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2Electrical Engineering (PEE/COPPE/UFRJ) & NACAD, Federal University of Rio de Janeiro (UFRJ), PO Box 68504,
Rio de Janeiro 21945-970, Brazil

Correspondence should be addressed to Walter Aliaga; w.aliagaa@up.edu.pe

Received 30 August 2019; Accepted 5 December 2019; Published 9 January 2020

Academic Editor: Carlos F. Aguilar-Ibáñez
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�is paper extends the Deal-Vidal-Wolfe and Lanchester models of duopoly dynamics, which involve two populations, by
explicitly introducing a third population of undecided users. An analysis of these extended models establishes conditions for the
existence of equilibria, as well as their stability properties under di�erent classes of advertising policies. �is analysis also leads to
the surprising result that the extended Vidale–Wolfe and Lanchester models, despite having di�erent dynamics, under the general
class of decentralized a�ne feedback advertising policies have equilibria in identical locations, with the same stability properties.

1. Introduction

A predominant form of market structure is the oligopoly
which represents a market with few enterprises and a large
number of buyers from the demand side [1]. �e simplest
type of oligopoly is the duopoly, where themarket consists of
two companies o�ering similar or identical products [2].
Markets are dynamic so that the strategies of competition
existing in the �rms which conform themarket such as price,
quality, and publicity are also in�uenced by market changes
[3]. On the contrary, the consumer buying process is
strongly in�uenced by cultural, social, personal, and psy-
chological factors [4]. In order to in�uence the buying
behavior of people [5], �rms use advertising to promote the
sale of their products [6]. Advertising can be understood as a
form of communication used to induce consumers to take a
particular action with respect to products or services [7].

Advertising results can be assessed by communication
impacts, and the e�ects on sales and pro�ts [4] and, under
di�erent hypotheses, corresponding classes of models have
been developed and are surveyed in [7]. Studies of duopoly
models based on di�erential games are carried out by
Fruchter [8], Wang and Wu [7], Fletcher and Howell [9],
Wang et al. [10], and Jørgensen and Sigué [11]. �ese ref-
erences are mainly focused on the solution of the

Hamilton–Jacobi–Bellman equations arising from the use of
di�erential game theory, in contrast with this paper, which
aims to provide a new perspective on the relations between
the classical Vidale–Wolfe and Lanchester models and their
proposed variants.

Vidale and Wolfe [12] proposed the following model for
sales response to advertising:

_S � rA(t) 1 − S

M
( ) − λS, (1)

where S represents the rate of sales at time t, A(t) is the
advertising expenditure (to be designed), r is referred to as
the response constant, M the market saturation level, and λ
the exponential sales decay constant. �e interpretation is
that the increase in the rate of sales, _S, is proportional to the
intensity of the advertising policy (or control) A(t) reaching
the fraction of potential clients (1 − S/M), less the number
of defecting clients (λS). Rewriting the model in terms of the
fraction of clients S/M, also called themarket share x � S/M,
gives

_x �
rA(t)
M

(1 − x) − λx � u(1 − x) − λx, (2)

where u � rA/M. Deal [13] generalized the Vidale–Wolfe
model to a duopoly as follows:
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_x1 � u1 1 − x1 − x2(  − λ1x1, (3)

_x2 � u2 1 − x1 − x2(  − λ2x2, (4)

where for i � 1, 2, xi (resp ui) denotes the market share (resp.
advertising policy) of firm i and λi are the respective sales
decay constants. As is usual in the literature, Deal’s gen-
eralization will also be referred to as a Vidale–Wolfe model
[14].

Kimball [15] cited the Lanchester model as a saturated
(i.e., the market shares sum to unity) market model, written
as follows:

_x1 � − ρ2u2x1 + ρ1u1x2, (5)

_x2 � ρ2u2x1 − ρ1u1x2. (6)

Little [16] made the substitutions x2 � 1 − x1, ρ2u2 � λ,
and ρ1 � 1, in the Lanchester model [17] and noted that it
became identical to the Vidale–Wolfe model, thus gener-
alizing the latter by considering competition.,e decay term
(− λx) referred to in [12] as a forgetting effect thus also
models the effect of competition in reducing market share.

Clients in a duopolistic market model are restricted to
choosing either a firm or its competitor. However, clients may
also remain neutral or undecided in relation to both firms,
and allowing this possibility leads to a more realistic de-
scription of market dynamics. Studies show advertising affects
all market clients [7], which implies that the inclusion of a
third population could be important in modeling and anal-
ysis. Proposals for the introduction of an undecided pop-
ulation have also been made in other areas such as opinion
dynamics, social dynamics, religious affiliation, and political
dynamics [18–21]. Finally, in a recent paper [22], the authors
note that “the most popular models are still those proposed by
Nerlove and Arrow [23] for monopolies, Vidale and Wolfe
[12] and Lanchester [17] for duopolies. However, each model
has limitations: the Vidale–Wolfe model does not consider
competition explicitly, whereas the Lanchester model does
not consider behavior of the firms before market saturation is
reached.” ,ey then propose a three-population model for a
monopoly, and discuss its dynamics, based on projected
dynamical systems, in addition to considering control of
market share under a class of nonlinear switching controls.

One important contribution of this paper is to introduce
a class of models that extends and unifies the Lanchester and
Vidale–Wolfe models so as to remove their limitations, by
explicitly introducing a third class of undecided clients. ,e
interactions between firms and clients (advertising), as well
as the client-client interactions (leading to transitions be-
tween firm allegiances) are shown schematically in
Figure 1(a). We also introduce a natural class of advertising
policies, composed of the sum of two terms, one of which is a
constant effort and the other proportional to the firm’s
market share. Such policies are referred to as decentralized
affine controls, in the technical literature on control. We
study the dynamics of market share in the extended class
of models that we introduce and derive the new and, in
our view, interesting result that, although the extended

Lanchester and Vidale–Wolfe models have mathematically
different dynamics, they share identical equilibrium points
(in location and stability properties, even though the tra-
jectories themselves are, of course, different), under the
proposed class of affine policies or controls. We now em-
phasize the differences between the approach in [22] and
that of this paper. ,is paper proposes new Vidale–Wolfe
and Lanchester type duopoly advertising models that ex-
plicitly consider a third population of undecided clients. In
[22], models with three populations are also considered, but
only for monopolies. ,is paper carries out a complete
analysis of equilibria of proposed duopoly models under
affine feedback advertising policies. In contrast, the equi-
librium point analysis in [22] is carried out for a monopoly
model, under a nonlinear switching policy. One of the main
results of this paper is showing equivalence, in terms of
equilibrium market shares, of proposed Vidale–Wolfe and
Lanchester type model under affine feedback advertising
policies.,ere is no such analysis in [22] because it considers
a different class of monopoly models, arising from projected
dynamical systems.

2. Models of Duopolies with Undecided Clients

2.1. Vidale–Wolfe Model. Deal’s extension of the Vida-
le–Wolfe model to the case of a duopoly assumes that the
effects of advertising act only on the unconquered part of the
market, thus discarding the influence of advertising on the
market shares conquered by the competing firms. We now
rewrite Deal’s models (3) and (4) with the third class of
undecided clients made explicit (see Figure 1(b)). Denoting
the unconquered part of the market by x3, which corre-
sponds to the population of undecided clients, Deal’s version
of the Vidale–Wolfe model can be expressed by the fol-
lowing equations:

_x1 � x3u1 − λ1x1,

_x2 � x3u2 − λ2x2,

_x3 � − x3u1 − x3u2 + λ1x1 + λ2x2.

(7)

Assuming that the total population size is constant and
normalized to unity [5], i.e., x1 + x2 + x3 � 1, model (7) can
also be expressed as follows:

_x1 � u1 − u1x1 − u1x2 − λ1x1,

_x2 � u2 − u2x1 − u2x2 − λ2x2.
(8)

Under constant advertising policies u1 and u2, the
equilibrium point of system (8) is calculated to be

x
∗
1 , x
∗
2(  �

λ2u1

λ1λ2 + λ1u2 + λ2u1
,

λ1u2

λ1λ2 + λ1u2 + λ2u1
 ,

(9)

where x1, x2, and x3 are the state variables representing the
market shares of firm 1 and firm 2 and undecided users,
respectively, u1 and u2 are the policies, assumed constant, of
firm 1 and firm 2 representing advertising, and λ1 and λ2 are
the decay terms of firm 1 and firm 2.
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2.2. ExtendedLanchesterModel. ,e Lanchester model [17]
can be understood as an extension of the Vidale–Wolfe
model [12] within a duopoly with competition in ad-
vertising [16]. ,e Lanchester model different from the
Deal model [13] represents the dynamics of competition
in advertising, considering advertising as the sole cause of
variation of the market share of firms. For this reason, the
Lanchester model does not consider the decay term
contemplated in the Vidale–Wolfe model, which is used to
represent the loss of market share produced by factors
such as quality of the product or service, as well as
competition in advertising with other firms not modeled
in the duopoly. ,e classical Lanchester model is deter-
mined by the following expression:

_x1 � x2u1 − x1u2,

_x2 � x1u2 − x2u1.
(10)

In order to extend the Lanchester model, we argue that
the firm i’s advertising acts on the undecided consumers in a
positive sense (i.e., to increase xi), while it acts negatively on
firm j (its competitor). In mathematical terms, the proposed
extension of the Lanchester model (see Figure 1(c)) is as
follows:

_x1 � − x1u2 + x3 + x2( u1 − λ1x1,

_x2 � − x2u1 + x3 + x1( u2 − λ2x2,

_x3 � − x3u1 − x3u2 + λ1x1 + λ2x2.

(11)

Note that x3 has the same dynamics as in the Vida-
le–Wolfe model because of the fact that the Lanchester
model just adds and subtracts the terms xiuj from the
corresponding equations so that the sum of the first two
equations in the Vidale–Wolfe model is the same as the
corresponding sum in the Lanchester model. Since the total
population size is constant and normalized to 1, model (11)
can be expressed as follows:

_x1 � u1 − x1 u1 + u2 + λ1( ,

_x2 � u2 − x2 u1 + u2 + λ2( .
(12)

,us, the fixed points of system (12), under constant
advertising policies u1 and u2 are determined as follows:

x
∗
1 , x
∗
2(  �

u1

λ1 + u1 + u2
,

u2

λ2 + u1 + u2
 , (13)

where x1, x2, and x3 are the state variables representing the
market shares of firm 1, firm 2, and undecided users, re-
spectively, u1 and u2 are the policies of firm 1 and firm 2
representing positive advertising, and λ1 and λ2 are the decay
terms of firm 1 and firm 2, respectively.

2.3. Nonequivalence of Classical and Proposed Models.
,e introduction (see discussion below equation (6))
mentioned the manipulation made by Little [16] in the case
of a monopoly which shows that the Lanchester model
generalizes the Vidale–Wolfe model for a saturated market.
,is section examines whether such a manipulation is
possible for the extended Lanchester model to be seen as a
generalization of Deal’s version of the Vidale–Wolfe model.
Comparing (12), in which we set λ1 � λ2 � 0 with Deal’s
equations (3) and (4), it is clear that they will only have
identical dynamics , for all possible choices of x1 andx2:

u1x2 − u2x1 � − λ1x1,

− u1x2 + u2x1 � − λ2x2,
(14)

which, in matrix form, becomes

λ1 − u2 u1

u2 λ2 − u1
 

x1

x2
  �

0

0
 , (15)

which can only be satisfied for all x1 andx2 if the coefficient
matrix is the null matrix (all entries zero), which yields the
trivial solution u1 � u2 � λ1 � λ2 � 0. ,us, differently from
the case of a monopoly, it is not possible to directly rewrite
the generalized Lanchester duopoly equations as the Deal
(generalized Vidale–Wolfe) duopoly equations. In a similar
manner, if the extended Lanchester duopoly equations with
nonzero decay coefficients (12) are compared with Deal’s
duopoly equations (3) and (4), the two sets of equations are
identical, for all x1 and x2

− u2 u1

u2 − u1
 

x1

x2
  �

0

0
 , (16)

Undecided clients

Clients of firm 1 Clients of firm 2

Firm 1 Firm 2

Transitions

Advertising

(a)

Undecided clients
(x3 = 1 – x1 – x2)

Clients of firm 1
(x1)

Clients of firm 2
(x2)

λ1x1 λ2x2x3u1 x3u2

(b)

Undecided clients
(x3 = 1 – x1 – x2)

Clients of firm 1
(x1)

Clients of firm 2
(x2)

λ1x1
x1u2

x2u1

λ2x2 x3u2x3u1

(c)

Figure 1: A graph representation of client and firm interactions in a duopoly with advertising. (a) ,e nodes represent clients and firms
and the dotted arrows (edges) represent advertising which cause transitions (solid arrows) between them and (b) Vidale–Wolfe model
and (c) extended Lanchester model, showing only transitions between client sets (refer to equations (7) and (11)).,e extensions made to
the original models are highlighted in blue.
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which, once again, leads to the trivial solution u1 � u2 � 0. In
other words, we conclude that the proposed generalization
of Lanchester’s model to a duopoly does not lead to Deal’s
generalization of the Vidale–Wolfe model to a duopoly
through a simple algebraic manipulation and renaming of
parameters, which was possible for the corresponding
models for monopolies. Despite this, we shall see that, under
certain conditions, both the Deal model as well as the
proposed generalized Lanchester model share important
properties such as the location and nature of their singu-
larites, under the general class of affine advertising policies.

3. Equilibria and Stability Analysis ofDuopolies
Models considering Undecided Users under
Decentralized Affine Advertising Policy

In this section, we analyze the existence and stability of the
equilibrium points of the duopoly models proposed in the
previous section. We first make the following standard
assumptions.

Assumption 1. ,e market shares of xi of firm i, i � 1, 2 are
assumed to be nonnegative values in the interval [0, 1].

Assumption 2. ,e advertising policies of the firms are
assumed as decentralized affine feedback, that is,
ui � kixi + ci, i � 1, 2.

Assumption 3. ,e decay coefficients λ1 and λ2 and ad-
vertising policies u1 and u2 and their coefficients k1, k2, c1,
and c2 are assumed to be positive values.

Assumption 4. ,e decay rates of both firms are assumed to
be equal, i.e., λ1 � λ2 � λ.

Remark. Note that, the advertising policy of the firms is
expressed by two terms, where the first being proportional to
market share (kixi) and the second having a constant value
(ci). ,e advertising policy is also decentralized in the sense
that the firm i bases its policy based only on information
about its own market share xi. Affine control has been
proposed in different contexts, for example, in magnetic and
electronic control [24, 25] and automation and robotic
systems [26, 27]. It has also been proposed, using full state
feedback, for predator-prey models in the textbook [28].
Prior to this, decentralized affine control, also in the context
of predator-prey models, was used in [29, 30] and subse-
quently in [31]. Taking inspiration from these applications, it
was then proposed to use decentralized affine advertising
(DAA) policies in models of duopolies in [32, 33]. ,e main
motivations for the use of DAA policies in this paper are
summarized below:

(i) DAA policies have a natural interpretation as pro-
portional plus constant control and are easy to
implement, in contrast to policies derived from
optimal control theory, which are usually very hard
to calculate and also to implement.

(ii) ,e simple mathematical form of DAA policies also
permits analytical derivations of stability and bi-
furcation results for the models proposed in this
paper.

Given the fact that, in this work, all advertising
policies or controls are affine and decentralized and
determined by the choice of the parameters
(ki, ci, i � 1, 2), the results presented are analytical,
allowing a policy designer to predict what happens under
different scenarios for different choices of the parameter
values. ,is is in contrast with the approach of optimal
control, which determines a (usually an open loop and
not necessarily decentralized) policy that takes the system
state from an initial set of market shares to a desired final
set of market shares, minimizing some cost function. In
the proposed approach, costs can be evaluated by
substituting the proposed controls into a specified cost
function and using the results in a “flight simulator”
mode [34]. It is also possible, for example, to draw isocost
contours that connect reachable states with the same
terminal cost.

3.1. Decentralized Affine Advertising Policy Applied to the
Vidale–Wolfe Model. Considering the Assumption 2, the
advertising policies of the firms are assumed to be affine
[32]:

u1 � k1x1 + c1, (17)

u2 � k2x2 + c2. (18)

Substituting the affine advertising policies in model (8)
yields,

_x1 � − k1x
2
1 − k1x1x2 + k1x1 − λx1 + c1 − c1x1 − c1x2,

_x2 � − k2x
2
2 − k2x1x2 + k2x2 − λx2 + c2 − c2x1 − c2x2.

(19)

Reordering terms, we have

_x1 � − k1x
2
1 − k1x1x2 − ax1 − c1x2 + c1,

_x2 � − k2x
2
2 − k2x1x2 − bx2 − c2x1 + c2,

(20)

where

a � c1 + λ − k1( ,

b � c2 + λ − k2( .
(21)

,e dynamics and corresponding equilibrium points for
model (20) are shown in Table 1. Note that for general cases
of affine advertising policies, special cases of parameter
values given in Table 2 are used in order to establish ana-
lytical solutions for equilibrium points.

,us, for policy 4, k1 � c1 � c2 � c. For policy 5, k1 �

c1 � k and for policy 6, k1 � k2 � k and c1 � c2 � c. In
addition, in Table 1, we have that for policy 4, p � 3c +

λ + g and q � 3c + λ − g, where g � (5c2 + 2cλ + λ2)1/2, for
policy 5, f �

�������
λ2 + 4k2


, and finally for policy 6,

f �
�����������������
e2 + 2ec + c2 + 8ck/4

√
, where e � c + λ − k.
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Stability is determined by the signs of the determinant and
trace of the Jacobian matrix evaluated at the corresponding
equilibrium points. ,e Jacobian matrix for model (20) with
respect to x1 and x2 is given by

JVW �
− 2k1x1 − k1x2 − a − k1x1 − c1

− k2x2 − c2 − 2k2x2 − k2x1 − b
 . (22)

,e determinant and trace for the Jacobian matrix are

det JVW(  � 2k1k2x
2
1 + 4k1k2x1x2 + 2k1k2x

2
2 + ak2x1 + 2ak2x2

+ 2bk1x1 + bk1x1 − c1k2x2 − c2k1x1 + ab − c1c2,

tr JVW(  � − 2k1x1 − k1x2 − k2x1 − 2k2x2 − a − b.

(23)

,e conditions that ensure stability of the equilibrium
points of the Vidale–Wolfe model are shown in Table 3. ,e
expressions for the determinants and traces of the Jacobian
matrix of the Vidale–Wolfe model, subject to different
choices of affine advertising, are displayed in Table 4.

3.2. Decentralized Affine Advertising Policy Applied to the
Extended Lanchester Model. Similar to the previous sec-
tion, we consider the Assumption 2 for the affine ad-
vertising policy of the firms. ,erefore, based on
equations (17) and (18) we have u1 � k1x1 + c1 and
u2 � k2x2 + c2.

Substituting the advertising policies in model (12) yields,

_x1 � − k1x
2
1 − k2x1x2 − c1x1 − c2x1 + k1x1 − λx1 + c1,

_x2 � − k1x1x2 − k2x
2
2 − c1x2 − c2x2 + k2x2 − λx2 + c2.

(24)

Rearranging terms,

_x1 � − k1x
2
1 − k2x1x2 − wx1 + c1,

_x2 � − k2x
2
2 − k1x1x2 − zx2 + c2,

(25)

where
w � c1 + c2 + λ − k1( ,

z � c1 + c2 + λ − k2( .
(26)

Table 5 shows the equations of dynamics and the equi-
librium points of the extended Lanchester model for special
cases of the affine policy. Note that, similar to theVidale–Wolfe
model, particular cases of advertising policy parameters given
in Table 2 are considered in order to establish analytical so-
lutions for equilibrium points. For policy 4, k1 � c1 � c2 � c.
For policy 5, k1 � c1 � k and for policy 6, k1 � k2 � k and
c1 � c2 � c. In addition, in Table 5, for policy 4, p � 3c + λ + g

and q � 3c + λ − g, where g � (5c2 + 2cλ + λ2)1/2, for pol-
icy 5, f �

�������
λ2 + 4k2


, and finally for policy 6, f ������������������

e2 + 2ec + c2 + 8ck/4
√

, where e � c + λ − k.
,e Jacobian matrix for model (25) with respect to x1

and x2 is given by

JL �
− 2k1x1 − k2x2 − w − k2x1

− k1x2 − 2k2x2 − k1x1 − z
 , (27)

when the determinant and trace for the Jacobian matrix are

det JL(  � 2k
2
1x

2
1 + 4k1k2x1x2 + 2k

2
2x

2
2 + k1wx1 + 2k1zx1

+ 2k2wx2 + k2zx2 + zw,

tr JL(  � − 3k1x1 − 3k2x2 − z − w.

(28)

Table 1: Dynamic equations and equilibrium points for Vidale–Wolfe model (8) under different feedback advertising policies.

Policy Control parameters Vidale–Wolfe model under feedback Equilibrium points

P1
u1 � c1 _x1 � − c1x1 − c1x2 − λx1 + c1 (c1/c1 + c2 + λ, c2/c1 + c2 + λ)

u2 � c2 _x2 � − c2x1 − c2x2 − λx2 + c2

P2
u1 � k1x1 _x1 � − k1x

2
1 − k1x1x2 + k1x1 − λx1 (0, c2/c2 + λ)

u2 � c2 _x2 � − c2x1 − c2x2 − λx2 + c2 (k1 − c2 − λ/k1, c2/k1)

P3

u1 � k1x1 _x1 � − k1x
2
1 − k1x1x2 + k1x1 − λx1 (0, 0)

u2 � k2x2 _x2 � − k2x
2
2 − k2x1x2 + k2x2 − λx2 (0, k2 − λ/k2)

(k1 − λ/k1, 0)

P∗3
u1 � kx1 _x1 � − kx2

1 − kx1x2 + kx1 − λx1 (− kx2 − k + λ/k, x2)

u2 � kx2 _x2 � − kx2
2 − kx1x2 + kx2 − λx2 (0, 0)

P4
u1 � k1x1 + c1 _x1 � − k1x

2
1 − k1x1x2 + k1x1 − λx1 (2c − p/2c, p/2(c + λ))

u2 � c2 _x2 � − c2x1 − c2x2 − λx2 + c2 (2c − q/2c, q/2(c + λ))

P5

u1 � k1x1 + c1 _x1 � − k1x
2
1 − k2x1x2 − c1x1 + k1x1 − λx1 + c1 (− λ − f/2k, 0)

u2 � k2x2 _x2 � − k1x1x2 − k2x
2
2 − c1x2 + k2x2 − λx2 (− λ + f/2k, 0)

(k/k2 − k, 2kk2 − kλ + k2λ − k2
2/kk2 − k22)

P6
u1 � k1x1 + c1 _x1 � − k1x

2
1 − k1x1x2 + k1x1 − λx1 + c1 − c1x1 − c1x2 (− e − c − 2f/4k, − e − c − 2f/4k)

u2 � k2x2 + c2 _x2 � − k2x
2
2 − k2x1x2 + k2x2 − λx2 + c2 − c2x1 − c2x2 (− e − c + 2f/4k, − e − c + 2f/4k)

Table 2: Advertising policy parameters and expressions of variables
in special cases of affine policy.

Policy Parameters Expressions of variables

P4
k1 � c1 � c2 � c p � 3c + λ + g, q � 3c + λ − g

g �
������������
5c2 + 2cλ + λ2



P5 k1 � c1 � k f �
�������
λ2 + 4k2



P6 k1 � k2 � k f �
�����������������
e2 + 2ec + c2 + 8kc/4

√

c1 � c2 � c e � c + λ − k
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,e conditions that ensure stability of the equilib-
rium points of the extended Lanchester model are shown
in Table 3. Conditions for the existence of equilibria for
both models are given in Table 6. Expressions for the
determinants and traces of the extended Lanchester
model for special cases of affine policy are displayed in
Table 7.

From the results presented in the Tables 1, 3, and 5, we
can formulate the main result.

Theorem 1. Be extended Lanchester model (12) and the
Vidale–Wolfe model (8), both under decentralized affine
advertising policy ui � kixi + ci, i � 1, 2, are equivalent for
the same choices of affine policy parameters (ki, ci) in the

Table 4: Expressions for determinants and traces in Vidale–Wolfe model (8) under special cases of affine feedback advertising policy.

Policy Determinant for Vidale–Wolfe model Trace for Vidale–Wolfe model
P1 λ(c1 + c2 + λ) − c1 − c2 − 2λ

P2
c2k1x1 + c2k1x2 + 2λk1x1 + λk1x2 + c2λ − c2k1 + λ2 −

λk1
− 2k1x1 − k1x2 − c2 − 2λ + k1

P3

2k1k2x
2
1 + 4k1k2x1x2 + 2k1k2x

2
2 + 2λk1x1 + λk1x2 +

λk2x1 + 2λk2x2 − 3k1k2x1 − 3k1k2x2 + λ2 − λk1 −

λk2 + k1k2

− 2k1x1 − k1x2 − k2x1 − 2k2x2 − 2λ + k1 + k2

P4 c2x1 + c2x2 + 2cλx1 + cλx2 − c2 + cλ + λ2 − 2cx1 − cx2 − c − 2λ

P5
2kk2x

2
1 + 4kk2x1x2 + 2kk2x

2
2 + 2λkx1 + λkx2 +

λk2x1 + +2λk2x2 − 2kk2x1 − 2kk2x2 + λ2 − λk2
− 2kx1 − kx2 − k2x1 − 2k2x2 − 2λ + k2

P6 (kx1 + kx2 + λ − k)(2kx1 + 2kx2 + 2c + λ − k) − 3kx1 − 3kx2 − 2c − 2λ + 2k

Table 5: Dynamic equations and equilibrium points for extended Lanchester model (12) under different feedback advertising policies.

Policy Control parameters Extended Lanchester model under feedback Equilibrium points

P1
u1 � c1 _x1 � − c1x1 − c2x1 − λx1 + c1 (c1/c1 + c2 + λ, c2/c1 + c2 + λ)

u2 � c2 _x2 � − c1x2 − c2x2 − λx2 + c2

P2
u1 � k1x1 _x1 � − k1x

2
1 − c2x1 + k1x1 − λx1 (0, c2/c2 + λ)

u2 � c2 _x2 � − k1x1x2 − c2x2 − λx2 + c2 (k1 − c2 − λ/k1, c2/k1)

P3

u1 � k1x1 _x1 � − k1x
2
1 − k2x1x2 + k1x1 − λx1 (0, 0)

u2 � k2x2 _x2 � − k2x
2
2 − k1x1x2 + k2x2 − λx2 (0, k2 − λ/k2)

(k1 − λ/k1, 0)

P∗3
u1 � kx1 _x1 � − kx2

1 − kx1x2 + kx1 − λx1 (− kx2 − k + λ/k, x2)

u2 � kx2 _x2 � − kx2
2 − kx1x2 + kx2 − λx2 (0, 0)

P4
u1 � k1x1 + c1 _x1 � − k1x

2
1 − c1x1 − c2x1 + k1x1 − λx1 + c1 (2c − p/2c, p/2(c + λ))

u2 � c2 _x2 � − k1x1x2 − c1x2 − c2x2 − λ (2c − q/2c, q/2(c + λ))

P5

u1 � k1x1 + c1 _x1 � − k1x
2
1 − k2x1x2 − c1x1 + k1x1 − λx1 + c1 (− λ − f/2k, 0)

u2 � k2x2 _x2 � − k1x1x2 − k2x
2
2 − c1x2 + k2x2 − λx2 (− λ + f/2k, 0)

(k/k2 − k, 2kk2 − kλ + k2λ − k2
2/kk2 − k22)

P6
u1 � k1x1 + c1 _x1 � − k1x

2
1 − k2x1x2 − c1x1 − c2x1 + k1x1 − λx1 + c1 (− e − c − 2f/4k, − e − c − 2f/4k)

u2 � k2x2 + c2 _x2 � − k1x1x2 − k2x
2
2 − c1x2 − c2x2 + k2x2 − λx2 + c2 (− e − c + 2f/4k, − e − c + 2f/4k)

Table 3: Conditions on the advertising policy parameters to guarantee stability of the equilibrium points. ,e expression “None” indicates
that there is no restriction on the values of advertising policies parameters to guarantee the condition of stability of the equilibria of both
models (cf. ,eorem 1).

Policy Equilibrium points Stability conditions for VW Stability conditions for extended Lanchester
P1 (c1/c1 + c2 + λ, c2/c1 + c2 + λ) None None

P2
(0, c2/c2 + λ) k1 < c2 + λ k1 < c2 + λ

(k1 − c2 − λ/k1, c2/k1) k1 > c2 + λ k1 > c2 + λ

P3
(0, k2 − λ/k2) k1 < k2 k1 < k2
(k1 − λ/k1, 0) k2 < k1 k2 < k1

P∗3 (− kx2 − k + λ/k, x2) λ< k λ< k

P4 (2c − q/2c, q/2(c + λ)) None None

P5
(− λ + f/2k, 0) k> k2(λ − f)/2(λ + f − k2) k> 2k2 − f − λ/2

(k/k2 − k, 2kk2 − kλ + k2λ − k22/kk2 − k22) k2(λ − k2)/λ − 2k2 < k< k2
2/λ k2(λ − k2)/λ − 2k2 < k< 2k2 − λ/2

P6 (− e − c + 2f/4k, − e − c + 2f/4k) k< 2f + λ − 2c k< 2f + λ − 2c
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Table 6: Equilibrium points and conditions of the advertising policy parameters for existence of the equilibrium points under special cases
of affine policy, for both the Vidale–Wolfe and extended Lanchester models (cf. ,eorem 1).

Policy Control parameters Equilibrium points Conditions of existence
P1 u1 � c1, u2 � c2 (c1/c1 + c2 + λ, c2/c1 + c2 + λ) Always exists

P2
u1 � k1x1, u2 � c2 (0, c2/c2 + λ) Always exists

(k1 − c2 − λ/k1, c2/k1) k1 > c2 + λ

P3

u1 � k1x1, u2 � k2x2 (0, 0) Always exists

(0, k2 − λ/k2) k2 > λ
(k1 − λ/k1, 0) k1 > λ

P4 u1 � k1x1 + c1, u2 � c2 (2c − p/2c, p/2(c + λ)) Negative⟹Never exists

(2c − q/2c, q/2(c + λ)) c + λ<g< 3c + λ

P5

u1 � k1x1 + c1, u2 � k2x2 (− λ − f/2k, 0) Negative⟹Never exists

(− λ + f/2k, 0) λ<f< 2k + λ
(k/k2 − k, 2kk2 − kλ + k2λ − k2

2/kk2 − k22) k< k2λ/λ − k2 ∧ k2< λ/2

P6
u1 � k1x1 + c1, u2 � k2x2 + c2 (− e − c − 2f/4k, − e − c − 2f/4k) Negative⇒Never exists

(− e − c + 2f/4k, − e − c + 2f/4k) 2c + λ − k/2<f< 3k + λ + 2c/2

Table 7: Expressions for determinants and traces in extended Lanchester model (12) under special cases of affine feedback advertising
policy.

Policy Determinant for extended Lanchester model Trace for extended Lanchester model
P1 (c1 + c2 + λ)2 − 2c1 − 2c2 − 2λ
P2 (k1x1 + c2 + λ)(2k1x1 + c2 + λ − k1) − 3k1x1 − 2c2 − 2λ + k1

P3

2k2
1x

2
1 + 4k1k2x1x2 + 2k2

1x
2
2 + 3λk1x1 + 3λk2x2 −

k21x1 − 2k1k2x1 − 2k1k2x2 − k22x2 + λ2 − λk1 − λk2 +

k1k2

− 3k1x1 − 3k2x2 − 2λ + k1 + k2

P4 (2cx1 + c + λ)(cx1 + 2c + λ) − 3cx1 − 3c − 2λ

P5
2k2x2

1 + 4kk2x1x2 + 2k2
2x

2
2 + 3λkx1 + 3λk2x2 +

2k2x1 − 2kk2x1 + kk2x2 − k22x2 + λ2 + λk − λk2
− 3kx1 − 3k2x2 − 2λ − k + k2

P6 (2kx1 + 2kx2 + 2c + λ − k)(kx1 + kx2 + 2c + λ − k) − 3kx1 − 3kx2 − 4c − 2λ + 2k
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Figure 2: Evolution of market shares of firms x1 and x2 under affine feedback advertising policies P1(ui � ci) with parameters
c1 � 0.2, 0.4, 0.6, for firm 1 and c2 � 0.1 for firm 2 for (a) classical Lanchester model for x1(0) � 0.2 and (b) extended Lanchester model with
undecided users for x1(0) � 0.2, x2(0) � 0.1 and λ � 0.2. Note that in the classical Lanchester model the market shares are always on the line
x1 + x2 � 1.
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sense that both models have the same equilibrium points
with the same stability properties (even though stability
conditions, eigenvalues, and dynamics differ).

Remark. Note that ,eorem 1 does not assert that the
dynamics are identical but only that the equilibria and their
stability properties are the same. However, for the special
choice ui � kixi, i � 1, 2, the dynamics of the extended
Lanchester model (12) and the Vidale–Wolfe model (7) are
also identical.

Remark. We conjecture that,eorem 1 can be strengthened
to assert that the flows of the Vidale–Wolfe and extended
Lanchester models under decentralized affine feedback are,
in fact, topologically equivalent [35].

4. Numerical Simulations

In this section, we present some numerical simulations to
verify the results of the previous section. Firstly, Figure 2
allows the comparison of the classical Lanchester model with
the extended Lanchester model, thus Figure 2(a) for the
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Figure 3: Phase plane of the market shares of firms x1 and x2 under affine feedback advertising policies P1(ui � ci) with parameters
c1 � 0.35 for firm 1 and c2 � 0.25 for firm 2 for (a) extended Lanchester model with λ � 0 and (b) extended Lanchester model with λ � 0.2.
Note the change in the line containing the equilibrium points. In this case, the new equation of line is x1 + x2 � 0.75.
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Figure 4: Evolution of market shares of firms x1 and x2 under affine advertising policies for (a) Vidale–Wolfe model expressed in equation
(20) and (b) extended Lanchester model expressed in equation (25).
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classical Lanchester model shows that the equilibrium points
are always on the saturated market line x1 + x2 � 1, while
Figure 2(b) for the extended model shows the influence of
considering an undecided population, namely, that the
equilibrium points are no longer on the line x1 + x2 � 1,
since x3 may be positive at equilibrium.

Figure 3 shows the dynamics of the extended Lanchester
model for different values of λ. Figure 3(a) (resp. Figure 3(b))
shows simulation of the extended Lanchester model for λ �

0 (resp. λ � 0.2), where the equilibrium point lies on the
saturated market line x1 + x2 � 1 for λ � 0, shifting away
from the saturated market line for positive λ.

Figure 4 shows the evolution of market shares of the firms
under increase in advertising policy parameters for u1 and u2.
Figure 4(a) shows the evolution of market shares for the
Vidale–Wolfe model, while Figure 4(b) shows the evolution of
market shares for the extended Lanchester model, for three
different choices of affine advertising policy u1. Note that the
equilibrium points in both models under the same advertising
policy are identical. ,e difference in the dynamics of models
can be seen in the evolution of market share of firm 2 when the
increment in advertising u1 is greater. Next, Figures 5(a) and
5(b) show phase plane portraits for models (20) and (25) with
the following choices of advertising policy parameters
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Figure 5: Phase plane of the market shares of firms x1 and x2 under affine advertising policies P6(ui � kixi + ci) with parameters k1 �

0.3 and c1 � 0.35 for firm 1 and k2 � 0.2 and c2 � 0.25 for firm 2 for (a) Vidale–Wolfe model expressed in equation (20) and (b) extended
Lanchester model expressed in equation (25). It is observed that the models have the same equilibrium point but different dynamics.
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Figure 6: Phase plane of the market shares of firms x1 and x2 under affine advertising policies P3(ui � kixi) with parameters k1 � 0.5 for
firm 1 and k2 � 0.5 for firm 2 for (a) Vidale–Wolfe model expressed in equation (20) and (b) extended Lanchester model expressed in
equation (25).
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k1 � 0.3, c1 � 0.35 and k2 � 0.2, c2 � 0.25. In accordance
with ,eorem 1, it can be observed that the models of
Vidale–Wolfe and extended Lanchester have the same
equilibrium points (x1 � 0.49, x2 � 0.31) although they
have different trajectories.

Finally, Figure 6 shows the phase plane portrait for
the special case when u1 � k1x1 and u2 � k2x2 with
k1 � k2, for which the models have an entire line of fixed
points, i.e., an equilibrium set, which attracts all tra-
jectories to itself.

Remark. ,e values of λ found in the literature related to
empirical data [3, 7, 10, 36] are used for numerical
simulations.

5. Concluding Remarks

,is paper argues for the explicit introduction of a third class
of undecided clients into Deal’s version of the classical
Vidale–Wolfe model and also into an extension of Lan-
chester’s model, which includes both decay terms and the
“spillover” effect of advertising on clients of the rival firm as
well as on the undecided clients. ,e proposed modification
of the Lanchester dynamics extends the classical model from
the saturated market to the unsaturated market. A complete
analysis of the location and stability properties of the
equilibria of these two models under a general class of
decentralized affine feedback advertising policies leads to the
surprising conclusion that, even though the models are not
equivalent, as shown by the qualitatively different trajec-
tories in the phase plane, under identical advertising policies,
the final outcome in terms of equilibriummarket share is the
same for both models. ,is is an indication of the fact that
although Little’s algebraic manipulation showed that the
Lanchester model for two firms in a saturated market
subsumes the single firm Vidale–Wolfe model, in the du-
opoly case, there is a deeper similarity between the two
models. Further research will elucidate whether this simi-
larity persists under the application of advertising policies
derived from optimal control theory.
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