2V1/2(0)/a.

Figure 3 shows the liquid levels under the sliding mode
control law (37), in which c1 � 0.12, c2 � 0.12, and k � 1
whenm� 5, 10, or 15. Compared with Figure 2, the proposed
method in this paper shows better performance of the steady
state, especially from local enlarged drawings based on the
same scale.

Furthermore, as mentioned in the Introduction section,
the finite-time control technique has good disturbance re-
jection performances. To facilitate the verification of this
merit, a comparison between the finite-time control law
proposed in this paper and the disturbance attenuation (in
the L2 sense) is illustrated in the following. ,e disturbance
attenuation part of the control law can be obtained from
[33]. Consider the following PCH system with external
disturbances:

_x � [J(x) − R(x)]
zH

zx
(x) + g(x)u + gτ(x)τ, (38)

where τ ∈ Rq is the disturbance, gτ(x) ∈ Rn×q is the dis-
turbance gain, and x, J(x), R(x), andH(x) are the same as
those in system (2). Let

z � h(x)g
T
(x)

zHd

zx
(x) (39)

be the penalty signal, where h(x) is a weightingmatrix. From
,eorem 5 in [33] and Proposition 6 in [21], a finite-time
controller with the disturbance attenuation part of system
(38) is obtained as follows:

uL2(x) � α(x) −
1
2

1
c
2 I + h

T
(x)h(x)􏼢 􏼣g

T
(x)

zHd

zx
(x),

(40)

where c> 0 is the disturbance attenuation level. Let h(x) � I;
we obtain
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Figure 3: Liquid levels under the sliding mode control law with m � 5, 10, 15.
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u1L2(x) � α1(x) −
1
2

+
1
2c

2􏼠 􏼡
a5

a5 + a8
1

A1
x1 − x10( 􏼁

r− 1
+

a8
a5 + a8

1
A4

x4 − x40( 􏼁
r− 1

􏼢 􏼣,

u2L2(x) � α2(x) −
1
2

+
1
2c

2􏼠 􏼡
a6

a6 + a7
1

A2
x2 − x20( 􏼁

r− 1
+

a7
a6 + a7

1
A3

x3 − x30( 􏼁
r− 1

􏼢 􏼣.

(41)

To get closer to the actual situation, we limit the input
between 0 and 100. Disturbances are rejected into tank1 at
200 s and into tank2 at 600 s, respectively. Figure 4 shows the
simulation results, in which xi, i � 1, 2, 3, 4, denotes the
liquid level of tanki under the controller uFTS(x) (33) and
xiL2, i � 1, 2, 3, 4, denotes the liquid level of tank i under the
controller uL2(x) (41). From Figure 4, the levels of tank3 and
tank4 are not affected by disturbances of tank1, and the same
result can be illustrated for disturbances at 600 s under two
controllers. It shows that the two controllers have distur-
bance rejection performance, even if there are small dif-
ferences between them. So, from the view of control, without
the disturbance attenuation part in (41), the finite-time
control law (33) has advantages of disturbance rejection.

Figure 5 shows the inputs under the finite-time control
with disturbances. It shows that, at 200 s, inputs can be

quickly changed when disturbances are rejected into tanks. It
is noted that although the effectiveness under the finite-time
control is better than the sliding mode control, inputs il-
lustrate large fluctuations within valid values. ,is is a re-
search direction one can study further.

4.2. Experimental Results. ,e experimental platform is
given in Figure 6. Different voltage values of a pump provide
different pumping forces, which can draw water from the
reservoir at a corresponding flow rate and inject it into the
relevant tank through the manual valve.,ese voltage values
are obtained by Matlab/Simulink and PLC according to the
control law. Standard modular-structured PLC, Siemens S7-
300 series, is used for this experimental platform.

As shown in Figure 7, the liquid level can be reached to
the control target within a short time under the finite-time
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Figure 4: Comparisons of liquid levels with disturbances between the finite-time control law (33) and the L2 disturbance attenuation control
law (41).
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Figure 6: Experimental platform.
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control of this paper under the voltage limit, and there is
almost little overshoot.

Between the time 11:06 and 11:07, two disturbances were
added to tank1. Obviously, the liquid level of tank1 shows a
sharp from 8 cm to nearly 9 cm. Accordingly, the level of
tank4 drops continuously and returns to 12 cm soon. At the
same time, the liquid levels of tank2 and tank3 have hardly
been affected. Between the time 11:12 and 11:13, a sharp
disturbance was added to tank2. ,e liquid level of tank2
illustrates a sharp from 8 cm to nearly 10 cm. ,e level of
tank3 drops continuously and returns to 12 cm soon cor-
respondingly. ,ese two disturbances were achieved by
adding water into tanks.

Because the flow control valves are manual, some pa-
rameters such as ai, i � 1, 2, . . . , 8, cannot be adjusted with
great accuracy. Under this condition, the results are con-
sistent with the simulation results with disturbances and
illustrate good robustness.

5. Conclusions

In this paper, a finite-time control for CFTLLS based on
the PCH method has been proposed in which the settling
time can be adjustable. By introducing a theorem of
parameter autotuning and damping normalization, the
procedure of control design can be simplified, and some

parameters can be self-settled. A relationship between
the settling time and the minimum eigenvalue of a matrix
is obtained to adjust the settling time easily. And sim-
ulation and experimental results demonstrate the ef-
fectiveness of the proposed method. A future direction
will consider the developments of adaptive PCH con-
trollers for CFTLLS with input delay and uncertain
parameters.
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Pérez, “Indirect IDA-PBC for active and reactive power
support in distribution networks using SMES systems with
PWM-CSC,” Journal of Energy Storage, vol. 17, pp. 261–271,
2018.

[28] F. M. Serra, C. H. De Angelo, and D. G. Forchetti, “IDA-PBC
control of a DC-AC converter for sinusoidal three-phase
voltage generation,” International Journal of Electronics,
vol. 104, no. 1, pp. 93–110, 2017.

[29] N. Khefifi, A. Houari, and M. Machmoum, “Control of grid
forming inverter based on robust IDA-PBC for power quality
enhancement,” Sustain. Energy Grids Netwn, vol. 20, Article
ID 100276, 2019.

[30] F. Dӧrfler, J. K. Johnsen, and F. Allgӧwer, “An introduction to
interconnection and damping assignment passivity-based
control in process engineering,” Journal of Process Control,
vol. 19, no. 9, pp. 1413–1426, 2009.

[31] H. S. Yu, J. P. Yu, H. R.Wu, and H. L. Li, “Energy-shaping and
integral control of the three-tank liquid level system,” Non-
linear Dynamics, vol. 73, no. 4, pp. 2149–2156, 2013.

[32] T. Xu, H. S. Yu, J. P. Yu, and X. X. Meng, “Adaptive dis-
turbance attenuation control of two tank liquid level system
with uncertain parameters based on port-controlled hamil-
tonian,” IEEE Access, vol. 8, pp. 47384–47392, 2020.

Complexity 13



[33] Y. Z. Wang and G. Feng, “On finite-time stability and sta-
bilization of nonlinear port-controlled hamiltonian systems,”
Science China Information Sciences, vol. 56, no. 10, pp. 255–
268, 2013.

[34] R. M. Yang and Y. Z. Wang, “Finite-time stability analysis H-
infinity control for a class of nonlinear time-delay hamilto-
nian systems,” Automatica, vol. 49, no. 2, pp. 390–401, 2013.

[35] B. Z. Fu, S. H. Li, L. Guo, J. Yang, and Q. X. Lan, “Finite-time
stabilization of port-controlled Hamiltonian systems with
nonvanishing disturbances,” Transactions of the Institute of
Measurement and Control, vol. 40, no. 10, pp. 2973–2981,
2017.

[36] X. G. Liu and X. F. Liao, “Fixed-time H∞ control for port-
controlled hamiltonian systems,” IEEE Transactions on Au-
tomatic Control, vol. 64, no. 7, pp. 2753–2765, 2019.

[37] X. Huang, W. Lin, and B. Yang, “Global finite-time stabili-
zation of a class of uncertain nonlinear systems,” Automatica,
vol. 41, no. 5, pp. 881–888, 2005.

14 Complexity


