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*is paper concerns robust stabilization of nonlinear fractional order interconnected systems. Based on uncertain fractional order
Takagi–Sugeno fuzzy model and the fractional order extension of lyapunov direct method, a parallel distributed compensate
controller is designed to asymptotically stabilize the fractional order interconnected systems. *en, a sufficient condition is given
in the format of linear matrix inequalities. Simulation example is given to validate the effectiveness of the approach.

1. Introduction

Fractional order systems have attracted more and more
attention due to its demonstrated application in many fields
([1–4]). Recently, a considerable literature has grown up
around the theme of fractional order systems. For example,
the problem of state estimation and synchronization for
fractional order neural networks was discussed in [5–7].
Control problem for fractional order multiagent systems
were introduced in [8–10]. Dynamic properties, control, and
synchronization of fractional order chaotic systems were
discussed in [11–14].

Large-scale interconnected system consists of a number
of independent subsystems connected by some intercon-
nections. Because interconnected systems are efficiently
applied to practical systems such as economic systems,
computer communication networks, and transportation
systems, a considerable amount of literature has been
published ([15–17]). Much of the previous research has
focused on integer order. In 2013, a class of fractional order
linear interconnected systems’ stabilization problem was
considered [18]. *en, the problem of robust resilient
controllers synthesis for uncertain fractional order linear
interconnected system was studied, and the state feedback
nonfragile controller was designed under the additive and
multiplicative gain perturbations [19]. Positive reduced-

order functional observers for positive fractional order
interconnected time-delay systems were designed by [20].
*e problem of robust stabilization for positive fractional
order interconnected systems with heterogeneous time-
varying delays was proposed by [21]. *e robust decen-
tralized fault-tolerant resilient control for fractional order
large-scale interconnected uncertain systemwas investigated
in [22]. *ere are relatively few historical studies in the area
of fractional order nonlinear interconnected systems.

Takagi–Sugeno (T-S) fuzzy model is one of the most
common effective methods for approximating complex
nonlinear systems. Over the past several years, there has
been rapid development of interconnected systems by using
T-S fuzzy model. For example, fuzzy large-scale inter-
connected systems were discussed in [23–25] and [26]. T-S
fuzzy controllers for nonlinear multiple time-delay inter-
connected systems were studied in [27–29]. *e finite-time
stabilization problem for type-2 T-S interconnected non-
linear systems was investigated in [30, 31]. H∞ control
design for fuzzy discrete-time interconnected systems based
on T-S fuzzy model was studied in [32–34]. Stability and
stabilization problem for T-S Interconnected Fuzzy Systems
by using different Lyapunov functions with slack variables
are considered in [23]. *e LMI stability conditions of
fractional order uncertain T-S system were introduced in
[35, 36]. In this paper, we study the stability problem of
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nonlinear fractional order interconnected systems based on
T-S fuzzy model and the fractional order extension of
Lyapunov direct method.

*is paper is organized as follows. Some preliminaries
and the problem formulation are introduced first. *e main
results on the sufficient conditions of stabilization of non-
linear fractional order interconnected system are derived in
Section 3. Section 4 interconnected fractional order chaotic
systems to illustrate the effectiveness of the proposed results.
Finally, the conclusions are drawn in Section 5.

Notations. *e transpose of a matrix A is denoted by AT.
Sym A{ } is used to denote the expression AT + A and ∗ will
be used in some expression to indicate a symmetric, i.e.,

X Y

∗ Z
  �

X Y

YT Z
 .

2. Preliminaries and Problem Formulation

Consider a fractional order nonlinear interconnected system
composed of J fractional order subsystems Nj, j � 1, . . . , J.
*e jth fractional order subsystem Nj is described as
follows:

D
α
xj(t) � fj xj(t), uj(t)  + Δfj xj(t), uj(t) 

+ 

J

n�1,n≠j
bnj xn(t)( ,

(1)

where 0< α≤ 1 is the fractional commensurate order, fj(·)

is the nonlinear vector-valued function, Δfj(·) is the system
uncertainties, bnj is the nonlinear interconnection between
the nth and jth subsystems, xj(t) is the state vector, and
uj(t) is the input vector of the jth fractional order sub-
system, respectively. *e operator Dα denotes C

t0
Dα

t .
A set of fractional order T-S fuzzy model is employed

here to deal with the control design problem of the fractional
order nonlinear interconnected systems N. *e ith rule of
the fuzzy model for the fractional order nonlinear inter-
connected subsystem Nj is proposed as follows:

Plant Rule i:

If z1j(t) is Mi1j and . . . and zpj(t) is Mipj

*en
Dαxj(t) � (Aij + ΔAij)xj(t) + 

J
n�1,n≠j

Ainjxn(t) +

(Bij + ΔBij)uj(t)

where i � 1, . . . , rj, rj is the number of IF-THEN rules,
Mihj(h � 1, 2, . . . , p) are the fuzzy sets, and
z1j(t), . . . , zpj(t) are the premise variables. Aij, Ainj, and Bij

are constant matrices with appropriate dimension, while
ΔAij andΔBij are real-valued functionmatrices representing
the time-varying parameter uncertainties that have the
following form:

ΔAij ΔBij  � DAijFAij(t)EAij DBijFBij(t)EBij , (2)

where DAij, DBij, EAij, EBij are known constant matrices,
and FAij(t), FBij(t), are unknown matrices with Lebesgue
measurable elements satisfying FT

Aij(t)FAij(t)≤ I,
FT

Bij(t)FBij(t)≤ I. *e final state of the fractional order fuzzy
model is inferred as follows:

D
α
xj(t) � 

rj

i�1
hij(t) Aij + ΔAij xj(t) + 

J

n�1,n≠j

Ainjxn(t)

+ Bij + ΔBij uj(t),

(3)

where hij(t) � wij(t)/
rj

i�1 wij(t), wij(t) � 
p
q�1 Miqj

(zqj(t)), Miqj(zqj(t)) is the grade of the membership of
zqj(t) in Miqj. Notice the facts wij(t)≥ 0 for i � 1, 2, . . . , rj

and 
rj

i�1 wij(t)> 0 for all t. *erefore, hij(t)≥ 0 for
i � 1, 2, . . . , rj and 

rj

i�1 hij(t) � 1.
According to the decentralized fuzzy control scheme, a

set of fuzzy controllers is synthesized via the parallel dis-
tributed compensation (PDC) to deal with the stabilization
control for the fractional order nonlinear interconnected
systems N. *e j th model-based fuzzy controller is

Control rule i:

IF z1j(t) is Mi1j and . . . and zpj(t) is Mipj,
THEN uj(t) � Kijxj(t).

where i � 1, 2, . . . , rj.
Hence, the final output of the fuzzy controller has the

form

uj(t) � 

rj

i�1
hij(t)Kijxj(t), i � 1, 2, . . . , rj. (4)

Substituting (4) into equation (3) yields the jth closed-
loop subsystem as follows:

D
α
xj(t) � 

rj

i�1


rj

l�1
hij(t)hlj(t)

· Aij + ΔAij  + Bij + ΔBij Klj xj(t)
⎧⎨

⎩

+ 

J

n�1,n≠j

Ainjxn(t)
⎫⎬

⎭.

(5)

Lemma 1 (see [37]). Let x � 0 be an equilibrium point for
the nonautonomous fractional order system Dαx(t) �

f(t, x). Let us assume that there exist a continuous Lyapunov
function V(x(t), t) and a scalar class-K function c1(·) such
that ∀x≠ 0

c1(‖x(t)‖)≤V(x(t), t),

D
α
V(x(t), t)≤ 0, with α ∈ (0, 1],

(6)

then the origin of the system is Lyapunov stable.

Lemma 2 (see [37]). Let x(t) ∈ Rn be a vector of differen-
tiable functions.'en, for any time instant t≥ t0, the following
relationship holds:

1
2
D

α
x

T
(t)Px(t)≤ x

T
(t)PD

α
x(t), ∀α ∈ (0, 1], ∀t≥ t0,

(7)
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where P ∈ Rn×n is a constant, square, symmetric, and positive
matrix.

Lemma 3 (see [38, 39]). For any matrices X and Y with
appropriate dimensions, we have XTY + YTX≤ σXTX+

σ − 1YTY for any σ > 0.

Lemma 4 (see [40]). Given matrices T, Π, N(t), and M of
appropriate dimensions and with M symmetrical, then M +

TN(t)Π + ΠTNT(t)TT < 0 holds for any N(t) satisfying
NT(t)N(t) ≤ I if and only if there exists ε> 0, such that
M + εTTT + ε− 1ΠTΠ < 0.

Lemma 5 (Schur Complement), see [41]). For a given
matrix S � ST, the following assertions are equivalent:

(1) S �
S11 S12

S21 S22
 < 0;

(2) S11 < 0, S22 − S
T
12S

− 1
11S12 < 0;

(3) S22 < 0, S11 − S12S
− 1
22S

T
12 < 0.

(8)

3. Main Results

In this section, the stability of the fractional order nonlinear
interconnected system N is studied. A sufficient condition is
established for system (5). *en the following theorem
presents the main result.

Theorem 1. 'e closed-loop fractional order nonlinear
interconnected system (5) is asymptotically stable if there are
symmetric positive definite matrices Qj(j � 1, . . . , J), ma-
trices Wij(i � 1, 2, . . . , rj), and real scalar constants εij, ηij,
δij, μlj, ρlj and μ such that

Λij QjE
T
Aij WT

ijE
T
Bij Qj

∗ − εijI 0 0

∗ ∗ − ηijI 0

∗ ∗ ∗ − μ(J − 1)− 1I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

j � 1, . . . , J, i � 1, . . . , rj,

(9)

where

Λij � Sym AijQj + BijWij  + εijDAijD
T
Aij + ηijDBijD

T
Bij

+ 

J

n�1
μAinj

A
T

inj,

(10)

Λilj QjE
T
Aij WT

ljE
T
Bij QjE

T
Alj WT

ijE
T
Blj Qj

∗ − cijI 0 0 0 0
∗ ∗ − δijI 0 0 0
∗ ∗ ∗ − μljI 0 0
∗ ∗ ∗ ∗ − ρljI 0

∗ ∗ ∗ ∗ ∗ − μ(J − 1)− 1I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

1≤ i< l≤ rj,

(11)

where

Λilj �
1
2
Sym AijQj + BijWlj + AljQj + BljWij  + cijDAijD

T
Aij

+ δijDBijD
T
Bij + μljDAljD

T
Alj + ρljDBljD

T
Blj + 

J

n�1
μAinj

A
T

inj.

(12)

The asymptotically stabilizing state feedback gain matrix
is Kij � WijQ

− 1
j .

Proof. Let the Lyapunov function for the fractional order
interconnected system N be defined as

V(t) � 

J

j�1
vj(t) � 

J

j�1
2x

T
j (t)Pjxj(t). (13)

Pj is real symmetric positive definite matrix. It follows
from Lemma 1, the closed-loop fractional order nonlinear
interconnected system (5) is asymptotically stable if
DαV(x(t), t)≤ 0. Note that

D
α
V(t) � 

J

j�1
D

α
vj(t). (14)

Applying Lemma 2 to Dαvj(t), it can be obtained that

D
α
V(t)≤ 

J

j�1
D

α
xj(t) 

T
Pjxj(t) + x

T
j (t)PjD

α
xj(t) .

(15)
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Right side of inequality (15) can be represented by



J

j�1

⎧⎨

⎩x
T
j (t)Pj

rj

i�1


rj

l�1
hij(t)hlj(t) Aij + ΔAij  + Bij + ΔBij Klj xj(t)

+ 

J

n�1,n≠j

Ainjxn(t)⎤⎥⎥⎦ + 

rj

i�1


rj

l�1
hij(t)hlj(t)⎡⎣ ⎤⎦ Aij + ΔAij  + Bij + ΔBij  Kljxj(t)

+ 

J

n�1,n≠j

Ainjxn(t)⎤⎥⎥⎦

T

Pjxj

⎫⎪⎬

⎪⎭

� 

J

j�1


rj

i�1


rj

l�1
hij(t)hlj(t) x

T
j (t) Pj Aij + ΔAij  + Bij + ΔBij Klj 

+ Aij + ΔAij  + Bij + ΔBij Klj 
T
Pjxj(t)

+ 

J

j�1


rj

i�1


rj

l�1


J

n�1,n≠j
hij(t)hlj(t) x

T
j (t)Pj

Ainjxn + x
T
n

A
T

injPjxj .

(16)

By applying Lemma 3, it can be obtained

D
α
V(t)≤ 

J

j�1


rj

i�1


rj

l�1
hij(t)hlj(t) x

T
j (t) Sym Pj Aij + ΔAij  + Bij +ΔBijKljxj(t)

+ 

J

j�1


rj

i�1


J

n�1
hij(t) μ

J − 1
J

 x
T
j (t)xj(t) + μ− 1

x
T
j (t)Pj

Ainj
A

T

injPjxj −
1
J

 x
T
j Pj

Aijj
A

T

ijjPjxj .

(17)

In view of the matrix Aijj is equal to zero and


rj

l�1 hlj � 1, we have



J

j�1


rj

i�1


rj

l�1
hij(t)hlj(t)x

T
j (t)⎡⎣Sym Pj Aij + ΔAij  + Bij + ΔBij Klj   +



J

n�1
μ− 1

Pj
Ainj

A
T

injPj + μ(J − 1)I⎤⎦xj(t)

� 

J

j�1


rj

i�1
h
2
ij(t)x

T
j (t)⎡⎣Sym Pj Aij + ΔAij  + Bij + ΔBij Kij   +



J

n�1
μ− 1

Pj
Ainj

A
T

injPj + μ(J − 1)I⎤⎦xj(t) + 2

J

j�1


rj

i<l
hij(t)hlj(t)x

T
j (t)

1
2



· Sym Pj Aij + ΔAij  + Bij + ΔBij Klj + Alj + ΔAlj  + Blj + ΔBlj Kij  

+ 

J

n�1
μ− 1

Pj
Ainj

A
T

injPj + μ(J − 1)I⎤⎦xj(t)< 0.

(18)
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If it is possible to assume each sum of (18) to be negative
definite, respectively, then the fractional order nonlinear
interconnected system is asymptotically stable.

First, assume that the first sum of the last equation in (18)
is negative definite:

Sym Pj Aij + ΔAij  + Bij + ΔBij Kij  

+ 

J

n�1
μ− 1

Pj
Ainj

A
T

injPj + μ(J − 1)I< 0.
(19)

Equation (19) can be represented by

Sym Pj Aij + BijKij   + Sym PjDAijFAij(t)EAij 

+ Sym PjDBijFBij(t)EBijKij  + 

J

n�1
μ− 1

Pj
Ainj

A
T

injPj

+ μ(J − 1)I< 0.

(20)

By applying Lemma 3 to (20), one obtains (20) holds if
and only if there exist εij and ηij such that

Sym Pj Aij + BijKij   + εijPjDAijD
T
AijPj + ε− 1

ij E
T
AijEAij

+ ηijPjDBijD
T
BijPj + η− 1

ij EBijKij 
T

EBijKij

+ 

J

n�1
μ− 1

Pj
Ainj

A
T

injPj + μ(J − 1)I< 0.

(21)

By the Schur complement, we can get

Ωij ET
Aij EBijKij 

T
I

∗ − εijI 0 0

∗ ∗ − ηijI 0

∗ ∗ ∗ − μ− 1(J − 1)− 1I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

j � 1, . . . , J, i � 1, . . . , rj,

(22)

where

Ωij � Sym Pj Aij + BijKij   + εijPjDAijD
T
AijPj

+ ηijPjDBijD
T
BijPj

+ 

J

n�1
μ− 1

Pj
Ainj

A
T

injPj.

(23)

Define transformation matrix as diag P− 1
j I I I  and

take a congruence transformation to (22); this yields

P− 1
j ΩijP

− 1
j P− 1

j ET
Aij P− 1

j EBijKij 
T

P− 1
j I

∗ − εijI 0 0

∗ ∗ − ηijI 0

∗ ∗ ∗ − μ− 1(J − 1)− 1I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.

(24)

Denoting Qj � P− 1
j , Wij � KijP

− 1
j , and μ � μ− 1, we have

Λij QjE
T
Aij WT

ijE
T
Bij Qj

∗ − εijI 0 0

∗ ∗ − ηijI 0

∗ ∗ ∗ − μ(J − 1)− 1I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

j � 1, . . . , J, i � 1, . . . , rj,

(25)

where

Λij � Sym AijQj + BijWij  + εijDAijD
T
Aij + ηijDBijD

T
Bij

+ 

J

n�1
μAinj

A
T

inj.

(26)

*e second LMI (11) can be established through a similar
procedure. Assume that the second sum of the last equation
in (18) is negative definite:

1
2
Sym Pj Aij + ΔAij  + Bij + ΔBij Klj + Alj + ΔAlj 

+ Blj + ΔBlj Kij

+ 

J

n�1
μ− 1

Pj
Ainj

A
T

injPj + μ(J − 1)I< 0.

(27)

Equation (27) can be represented by

1
2
Sym Pj Aij + BijKlj + Alj + BljKij  

+ Sym PjDAij

FAij(t)

2
EAij 

+ Sym PjDBij

FBij(t)

2
EBijKlj 

+ Sym PjDAlj

FAlj(t)

2
EAlj 

+ Sym PjDBlj

FBlj(t)

2
EBljKij  + 

J

n�1
μ− 1

Pj
Ainj

A
T

injPj

+ μ(J − 1)I< 0.

(28)

By applying Lemma 3 to (28), one obtains (28) holds if
and only if there exist cij, δij, ρij and μij, such that
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1
2
Sym Pj Aij + BijKlj + Alj + BljKij   + cijPjDAijD

T
AijPj + c

− 1
ij E

T
AijEAij

+ δijPjDBijD
T
BijPj + δ− 1

ij EBijKlj 
T
EBijKlj + μljPjDAljD

T
AljPj

+ μ− 1
lj E

T
AljEAlj + ρljPjDBljD

T
BljPj + ρ− 1

lj EBljKij 
T
EBljKij

+ 

J

n�1
μ− 1

Pj
Ainj

A
T

injPj + μ(J − 1)I< 0.

(29)

By the Schur complement, we can get

Ωilj ET
Aij EBijKlj 

T
ET

Alj EBljKij 
T

I

∗ − cijI 0 0 0 0

∗ ∗ − δijI 0 0 0

∗ ∗ ∗ − μljI 0 0

∗ ∗ ∗ ∗ − ρljI 0

∗ ∗ ∗ ∗ ∗ − μ− 1(J − 1)− 1I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (30)

where

Ωilj �
1
2
Sym Pj Aij + BijKlj + Alj + BljKij   + cijPjDAijD

T
AijPj

+ δijPjDBijD
T
BijPj + μljPjDAljD

T
AljPj + ρljPjDBljD

T
BljPj

+ 

J

n�1
μ− 1

Pj
Ainj

A
T

injPj.

(31)

Define transformation matrix as diag P− 1
j I I I I I 

and take a congruence transformation to (30); this yields

P− 1
j ΩiljP

− 1
j P− 1

j ET
Aij P− 1

j EBijKlj 
T

P− 1
j ET

Alj P− 1
j EBljKij 

T
P− 1

j I

∗ − cijI 0 0 0 0

∗ ∗ − δijI 0 0 0

∗ ∗ ∗ − μljI 0 0

∗ ∗ ∗ ∗ − ρljI 0

∗ ∗ ∗ ∗ ∗ − μ(J − 1)− 1I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (32)
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we have
Λilj QjE

T
Aij WT

ljE
T
Bij QjE

T
Alj WT

ijE
T
Blj Qj

∗ − cijI 0 0 0 0

∗ ∗ − δijI 0 0 0

∗ ∗ ∗ − μljI 0 0

∗ ∗ ∗ ∗ − ρljI 0

∗ ∗ ∗ ∗ ∗ − μ(J − 1)− 1I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

1≤ i< l≤ rj,

(33)
where
Λilj �

1
2
Sym AijQj + BijWlj + AljQj + BljWij 

+ cijDAijD
T
Aij

+ δijDBijD
T
Bij + μljDAljD

T
Alj + ρljDBljD

T
Blj

+ 

J

n�1
μAinj

A
T

inj.

(34)

*is completes the proof. □

When ΔAij and ΔBij are 0, it is easy to get the following
Corollary.

Corollary 1. 'e closed-loop fractional order nonlinear
interconnected system (5) is asymptotically stable if there are
symmetric positive definite matrices Qj(j � 1, . . . , J), ma-
trices Wij(i � 1, 2, . . . , rj), and a real scalar constant μ such
that
Λij Qj

∗ − μ(J − 1)− 1I

⎡⎣ ⎤⎦< 0, i � 1, . . . , rj, j � 1, . . . , J,

(35)

with

Λij � Sym AijQj + BijWij  + 

J

n�1
μAinj

A
T

inj,

Λilj Qj

∗ − μ(J − 1)− 1I

⎡⎣ ⎤⎦< 0, 1≤ i< l≤ rj,

(36)

with
Λilj �

1
2
Sym AijQj + BijWlj + AljQj + BljWij 

+ 

J

n�1
μAinj

A
T

inj.

(37)

The asymptotically stabilizing state feedback gain matrix
is Kij � WijQ

− 1
j .

Remark 1. Since T-S fuzzy system can effectively approxi-
mate complex systems with nonlinearity, our model can be
applied to a broad class of nonlinear fractional order
interconnected systems. Most of all, stabilization of system
can be developed by solving a set of LMIs. Moreover, when
the number of the rules r1, . . . , rj is one, our model can be
applied to solving fractional order linear interconnected
system with uncertainties.

4. Numerical Examples

In this part, in order to show the effectiveness of the pro-
posed method, a numerical example on interconnected
fractional order chaotic systems will be provided.

Consider the asymptotical stability of nonlinear frac-
tional order interconnected systems, and each subsystem is
fractional order uncertain Lorenz chaotic system:

Dαx1(t) � − (a +△a)x1(t) +(a +△a)x2(t),

Dαx2(t) � (c +△c)x1(t) − x2(t) − x1(t)x3(t),

Dαx3(t) � x1(t)x2(t) − bx3(t).

⎧⎪⎪⎨

⎪⎪⎩
(38)

And when a � 10,△a � sint, b � 8/3, c � 28,△c � 0.14,
and α � 0.993, chaotic behaviors of the fractional order
uncertain Lorenz chaotic system are shown in Figure 1.

Let us consider two interconnected fractional order
uncertain Lorenz chaotic system as follows:

−20
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20

30

–40
–20
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20

40
–10
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20

30

40

50

x1 (t)
x2 (t)

x 3
 (t

)

Figure 1: Chaotic behaviors of the fractional order uncertain
Lorenz system.
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Subsystem 1:
Dαx11(t) � − (a +△a)x11(t) +(a +△a)x21(t) + x12(t) + x22(t) + u1(t),

Dαx21(t) � (c +△c)x11(t) − x21(t) − x11(t)x31(t) + x12(t) + x32(t),

Dαx31(t) � x11(t)x21(t) − bx31(t).

⎧⎪⎪⎨

⎪⎪⎩
(39)
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Figure 2: *e state of subsystem 1 in nonlinear fractional order interconnected systems.
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Figure 3: *e state of subsystem 2 in nonlinear fractional order interconnected systems.
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Subsystem 2:

Dαx12(t) � − (a +△a)x12(t) +(a +△a)x22(t) + x11(t) + x21(t) + u2(t),

Dαx22(t) � (c +△c)x12(t) − x22(t) − x12(t)x32(t) + x11(t) + x31(t),

Dαx32(t) � x12(t)x22(t) − bx32(t).

⎧⎪⎪⎨

⎪⎪⎩
(40)
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Figure 4: Control results of the fractional order nonlinear interconnected system.
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Figure 5: Control results of the fractional order nonlinear interconnected system.
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*e state curves Nonlinear Fractional Order Inter-
connected Systems that without control, i.e., u1 ≡ 0, u2 ≡ 0
are shown in Figures 2 and 3.

Step 1. To stabilize the above fractional order inter-
connected system, we firstly establish fractional order T-S
fuzzy model for each nonlinear fractional order subsystem.
Assume that x1j(t) ∈ [− d, d] and d> 0, d � 30, then we have

*e fuzzy model of Subsystem j:

Rule 1: IF x1j(t) is M1j, THEN
Dαxj(t) � (A1j +△A1j)xj(t) + A1ljxl(t) + B1juj(t),
Rule 2: IF x1j(t) is M2j, THEN
Dαxj(t) � (A2j + ΔA2j)xj(t) + A2ljxl(t) + B2juj(t).
where xT

j (t) � [x1j(t)x2j(t)x3j(t)], l≠ j and j � 1, 2.

A1j �

− a a 0

c − 1 − d

0 d − b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A2j �

− a a 0

c − 1 d

0 − d − b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A1lj � A2lj �

1 1 0

1 0 1

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

ΔA1j � ΔA2j �

− Δa Δa 0

△c 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B1j � B2j �

1

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(41)

Here ΔA1j and ΔA2j can be represented by
− 0.1 0 0

0 0.005 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sin(t) 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10 − 10 0

28 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (42)

then we have DA1j
� DA2j

�

− 0.1 0 0
0 0.005 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

EA1j
� EA2j

�

10 − 10 0
28 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, and DB1j

� DB2j
�

0 0 0
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

EB1j
� EB2j

�

0
0
0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ and the membership functions for Rule 1

and Rule 2 are: M1j(x1j(t)) � (1/2)(1 + x1j(t)/d),
M2j(x1j(t)) � (1/2)(1 − x1j(t)/d).

Fuzzy controller of Subsystem j:

Rule 1: IF x1j(t) is M1j, THEN uj(t) � K1jxj(t),

Rule 2: IF x1j(t) is M2j, THEN uj(t) � K2jxj(t).

*e final output of the fuzzy controller is
uj(t) � 

2
i�1 hij(t)Kijxj(t).

Step 2. By applying*eorem 1 and using packages YALMIP
in Matlab, we find the LMI (9) and (11) in *eorem 1 is
feasible, a feasible solution is as follows:

K11 � − 7.4134 − 17.3762 3.7393 ,

K21 � − 9.6733 − 20.5994 0.8517 ,

K12 � − 10.7060 − 21.3431 5.6562 ,

K22 � − 13.8411 − 25.5120 1.4921 .

(43)

*erefore, the fractional order nonlinear fractional order
interconnected system under fuzzy control law is deter-
mined to be asymptotically stable. *e simulation results of
each subsystem states under control are illustrated in
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Figure 6: Control curve u1(t) of the fractional order inter-
connected system.
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Figure 7: Control curve u2(t) of the fractional order inter-
connected system.
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Figures 4 and 5 shows that it is asymptotically stable, and the
control curve of system is shown in Figures 6 and 7.

5. Conclusion

*is paper focuses on the stability of the nonlinear fractional
order interconnected systems. A useful stabilization ap-
proach has been given. *e basis of this approach is to apply
fractional order uncertain T-S fuzzy model to nonlinear
fractional order interconnected systems. *e PDC control
design is carried out based on the fractional order T-S fuzzy
model and the fractional order extension of Lyapunov direct
method, a sufficient condition was given in terms of LMI.
Finally, nonlinear fractional order interconnected systems
was given to illustrate the effectiveness of the proposed
theoretical results.
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